
 

1 of 90

 

         Introduction to MATLAB

Optimization (Linear Programming)

Computer Applications in Civil Engineering

 

Drs. Trani and Rakha
Civil and Environmental Engineering

Virginia Polytechnic Institute and State University

 

Spring 2000



 

2 of 90

 

Resource Allocation

 

Principles of 

 

Mathematical Programming

 

Mathematical programming is a general technique to solve 
resource allocation problems using optimization. Types of 
problems:

 

• 

 

Linear programming

 

• 

 

Integer programming

 

• 

 

Dynamic programming

 

• 

 

Decision analysis

 

• 

 

Network analysis and CPM
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Mathematical Programming

 

Operations research was born with the increasing need to 
solve optimal resource allocation during WWII.

 

• 

 

Air Battle of Britain

 

• 

 

North Atlantic supply routing problems

 

• 

 

Optimal allocation of military convoys in Europe

Dantzig (1947) is credited with the first solutions to linear 
programming problems using the Simplex Method
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Resource Allocation

 

Linear Programming Applications

 

• 

 

Allocation of products in the market

 

• 

 

Mixing problems 

 

• 

 

Allocation of mobile resources in infrastructure 
construction (e.g., trucks, loaders, etc.)

 

• 

 

Crew scheduling problems 

 

• 

 

Network flow models

 

• 

 

Pollution control and removal

 

• 

 

Estimation techniques 
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Linear Programming

 

General Formulation

 

Maximize 

subject to:  for 

  for 

c j
j 1=

n

∑ x j

aij
j 1=

n

∑ x j bi≤ i 1 2 … m, , ,=

x j 0≥ j 1 2 … n, , ,=
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Linear Programming

 

Maximize 

Subject to:

...

 

and 

Z c1x1 c2x2 … cnxn+ + +=

11x1 a12x2 … a1nxn+ + + b1≤

21x1 a22x2 … a2nxn+ + + b2≤

am1x1 am2x2 … amnxn+ + + bm≤

x1 0 x2 0 … xn 0≥, ,≥,≥
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Linear Programming

  Objective Function (OF) 

   Functional Constraints (m of them)

  Nonnegativity Conditions (n of these)

 are decision variables to be optimized (min or max)

 are costs associated with each decision variable

c j

j 1=

n

∑ x j

aij

j 1=

n

∑ x j bi≤

x j 0≥

x j

c j
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Linear Programming

 are the coefficients of the functional constraints

 are the amounts of the resources available (RHS)

Some definitions

Feasible Solution (FS) - A solution that satisfies all 
functional constraints of the problem

Basic Feasible Solution (BFS)- A solution that  needs to be 
further investigated to determine if optimal

Initial Basic Feasible Solution - a BFS used as starting point 
to solve the problem

aij

bi
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LP Example (Construction)

During the construction of an off-shore airport in Japan the main 
contractor used two types of cargo barges to transport materials 
from a fill collection site to the artificial island built to 
accommodate the airport.

The types of cargo vessels have different cargo capacities and 
crew member requirements as shown in the table: 

Vessel Type Capacity (m-
ton) Crew required Number 

available

Fuji 300 3 40

Haneda 500 2 60
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Osaka Bay Model

According to company records there are 180 crew members 
in the payroll and all crew members are trained to either 
manage the “Haneda” or “Fuji” vessels. 

Osaka

Airport
Kansai

Bridge
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Osaka Bay Model

Mathematical Formulation

Maximize 

subject to: 

 

 and 

Note: let  and  be the no. “Fuji” and “Haneda” 
vessels

Z 300x1 500x2+=

3x1 2x2+ 180≤

x1 40≤

x2 60≤

x1 0≥ x2 0≥

x1 x2
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Osaka Bay LP Model
Maximize 

Solution:

a) Covert the problem in standard (canonical) form

subject to: 

 

 and 

Z 300x1 500x2+=

3x1 2x2 x3+ + 180=

x1 x4+ 40=

x2 x5+ 60=

x1 0≥ x2 0≥
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Osaka Bay Problem (Graphical Solution)
x2

x1

30

40

20

10

50

60

10 20 4030 50 60

Feasible
Region

(40,30)

