

1 of 90

 Introduction to MATLAB

Optimization (Linear Programming)

Computer Applications in Civil Engineering

Drs. Trani and Rakha
Civil and Environmental Engineering

Virginia Polytechnic Institute and State University

Spring 2000

2 of 90

Resource Allocation

Principles of

Mathematical Programming

Mathematical programming is a general technique to solve
resource allocation problems using optimization. Types of
problems:

•

Linear programming

•

Integer programming

•

Dynamic programming

•

Decision analysis

•

Network analysis and CPM

3 of 90

Mathematical Programming

Operations research was born with the increasing need to
solve optimal resource allocation during WWII.

•

Air Battle of Britain

•

North Atlantic supply routing problems

•

Optimal allocation of military convoys in Europe

Dantzig (1947) is credited with the first solutions to linear
programming problems using the Simplex Method

4 of 90

Resource Allocation

Linear Programming Applications

•

Allocation of products in the market

•

Mixing problems

•

Allocation of mobile resources in infrastructure
construction (e.g., trucks, loaders, etc.)

•

Crew scheduling problems

•

Network flow models

•

Pollution control and removal

•

Estimation techniques

5 of 90

Linear Programming

General Formulation

Maximize

subject to: for

 for

c j
j 1=

n

∑ x j

aij
j 1=

n

∑ x j bi≤ i 1 2 … m, , ,=

x j 0≥ j 1 2 … n, , ,=

6 of 90

Linear Programming

Maximize

Subject to:

...

and

Z c1x1 c2x2 … cnxn+ + +=

11x1 a12x2 … a1nxn+ + + b1≤

21x1 a22x2 … a2nxn+ + + b2≤

am1x1 am2x2 … amnxn+ + + bm≤

x1 0 x2 0 … xn 0≥, ,≥,≥

7 of 90

Linear Programming

 Objective Function (OF)

 Functional Constraints (m of them)

 Nonnegativity Conditions (n of these)

 are decision variables to be optimized (min or max)

 are costs associated with each decision variable

c j

j 1=

n

∑ x j

aij

j 1=

n

∑ x j bi≤

x j 0≥

x j

c j

8 of 90

Linear Programming

 are the coefficients of the functional constraints

 are the amounts of the resources available (RHS)

Some definitions

Feasible Solution (FS) - A solution that satisfies all
functional constraints of the problem

Basic Feasible Solution (BFS)- A solution that needs to be
further investigated to determine if optimal

Initial Basic Feasible Solution - a BFS used as starting point
to solve the problem

aij

bi

9 of 90

LP Example (Construction)

During the construction of an off-shore airport in Japan the main
contractor used two types of cargo barges to transport materials
from a fill collection site to the artificial island built to
accommodate the airport.

The types of cargo vessels have different cargo capacities and
crew member requirements as shown in the table:

Vessel Type Capacity (m-
ton) Crew required Number

available

Fuji 300 3 40

Haneda 500 2 60

10 of 90

Osaka Bay Model

According to company records there are 180 crew members
in the payroll and all crew members are trained to either
manage the “Haneda” or “Fuji” vessels.

Osaka

Airport
Kansai

Bridge

11 of 90

Osaka Bay Model

Mathematical Formulation

Maximize

subject to:

 and

Note: let and be the no. “Fuji” and “Haneda”
vessels

Z 300x1 500x2+=

3x1 2x2+ 180≤

x1 40≤

x2 60≤

x1 0≥ x2 0≥

x1 x2

12 of 90

Osaka Bay LP Model
Maximize

Solution:

a) Covert the problem in standard (canonical) form

subject to:

 and

Z 300x1 500x2+=

3x1 2x2 x3+ + 180=

x1 x4+ 40=

x2 x5+ 60=

x1 0≥ x2 0≥

13 of 90

Osaka Bay Problem (Graphical Solution)
x2

x1

30

40

20

10

50

60

10 20 4030 50 60

Feasible
Region

(40,30)