(20,60)

Corner Points

3x1 + 2x2 = 180
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Osaka Bay Problem (Graphical Solution)
x2

x1

30

40

20

10

50

60

10 20 4030 50 60

(40,30)

(20,60)

Corner Points

z = 36,000
z = 30,000

z = 27,000

Note: Optimal Solution (x1, x2) = (20,60) vessels
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Osaka Bay Problem (Simplex)

Arrange objective function in standard form to perform 
Simplex tableaus

 

 

 

 , , ,  and 

Z 300x1 500– x2– 0=

3x1 2x2 x3+ + 180=

x1 x4+ 40=

x2 x5+ 60=

x1 0≥ x2 0≥ x3 0≥ x4 0≥ x5 0≥
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Note: x3, x4, x5 are slack variables

Osaka Bay Example (Initial Tableau)

BV = x3, x4, x5 and NBV = x1, x2

BV z x1 x2 x3 x4 x5 RHS

z 1 -300 -500 0 0 0 0

x3 0 3 2 1 0 0 180

x4 0 1 0 0 1 0 40

x5 0 0 1 0 0 1 60
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Solution: (x1, x2,x3, x4, x5) = (0,0,180,40,60)

Osaka Bay Example (Initial Tableau)

x2 improves the objective function more than x1

BV z x1 x2 x3 x4 x5 RHS ratio

z 1 -300 -500 0 0 0 0

x3 0 3 2 1 0 0 180 90

x4 0 1 0 0 1 0 40 inf

x5 0 0 1 0 0 1 60 60
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Leaving BV  =  x5 : New BV = x2

Osaka Bay Example (Second Tableau)

x1 improves the objective function the maximum

BV z x1 x2 x3 x4 x5 RHS ratio

z 1 -300 0 0 0 500 30,000

x3 0 3 0 1 0 0 60 20

x4 0 1 0 0 1 0 40 40

x2 0 0 1 0 0 1 60 inf
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Leaving BV  =  x3 : New BV = x1

Osaka Bay Example (Final Tableau)

Note: All NVB coefficients are positive or zero in tableau 

BV z x1 x2 x3 x4 x5 RHS

z 1 0 0 100 0 300 36,000

x1 0 1 0 1/3 0 0 20

x4 0 0 0 -1/3 1 2/3 20

x2 0 0 1 0 0 1 60
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Optimal Solution: (x1, x2,x3, x4, x5) = (20,60,0,20,0)
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Osaka Bay Model (Revised)

Mathematical Formulation

Maximize 

subject to: 

 

 and 

Note: let  and  be the no. “Fuji” and “Haneda” 
vessels

Z 300x1 500x2+=

3x1 2x2+ 180= Revised Constraint

x1 40≤

x2 60≤

x1 0≥ x2 0≥

x1 x2
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Osaka Bay Model (Revised)
Maximize 

a) Covert the problem in standard form

subject to: 

 

 , ,  and   

• Note: Problem lacks an intuitive IBFS (see first 
constraint)

Z 300x1 500x2+=

3x1 2x2+ 180=

x1 x3+ 40=

x2 x4+ 60=

x1 0≥ x2 0≥ x3 0≥ x4 0≥
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• Note that setting  and  produces 
finite integer values for  and  (40 and 60, 
respectively) but fails to provide and adequate solution 
for constraint (1).

• This requires a reformulation step where another 
variable is added to the problem to identify an IBFS 

• Add an artificial variable to the first constraint to solve 
the problem

• Adding an artificial variable in the constraint equation 
requires the addition of a large penalty to the objective 
function (z) to avoid this artificial variable being part of 
the solution

x1 0= x2 0=

x3 x4
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Osaka Bay Problem (Revised Graphical Sol.)
x2

x1

30

40

20

10

50

60

10 20 4030 50 60

Feasible
Region

(40,30)

(20,60)

z = 36,000
z = 30,000

z = 27,000

3x1 + 2x2 = 180
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Osaka Bay Model (Revised)
Maximize 

a) Add an artificial variable to the initial “equal to” 
constraint

subject to: 

 

 , , ,  and 

Z 300x1 500x2+=

3x1 2x2 x5+ + 180=

x1 x3+ 40=

x2 x4+ 60=

x1 0≥ x2 0≥ x3 0≥ x4 0≥ x5 0≥
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IBFS is now evident with   and   being zero 
(NVB).