(20,60)

Corner Points

3x1 + 2x2 = 180

14 of 90

Osaka Bay Problem (Graphical Solution)
x2

x1

30

40

20

10

50

60

10 20 4030 50 60

(40,30)

(20,60)

Corner Points

z = 36,000
z = 30,000

z = 27,000

Note: Optimal Solution (x1, x2) = (20,60) vessels

15 of 90

Osaka Bay Problem (Simplex)

Arrange objective function in standard form to perform
Simplex tableaus

 , , , and

Z 300x1 500– x2– 0=

3x1 2x2 x3+ + 180=

x1 x4+ 40=

x2 x5+ 60=

x1 0≥ x2 0≥ x3 0≥ x4 0≥ x5 0≥

16 of 90

Note: x3, x4, x5 are slack variables

Osaka Bay Example (Initial Tableau)

BV = x3, x4, x5 and NBV = x1, x2

BV z x1 x2 x3 x4 x5 RHS

z 1 -300 -500 0 0 0 0

x3 0 3 2 1 0 0 180

x4 0 1 0 0 1 0 40

x5 0 0 1 0 0 1 60

17 of 90

Solution: (x1, x2,x3, x4, x5) = (0,0,180,40,60)

Osaka Bay Example (Initial Tableau)

x2 improves the objective function more than x1

BV z x1 x2 x3 x4 x5 RHS ratio

z 1 -300 -500 0 0 0 0

x3 0 3 2 1 0 0 180 90

x4 0 1 0 0 1 0 40 inf

x5 0 0 1 0 0 1 60 60

18 of 90

Leaving BV = x5 : New BV = x2

Osaka Bay Example (Second Tableau)

x1 improves the objective function the maximum

BV z x1 x2 x3 x4 x5 RHS ratio

z 1 -300 0 0 0 500 30,000

x3 0 3 0 1 0 0 60 20

x4 0 1 0 0 1 0 40 40

x2 0 0 1 0 0 1 60 inf

19 of 90

Leaving BV = x3 : New BV = x1

Osaka Bay Example (Final Tableau)

Note: All NVB coefficients are positive or zero in tableau

BV z x1 x2 x3 x4 x5 RHS

z 1 0 0 100 0 300 36,000

x1 0 1 0 1/3 0 0 20

x4 0 0 0 -1/3 1 2/3 20

x2 0 0 1 0 0 1 60

20 of 90

Optimal Solution: (x1, x2,x3, x4, x5) = (20,60,0,20,0)

21 of 90

Osaka Bay Model (Revised)

Mathematical Formulation

Maximize

subject to:

 and

Note: let and be the no. “Fuji” and “Haneda”
vessels

Z 300x1 500x2+=

3x1 2x2+ 180= Revised Constraint

x1 40≤

x2 60≤

x1 0≥ x2 0≥

x1 x2

22 of 90

Osaka Bay Model (Revised)
Maximize

a) Covert the problem in standard form

subject to:

 , , and

• Note: Problem lacks an intuitive IBFS (see first
constraint)

Z 300x1 500x2+=

3x1 2x2+ 180=

x1 x3+ 40=

x2 x4+ 60=

x1 0≥ x2 0≥ x3 0≥ x4 0≥

23 of 90

• Note that setting and produces
finite integer values for and (40 and 60,
respectively) but fails to provide and adequate solution
for constraint (1).

• This requires a reformulation step where another
variable is added to the problem to identify an IBFS

• Add an artificial variable to the first constraint to solve
the problem

• Adding an artificial variable in the constraint equation
requires the addition of a large penalty to the objective
function (z) to avoid this artificial variable being part of
the solution

x1 0= x2 0=

x3 x4

24 of 90

Osaka Bay Problem (Revised Graphical Sol.)
x2

x1

30

40

20

10

50

60

10 20 4030 50 60

Feasible
Region

(40,30)

(20,60)

z = 36,000
z = 30,000

z = 27,000

3x1 + 2x2 = 180

25 of 90

Osaka Bay Model (Revised)
Maximize

a) Add an artificial variable to the initial “equal to”
constraint

subject to:

 , , , and

Z 300x1 500x2+=

3x1 2x2 x5+ + 180=

x1 x3+ 40=

x2 x4+ 60=

x1 0≥ x2 0≥ x3 0≥ x4 0≥ x5 0≥

26 of 90

IBFS is now evident with and being zero
(NVB).