Revised Solution (Big-M Method)

Revise the objective function to drive artificial variable to 
zero in the optimal solution. M is a large positive number.

Maximize 

subject to: 

 

 , , ,  and 

x1 x2

Z 300x1 500x2 M x5–+=

3x1 2x2 x5+ + 180=

x1 x3+ 40=

x2 x4+ 60=

x1 0≥ x2 0≥ x3 0≥ x4 0≥ x5 0≥



27 of 90

Osaka Bay LP (Expanded Feasible Region)
x2

x1

30

40

20

10

50

60

10 20 4030 50 60

New Feasible
Region

(40,30)

(20,60)

z = 36,000

IBFS

Original Feasible
Region

3x1 + 2x2 = 180
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Revised Solution (Big-M Method)

Rearrange the OF and constraints before solving

Maximize 

subject to:  

 , , ,  and 

Z 300– x1 500x2– M x5+ 0=

x1 x3+ 40=

x2 x4+ 60=

3x1 2x2 x5+ + 180=

x1 0≥ x2 0≥ x3 0≥ x4 0≥ x5 0≥
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Note: the “Big M” (or a large penalty) is added to 
each artificial variable in OF.  and  are slack 
variables,  is an artificial variable. 

x3 x4

x5
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Revised Osaka Bay LP (Initial Tableau)

BV = x3, x4,  and NBV = x1, x2

Solution: (x1, x2,x3, x4, ) = (0,0,40,60,180)

BV z x1 x2 x3 x4 RHS

z 1 -300 -500 0 0 M 0

x3 0 1 0 1 0 0 40

x4 0 0 1 0 1 0 60

x5 0 3 2 0 0 1 180

x5

x5

x5
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Revised Osaka Bay LP (Initial Tableau)

x1 improves the objective function the maximum

BV z x1 x2 x3 x4 RHS

z 1 -3M-300 -2M-500 0 0 0 -
180M

x3 0 1 0 1 0 0 40 40

x4 0 0 1 0 1 0 60 inf

x5 0 3 2 0 0 1 180 60

x5
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Leaving BV  =  x3 : New BV = x1
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Revised Osaka Bay LP (2nd Tableau )

x2 improves the objective function the maximum. Leaving 

BV  =   : New BV = x2

BV z x1 x2 x3 x4 RHS

z 1 0 -2M-500 3M+300 0 0 -60M+ 
12000

x1 0 1 0 1 0 0 40 inf

x4 0 0 1 0 1 0 60 60

x5 0 0 2 -3 0 1 60 30

x5

x5
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Revised Osaka Bay LP (3rd Tableau )

x3 improves the objective function the maximum. Leaving 
BV  =  x4 : New BV = x3

BV z x1 x2 x3 x4 RHS

z 1 0 0 -450 M+250 0  27000

x1 0 1 0 1 0 0 40 40

x4 0 0 0 3/2 1 -1/2 30 20

x2 0 0 1 -3/2 0 1/2 30 no

x5
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Revised Osaka Bay LP (Final Tableau )

Note: All NVB coefficients are positive or zero in tableau 

Optimal Solution: (x1, x2,x3, x4, ) = (20,60,20,0,0)

BV z x1 x2 x3 x4 RHS

z 1 0 0 0 300 M+100 36000

x1 0 1 0 0 -2/3 1/3 20

x3 0 0 0 1 2/3 -1/3 20

x2 0 0 1 0 -1/2 1/2 60

x5

x5



36 of 90

Simplex Method Anomalies

a) Ties for leaving BV - break without arbitration

b) Ties for entering BV - break without arbitration

c) Zero coefficient of NBV in OF (final tableau) - Implies 
multiple optimal solutions

d) No leaving BV - implies unbounded solution
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Steps in the Simplex Method