Revised Solution (Big-M Method)

Revise the objective function to drive artificial variable to
zero in the optimal solution. M is a large positive number.

Maximize

subject to:

 , , , and

x1 x2

Z 300x1 500x2 M x5–+=

3x1 2x2 x5+ + 180=

x1 x3+ 40=

x2 x4+ 60=

x1 0≥ x2 0≥ x3 0≥ x4 0≥ x5 0≥

27 of 90

Osaka Bay LP (Expanded Feasible Region)
x2

x1

30

40

20

10

50

60

10 20 4030 50 60

New Feasible
Region

(40,30)

(20,60)

z = 36,000

IBFS

Original Feasible
Region

3x1 + 2x2 = 180

28 of 90

Revised Solution (Big-M Method)

Rearrange the OF and constraints before solving

Maximize

subject to:

 , , , and

Z 300– x1 500x2– M x5+ 0=

x1 x3+ 40=

x2 x4+ 60=

3x1 2x2 x5+ + 180=

x1 0≥ x2 0≥ x3 0≥ x4 0≥ x5 0≥

29 of 90

Note: the “Big M” (or a large penalty) is added to
each artificial variable in OF. and are slack
variables, is an artificial variable.

x3 x4

x5

30 of 90

Revised Osaka Bay LP (Initial Tableau)

BV = x3, x4, and NBV = x1, x2

Solution: (x1, x2,x3, x4,) = (0,0,40,60,180)

BV z x1 x2 x3 x4 RHS

z 1 -300 -500 0 0 M 0

x3 0 1 0 1 0 0 40

x4 0 0 1 0 1 0 60

x5 0 3 2 0 0 1 180

x5

x5

x5

31 of 90

Revised Osaka Bay LP (Initial Tableau)

x1 improves the objective function the maximum

BV z x1 x2 x3 x4 RHS

z 1 -3M-300 -2M-500 0 0 0 -
180M

x3 0 1 0 1 0 0 40 40

x4 0 0 1 0 1 0 60 inf

x5 0 3 2 0 0 1 180 60

x5

32 of 90

Leaving BV = x3 : New BV = x1

33 of 90

Revised Osaka Bay LP (2nd Tableau)

x2 improves the objective function the maximum. Leaving

BV = : New BV = x2

BV z x1 x2 x3 x4 RHS

z 1 0 -2M-500 3M+300 0 0 -60M+
12000

x1 0 1 0 1 0 0 40 inf

x4 0 0 1 0 1 0 60 60

x5 0 0 2 -3 0 1 60 30

x5

x5

34 of 90

Revised Osaka Bay LP (3rd Tableau)

x3 improves the objective function the maximum. Leaving
BV = x4 : New BV = x3

BV z x1 x2 x3 x4 RHS

z 1 0 0 -450 M+250 0 27000

x1 0 1 0 1 0 0 40 40

x4 0 0 0 3/2 1 -1/2 30 20

x2 0 0 1 -3/2 0 1/2 30 no

x5

35 of 90

Revised Osaka Bay LP (Final Tableau)

Note: All NVB coefficients are positive or zero in tableau

Optimal Solution: (x1, x2,x3, x4,) = (20,60,20,0,0)

BV z x1 x2 x3 x4 RHS

z 1 0 0 0 300 M+100 36000

x1 0 1 0 0 -2/3 1/3 20

x3 0 0 0 1 2/3 -1/3 20

x2 0 0 1 0 -1/2 1/2 60

x5

x5

36 of 90

Simplex Method Anomalies

a) Ties for leaving BV - break without arbitration

b) Ties for entering BV - break without arbitration

c) Zero coefficient of NBV in OF (final tableau) - Implies
multiple optimal solutions

d) No leaving BV - implies unbounded solution

37 of 90

Steps in the Simplex Method

I) Initialization Step

• Introduce slack variables

• Select original variables of the problems as part of the
NBV

• Select slacks as BV

II) Stopping Rule

• The solution is optimal if every coefficient in the OF is
nonnegative

38 of 90

• Coefficients of OF measure the rates of change of
the OF as any other variable increases from zero

III) Iterative Step

• Determine the entering NBV (pivot column)

• Determine the leaving BV (from BV set) as the first
variable to go to zero without violating constraints

• Perform row operations to make coefficients of BV
unity in their respective rows

• Eliminate new BV coefficients (from pivot column)
from other equations performing row operations

39 of 90

Linear Programming Strategies
Using the Simplex Method

•Identify the problem

•Formulate the problem using LP

•Solve the problem using LP

•Test the model (correlation and sensitivity analysis)

•Establish controls over the model

•Implementation

•Model re-evaluation

40 of 90

LP Formulations

Type of Constraint How to handle

Add a slack variable

Add an artificial variable

Add a penalty to OF
(BigM)

Add a negative slack and a
positive artificial variable

3x1 2x2+ 180≤

3x1 2x2+ 180=

3x1 2x2+ 180≥

41 of 90

 LP (Handling Constraints)

Note: M is a large positive number

Type of Constraint Equivalent Form

3x1 2x2+ 180≤ 3x1 2x2 x3+ + 180=

3x1 2x2+ 180= 3x1 2x2 x3+ + 180=

z c1x1= c2x2 M x3–+

3x1 2x2+ 180≥ 3x1 2x2 x3– x4+ + 180=

z c1x1= c2x2 M x4–+

42 of 90

Theory Behind Linear
Programming

General Formulation

Maximize

subject to: for i=1,2, ..., m

 for j=1,2,...,n

Z c j

j 1=

n

∑ x j=

aij

j 1=

n

∑ x j bi≤

x j 0≥

43 of 90

General LP Formulation (Matrix
Form)

Maximize

subject to:

 where:

 is the vector containing the coefficients of the O.F.,

 is the matrix containing all coefficients of the
functional constraints,

 is the column vector for RHS coefficients,

Z cx=

Ax b=

x 0≥

c

A

b

44 of 90

 is the vector of decision variables

note that:

, , and matrix

x

c c1 c2… cn
=

x
x1

x2

xn

= b
b1

b2

bn

= 0
0

0

0

= A

A
a11 a12… a1n

a21 a22… a2n

am1 am2… amn

=

45 of 90

Theory Behind the Simplex Method

Addition of slack variables to the problem yields:

 where is a vector of slack variables (m)

New augmented constraints become,

 and

Note: is an identity matrix.

xs

xn 1+

xn 2+

xn m+

= xs

A I
x
xs

b= x
xs

0≥

I m m×

46 of 90

Theory Behind the Simplex Method

Basic Feasible Solution. From the system,

 n Nonbasic Variables (NBV) from the set,

 are set to be equal to zero.

This leaves a set of equations and unknowns.

These unknowns correspond to the set of basic variables

A I
x
xs

b=

x
xs

m m

47 of 90

Theory Behind the Simplex Method

Let the set of basic variables be called and the
matrix containing the coefficients of the functional
constraints be called (basis matrix) so that,

The vector is called vector of basic variables.

xB

A

AxB b=

xB

xB1

xB2

xBm

=

xB

48 of 90

Theory Behind the Simplex Method

The idea behind each basic feasible solution in the
Simplex Algorithm is to eliminate NBV from the set,

and

 the basis matrix (a square matrix).