I) Initialization Step

• Introduce slack variables

• Select original variables of the problems as part of the 
NBV

• Select slacks as BV

II) Stopping Rule

• The solution is optimal if every coefficient in the OF is 
nonnegative
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• Coefficients of OF measure the rates of change of 
the OF as any other variable increases from zero

III) Iterative Step 

• Determine the entering NBV (pivot column)

• Determine the leaving BV (from BV set) as the first 
variable to go to zero without violating constraints

• Perform row operations to make coefficients of BV 
unity in their respective rows

• Eliminate new BV coefficients (from pivot column) 
from other equations performing row operations
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Linear Programming Strategies 
Using the Simplex Method

•Identify the problem

•Formulate the problem using LP

•Solve the problem using LP

•Test the model (correlation and sensitivity analysis)

•Establish controls over the model

•Implementation

•Model re-evaluation
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LP Formulations 

Type of Constraint How to handle

Add a slack variable

Add an artificial variable

Add a penalty to OF 
(BigM)

Add a negative slack and a 
positive artificial variable

3x1 2x2+ 180≤

3x1 2x2+ 180=

3x1 2x2+ 180≥
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 LP (Handling Constraints)

Note: M is a large positive number

Type of Constraint Equivalent Form

3x1 2x2+ 180≤ 3x1 2x2 x3+ + 180=

3x1 2x2+ 180= 3x1 2x2 x3+ + 180=

z c1x1= c2x2 M x3–+

3x1 2x2+ 180≥ 3x1 2x2 x3– x4+ + 180=

z c1x1= c2x2 M x4–+
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Theory Behind Linear 
Programming 

General Formulation

Maximize 

subject to:  for i=1,2, ..., m

  for j=1,2,...,n

Z c j

j 1=

n

∑ x j=

aij

j 1=

n

∑ x j bi≤

x j 0≥
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General LP Formulation (Matrix 
Form)

Maximize 

subject to:  

    where:

 is the vector containing the coefficients of the O.F.,

  is the matrix containing all coefficients of the 
functional constraints, 

 is the column vector for RHS coefficients,

Z cx=

Ax b=

x 0≥

c

A

b
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 is the vector of decision variables

note that: 

,  ,  and matrix 

 

x

c c1 c2… cn
=

x
x1

x2

xn

= b
b1

b2

bn

= 0
0

0

0

= A

A
a11 a12… a1n

a21 a22… a2n

am1 am2… amn

=
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Theory Behind the Simplex Method

Addition of slack variables to the problem yields:

 where  is a vector of slack variables (m)

New augmented constraints become,

 and  

Note:  is an  identity matrix.

xs

xn 1+

xn 2+

xn m+

= xs

A I
x
xs

b= x
xs

0≥

I m m×
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Theory Behind the Simplex Method

Basic Feasible Solution. From the system,

 n Nonbasic Variables (NBV) from the set,

 are set to be equal to zero. 

This leaves a set of  equations and   unknowns.

These unknowns correspond to the set of basic variables

A I
x
xs

b=

x
xs

m m
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Theory Behind the Simplex Method

Let the set of basic variables be called  and the 
matrix containing the coefficients of the functional 
constraints be called  (basis matrix) so that,

 

The vector  is called vector of basic variables.

xB

A

AxB b=

xB

xB1

xB2

xBm

=

xB
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Theory Behind the Simplex Method

The idea behind each basic feasible solution in the 
Simplex Algorithm is to eliminate NBV from the set,

and 

 the basis matrix (a square matrix).