Theory Behind the Simplex Method

x
xs

A
a11 a12… a1m

a21 a22… a2m

am1 am2… amm

=

49 of 90

From simple matrix algebra (solve for) from,

if is the vector of the coefficients of the objective
function this brings us to the following value of the
objective function:

xB

AxB b=

A() 1– AxB A() 1– b=

xB A() 1– b=

cB

Z cB xB A() 1– b= =

50 of 90

Theory Behind the Simplex Method

The original set of equations to start the Simplex
Method is,

after each iteration in the Simplex Method,

and

The RHS of the new set of equations becomes,

1 c– o
o A I

Z

x
xs

0
b

=

xB A() 1– b=

Z cB xB A() 1– b= =

51 of 90

Theory Behind the Simplex Method

After any iteration,

In tableau format this becomes,

Z

xB

1 cB A() 1–

0 A() 1–

0
b

cB A() 1–
b

A() 1–
b

= =

1 cB A() 1–

0 A() 1–

1 c– o
o A I

1 cB A() 1– c– cB A() 1–

o A() 1– A A() 1–
=

1 cB A() 1– c– cB A() 1–

o A() 1– A A() 1–

Z

x
xs

cB A() 1–
b

A() 1–
b

=

52 of 90

Theory of the Simplex Method

Iteration BV Z Original
Variables

Slack
Variables RHS

0 Z 1 0 0

0

Any Z 1

0

c–

xB A I b

cB A() 1– c– cB A() 1– cB A() 1–
b

xB A() 1– A A() 1–
A() 1–

b

53 of 90

Numerical Example

To illustrate the use of the revised simplex method
consider the Osaka Bay example:

Maximize

subject to:

 and

Z 300x1 500x2+=

3x1 2x2+ 180≤

x1 40≤

x2 60≤

x1 0≥ x2 0≥

54 of 90

Note: let and be the no. “Fuji” and
“Haneda” vessels

note that: coefficients of real variables

, , and matrix

x1 x2

c 300 500=

x x1

x2

= b
180

40

60

= 0
0

0

0

= A

A
3 2 1 0 0

1 0 0 1 0

0 1 0 0 1

=

55 of 90

Theory Behind the Simplex Method

Addition of slack variables to the problem yields:

 where is a vector of slack variables

Executing the procedure for the Simplex Method

Iteration 0:

 , and

xs

x3

x4

x5

= xs

xB

x3

x4

x5

= A() 1–
1 0 0

0 1 0

0 0 1

=
x3

x4

x5

1 0 0

0 1 0

0 0 1

180

40

60

180

40

60

= =

56 of 90

also known,

 and hence or

Iteration 1: (refer to 2nd tableau in Simplex)

Note: substitute values for using columns for ,
and in the original matrix.

cB 0 0 0= Z cB xB A() 1– b= =

Z 0 0 0

180

40

60

0= =

A x3 x4

x2 A

57 of 90

 , and

also known,

 and hence or

xB

x3

x4

x2

= A
1 0 2

0 1 0

0 0 1

= A 1–
1 0 2–

0 1 0

0 0 1

=

x3

x4

x2

1 0 2–

0 1 0

0 0 1

180

40

60

60

40

60

= =

cB 0 0 500= Z cB xB A() 1– b= =

Z 0 0 500

60

40

60

30000= =

58 of 90

Iteration 2: (refer to 3rd tableau in Simplex)

Note: substitute values for using columns for ,
and in the original matrix.

 , and

A x1 x4

x2 A

xB

x1

x4

x2

= A
3 0 2

1 1 0

0 0 1

= A 1–

1
3
--- 0 2

3
---–

1
3
---– 1

2
3

0 0 1

=

x1

x4

x2

1
3
--- 0 2

3
---–

1
3
---– 1

2
3

0 0 1

60

40

60

20

20

60

= =

59 of 90

also known,

 and hence or

 Optimal Solution

cB 300 0 500= Z cB xB A() 1– b= =

Z 300 0 500

20

20

60

36000= =

60 of 90

Linear Programming Programs

Several computer programs are available to solve LP
problems:

•LINDO - Linear INteractive Discrete Optimizer

•GAMS - also solves non linear problems

•MINUS

•Matlab Toolbox - Optimization toolbox (from
Mathworks)

•QSB - LP, DP, IP and other routines available (good for
students)

61 of 90

LP Routine for Matlab

• Developed by Prof. Henry Wolkowicz (Univ. of
Waterloo)

• Adapted by H. Baik, A. Trani, and D.R. Drew.

•Create two M files (linprog.m and input.m)

Matlab Script

for LP (linprog.m)

invoke input
file

Matlab Script
input file

62 of 90

Input File
% Example: Enter the data:

 minmax=0; % minmax = 0 (maximizes a function)
 a=[3 4 1 0 0
 1 0 0 1 0
 0 1 0 0 1]
 b=[520 80 70]'
 c=[-300 -500 0 0 0]
 bas=[3 4 5]

63 of 90

LP Standard Form

Note that this input file should include also the large
penalty (Big M) as part of the coefficients in OF in order
to work. The problem needs to be stated in standard
(canonical) form.

 Objective Function (OF)

 Functional Constraints (m of them)

Note: Nonnegativity constraints are always enforced

c j

j 1=

n

∑ x j

aij

j 1=

n

∑ x j bi≤

64 of 90

LP Routine for Matlab

File linprog.m to execute LP by the Simplex Method

% Title : Linear Programming

% Author : Prof. Henry Wolkowicz (Univ. of Waterloo)

% Modified: By H. Baik, A. Trani and D.R. Drew

% Date : Nov. 29, 1996

% The Simplex Method (data file is hw*.m)

% Solves 'small' Linear Programming Problems (in canonical form)

% (LP) max cx s.t. ax=b, x>=0

%

% Data input by user or calling routine: a,b,c,bas,pt where

% minmax=1, if minimizing problem

65 of 90

% 0, if maximizing problem

% a - m by (m+n) matrix (containing identity)

% b - m-column vector assumed >=0

% c - m+n-row vector of costs which is placed left hand side(LHS)

% bas - m-row vector with column indices corresp. to the

% identity matrix in a, i.e. a(bas,:)=identity.

% pt - pause time after each iteration, 0 denotes no pause, while

% any number > 20 denotes infinite time, i.e. you

% are prompted to hit return to continue.

% The user can change the upper bound of 100 iterations - see iterm

% below.

%

% The matrix a is assumed to contain an m by m identity matrix

% corresponding to the basic columns.

% A relative accuracy of approximately 15 significant decimal

66 of 90

% digits is assumed. This affects the values of 4 accuracy

% parameters, epsi, i=0,1,2,3.

% The pivot step is done using 'Gauss-Jordan' elimination.

% No special factorizations to ensure stability are used.

% We do not use the revised simplex method.

% A final check on roundoff error is made.

% We use a threshold value when finding the pivot element.

% Problem (LP) is assumed to be in canonical form, i.e. slacks

% have been added and/or phase 1 has finished. However, we still

% price out the cost vector c.

%

% datafile (read input file):

osaka2

disp(['If the input data is correct, hit return to continue'])

67 of 90

 pause

if minmax==1,

 c=-c;

end

echo off

%

pt=1

% Now solve the LP by executing the file reg.m:

% The Program:

%

%

rnderr=0;

iterm=100;

stop=1; % use to overcome the bug in the return statement

68 of 90

% Error tolerances (from 'Advanced Linear Progr.' by
B.A.Murtaugh, pg 34.)

eps0=10^(-10); % numerical zero

eps1=10^(-5); % accuracy parameter for optimality check

eps2=10^(-8); % accuracy parameter pivot element (threshold test)

eps3=10^(-6); % accuracy parameter for final roundoff error check

a0=a; % save the matrix a for the final roundoff error test

b0=b; % save the vector b for the final roundoff error test

c0=c;

bas0=bas;