Theory Behind the Simplex Method

x
xs

A
a11 a12… a1m

a21 a22… a2m

am1 am2… amm

=
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From simple matrix algebra (solve for ) from,

if  is the vector of the coefficients of the objective 
function this brings us to the following value of the 
objective function:

xB

AxB b=

A( ) 1– AxB A( ) 1– b=

xB A( ) 1– b=

cB

Z cB xB A( ) 1– b= =
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Theory Behind the Simplex Method

The original set of equations to start the Simplex 
Method is,

after each iteration in the Simplex Method,

and  

The RHS of the new set of equations becomes,

1 c– o
o A I

Z

x
xs

0
b

=

xB A( ) 1– b=

Z cB xB A( ) 1– b= =
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Theory Behind the Simplex Method

After any iteration,

In tableau format this becomes,

Z

xB

1 cB A( ) 1–

0 A( ) 1–

0
b

cB A( ) 1–
b

A( ) 1–
b

= =

1 cB A( ) 1–

0 A( ) 1–

1 c– o
o A I

1 cB A( ) 1– c– cB A( ) 1–

o A( ) 1– A A( ) 1–
=

1 cB A( ) 1– c– cB A( ) 1–

o A( ) 1– A A( ) 1–

Z

x
xs

cB A( ) 1–
b

A( ) 1–
b

=
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Theory of the Simplex Method

Iteration BV Z Original 
Variables

Slack 
Variables RHS

0 Z 1 0 0

0

Any Z 1

0

c–

xB A I b

cB A( ) 1– c– cB A( ) 1– cB A( ) 1–
b

xB A( ) 1– A A( ) 1–
A( ) 1–

b
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Numerical Example

To illustrate the use of the revised simplex method 
consider the Osaka Bay example:

Maximize 

subject to: 

 

 and 

Z 300x1 500x2+=

3x1 2x2+ 180≤

x1 40≤

x2 60≤

x1 0≥ x2 0≥
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Note: let  and  be the no. “Fuji” and 
“Haneda” vessels

note that:  coefficients of real variables

,  ,  and matrix 

 

x1 x2

c 300 500=

x x1

x2

= b
180

40

60

= 0
0

0

0

= A

A
3 2 1 0 0

1 0 0 1 0

0 1 0 0 1

=
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Theory Behind the Simplex Method

Addition of slack variables to the problem yields:

 where  is a vector of slack variables

Executing the procedure for the Simplex Method 

Iteration 0:

 ,  and 

xs

x3

x4

x5

= xs

xB

x3

x4

x5

= A( ) 1–
1 0 0

0 1 0

0 0 1

=
x3

x4

x5

1 0 0

0 1 0

0 0 1

180

40

60

180

40

60

= =
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also known,

 and hence  or

Iteration 1: (refer to 2nd tableau in Simplex)

Note: substitute values for  using columns for ,  
and  in the original  matrix.

cB 0 0 0= Z cB xB A( ) 1– b= =

Z 0 0 0

180

40

60

0= =

A x3 x4

x2 A
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 ,   and 

also known,

 and hence  or

xB

x3

x4

x2

= A
1 0 2

0 1 0

0 0 1

= A 1–
1 0 2–

0 1 0

0 0 1

=

x3

x4

x2

1 0 2–

0 1 0

0 0 1

180

40

60

60

40

60

= =

cB 0 0 500= Z cB xB A( ) 1– b= =

Z 0 0 500

60

40

60

30000= =
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Iteration 2: (refer to 3rd tableau in Simplex)

Note: substitute values for  using columns for ,  
and  in the original  matrix.

 ,   and

 

A x1 x4

x2 A

xB

x1

x4

x2

= A
3 0 2

1 1 0

0 0 1

= A 1–

1
3
--- 0 2

3
---–

1
3
---– 1

2
3
---

0 0 1

=

x1

x4

x2

1
3
--- 0 2

3
---–

1
3
---– 1

2
3
---

0 0 1

60

40

60

20

20

60

= =
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also known,

 and hence  or

 Optimal Solution 

cB 300 0 500= Z cB xB A( ) 1– b= =

Z 300 0 500

20

20

60

36000= =
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Linear Programming Programs

Several computer programs are available to solve LP 
problems:

•LINDO - Linear INteractive Discrete Optimizer

•GAMS - also solves non linear problems

•MINUS

•Matlab Toolbox - Optimization toolbox (from 
Mathworks)

•QSB - LP, DP, IP and other routines available (good for 
students)
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LP Routine for Matlab

• Developed by Prof. Henry Wolkowicz   (Univ. of 
Waterloo) 

• Adapted by H. Baik, A. Trani, and D.R. Drew.