[m,mn]=size(a); % row and column size of a

z=0; % initial value for z

 clc

 home,disp([blanks(30)]),

 disp(['Initial tableau ' blanks(10)])

69 of 90

 if minmax==1

 tc=-c;

 [tc z

 a b]

 else

 [c z

 a b]

 end

 if pt > 20,

 disp(['Hit return to continue'])

 pause

 else

 pause(pt)

70 of 90

 end

% make cannonical form

if minmax==1

 z=-c(bas)*b;

else

 z=c(bas)*b;

end

clc

for i=1:m,

 c=c-c(bas(i))*a(i,:);

end

 clc

 home,disp([blanks(30)]),

71 of 90

 %disp(['Price out the cost vector ' blanks(10)])

 disp(['standard or canonical form of this problem'])

 if minmax==1

 tc=-c;

 tz=-z;

 [tc tz

 a b]

 else

 [c z

 a b]

 end

 if pt > 20,

72 of 90

 disp(['Hit return to continue'])

 pause

 else

 pause(pt)

 end

iter=0;

 % initialize the iteration count

n=mn-m;

 % number of nonbasic variables

% nbas - indices of the nonbasic variables

nbas=[];

for j=1:mn,

 if all(j~=bas),

 nbas=[nbas j];

 end

73 of 90

end

% Perform simplex iterations as long as there is a neg cost

while iter<iterm,

% Find a negative reduced cost.

 ctemp=c;

 % temporary work vector

 neg=[];

 for j=1:n,

 if ctemp(nbas(j))<-eps1,

 neg=[neg nbas(j)];

 end

 end

 ct=-1;

 if length(neg)==0,

 disp(['This phase is completed - current basis is: '])

74 of 90

 bas=bas

 disp(['The current basic variable values are : '])

 b

 disp(['The current objective value is:'])

if minmax==1

 c0(bas)*b

 else

 -c0(bas)*b

 end

 disp(['The number of iterations is ' int2str(iter)])

 if norm(a0(:,bas)*b-b0,inf)>eps3, % check solution

 disp(['^WARNING^ roundoff error is significant'])

 end

75 of 90

 if any(b<-eps0), % check positive final solution

 disp(['^WARNING^ final b not nonnegative'])

 end

 pause(3)

 clc

 home,disp([blanks(30)]),

 disp(['Final tableau in this phase' blanks(10)])

 disp([' ' blanks(10)])

 if minmax==1

tc=-c;

 tz=-z;

 [tc tz a b]

 else

 [c z a b]

 end

76 of 90

 stop=0;

 return

 else

 while ct<-eps1, % continue till we find a suitable pivot

 [ct,i]=min(ctemp(neg));

 if ct>=-eps1, % no suitable pivot columns are left

 disp(['a suitable pivot element cannot be found'])

 disp(['probable cause: roundoff error or ill-cond prob'])

 disp(['equilibrate problem before solving'])

 stop=0;

 return

 end

 t=neg(i); % index of the most neg reduced cost

% Now, let x sub t enter the basis

77 of 90

%

% First, we need to find the variable which leaves the basis

 pos=[];

 ind=[];

 for i=1:m,

 if a(i,t)>eps0,

 ind=[ind i]; % suitable rows

 end

 end

 if length(ind)==0,

 disp(['The problem is unbounded '])

 stop=0;

 return

 end

 [alpha,i]=min(b(ind)./a(ind,t));

78 of 90

 i=ind(i); % pivot row

 if a(i,t)>eps2, % a suitable pivot element is found

 ct=0;

 else

 ctemp(t)=0; % column t is unsuitable pivot col.

 end

 end

 if stop==0,

 return % Ensure that we return

 end

% Update the basic and nonbasic vectors.

 nbas(nbas==t)=bas(i);

 bas(i)=t;

 alpha=a(i,t); % pivot element

% Store the data in ap,bp

79 of 90

 ap=a;

 bp=b;

% Now pivot by row

 iter=iter+1;

 if pt > 20,

 disp(['Hit return to continue'])

 pause

 else

 pause(pt)

 end

%

 for k=1:m,

 ratio=ap(k,t)/ap(i,t);

 a(k,:)=ap(k,:)-ap(i,:)*ratio;

80 of 90

 b(k)=bp(k)-bp(i)*ratio;

 end

% Now for the objective row update

 ratio=c(t)/ap(i,t);

 c=c-ap(i,:)*ratio;

 z=z-bp(i)*ratio;

% Now for the pivot row update

 a(i,:)=ap(i,:)/ap(i,t);

 b(i)=bp(i)/ap(i,t);

 clc

 home,disp([blanks(30)]),

 disp(['pivot= a(' int2str(i)+1 ',' int2str(t) ')' blanks(10)])

 disp(['after pivoting '])

81 of 90

if minmax==1

tc=-c;

 tz=-z;

 [tc tz a b]

 else

 [c z a b]

 end

 if pt <= 20,

 pause(pt)

 else

 disp(['Hit return to continue'])

 pause

 end

82 of 90

 end

%

end

if iter>=100,

 text='Iteration bound has been exceeded ^^^ '

end

83 of 90

LP Example Using Matlab
Program (sim.m)

Mathematical Formulation

Maximize

subject to:

 and

Z 300x1 500x2+=

3x1 2x2+ 180≤

x1 40≤

x2 60≤

x1 0≥ x2 0≥

84 of 90

Mathematical Formulation
(adding slacks)

Maximize

subject to:

 and

Z 300x1 500x2+=

3x1 2x2 x3+ + 180=

x1 x4+ 40=

x2 x5+ 60=

x1 0≥ x2 0≥

85 of 90

Osaka Bay Example Using Matlab
% Example: Enter the data:
 minmax=0;
 a=[3 2 1 0 0
 1 0 0 1 0
 0 1 0 0 1]
 b=[180 40 60]'
 c=[-300 -500 0 0 0]
 bas=[3 4 5]

Note: 3 slack variables added (minmax = 0 denotes
maximization)

86 of 90

Osaka Bay Example (Matlab Output)
a =
 3 2 1 0 0
 1 0 0 1 0
 0 1 0 0 1

b =
 180
 40
 60
c =
 -300 -500 0 0 0

bas =
 3 4 5
If the input data is correct, hit return to continue

87 of 90

Matlab (Output)

standard or canonical form of this problem

ans =
 -300 -500 0 0 0 0
 3 2 1 0 0 180
 1 0 0 1 0 40
 0 1 0 0 1 60
pivot= a(4,2)
after pivoting

ans =
 -300 0 0 0 500 30000
 3 0 1 0 -2 60
 1 0 0 1 0 40
 0 1 0 0 1 60

88 of 90

Osaka Bay Problem - Matlab (Output)

pivot= a(2,1)
after pivoting
ans =
 1.0e+04 *

 0 0 0.0100 0 0.0300 3.6000
 0.0001 0 0.0000 0 -0.0001 0.0020
 0 0 -0.0000 0.0001 0.0001 0.0020
 0 0.0001 0 0 0.0001 0.0060

This phase is completed - current basis is:
bas =
 1 4 2

89 of 90

Osaka Bay Problem - Matlab (Output)

The current basic variable values are :

b =
 20
 20
 60

The current objective value is:

ans =
 36000

The number of iterations is 2

90 of 90

Osaka Bay Problem - Matlab (Output)

Final tableau in this phase

ans =
 1.0e+04 *

 0 0 0.0100 0 0.0300 3.6000
 0.0001 0 0.0000 0 -0.0001 0.0020
 0 0 -0.0000 0.0001 0.0001 0.0020
 0 0.0001 0 0 0.0001 0.0060
»