•Create two M files (linprog.m and input.m)

Matlab Script

for LP (linprog.m)

invoke input
file

Matlab Script
input file
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Input File
% Example: Enter the data:

   minmax=0;    % minmax = 0  (maximizes a function)
   a=[3 4 1 0 0 
      1 0 0 1 0
      0 1 0 0 1 ]
   b=[520 80 70]'
   c=[-300 -500 0 0 0]
   bas=[3 4 5]
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LP Standard Form

Note that this input file should include also the large 
penalty (Big M) as part of the coefficients in OF in order 
to work. The problem needs to be stated in standard 
(canonical) form.

  Objective Function (OF) 

   Functional Constraints (m of them)

Note: Nonnegativity constraints are always enforced

c j

j 1=

n

∑ x j

aij

j 1=

n

∑ x j bi≤
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LP Routine for Matlab

File linprog.m to execute LP by the Simplex Method

% Title      : Linear Programming

% Author : Prof. Henry Wolkowicz  (Univ. of Waterloo)

% Modified: By H. Baik, A. Trani and D.R. Drew

% Date       : Nov. 29, 1996

%  The Simplex Method (data file is hw*.m)

%  Solves 'small' Linear Programming Problems (in canonical form)

%  (LP)  max cx s.t. ax=b, x>=0

%

%  Data input by user or calling routine: a,b,c,bas,pt where

%    minmax=1, if minimizing problem
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%                   0, if maximizing problem

%    a   - m by (m+n) matrix (containing identity)

%    b   - m-column vector assumed >=0

%    c   - m+n-row vector of costs which is placed left hand side(LHS)

%    bas - m-row vector with column indices corresp. to the

%          identity matrix in a, i.e. a(bas,:)=identity.

%    pt  - pause time after each iteration, 0 denotes no pause, while

%                   any number > 20 denotes infinite time, i.e. you

%                   are prompted to hit return to continue.

%  The user can change the upper bound of 100 iterations - see iterm

%      below.

%

%  The matrix a is assumed to contain an m by m identity matrix

%      corresponding to the basic columns.

%  A relative accuracy of approximately 15 significant decimal
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%      digits is assumed. This affects the values of 4 accuracy

%      parameters, epsi, i=0,1,2,3.

%  The pivot step is done using 'Gauss-Jordan' elimination.

%      No special factorizations to ensure stability are used.

%      We do not use the revised simplex method.

%      A final check on roundoff error is made.

%      We use a threshold value when finding the pivot element.

%  Problem (LP) is assumed to be in canonical form, i.e. slacks

%    have been added and/or phase 1 has finished. However, we still

%    price out the cost vector c.

%

% datafile (read input file):

osaka2

disp(['If the input data is correct, hit return to continue'])
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                 pause

if minmax==1,

     c=-c;

end

echo off

%

pt=1

% Now solve the LP by executing the file reg.m:

% The Program:

%

%

rnderr=0;

iterm=100;

stop=1; % use to overcome the bug in the return statement
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% Error tolerances (from 'Advanced Linear Progr.' by 
B.A.Murtaugh, pg 34.)

eps0=10^(-10);  %  numerical zero

eps1=10^(-5);   %  accuracy parameter for optimality check

eps2=10^(-8);   %  accuracy parameter pivot element (threshold test)

eps3=10^(-6);   %  accuracy parameter for final roundoff error check

a0=a;           %  save the matrix a for the final roundoff error test

b0=b;           %  save the vector b for the final roundoff error test

c0=c;

bas0=bas;

[m,mn]=size(a); %  row and column size of a

z=0;    %  initial value for z

             clc

             home,disp([blanks(30)]),

             disp(['Initial tableau ' blanks(10)])



69 of 90

           if minmax==1

      tc=-c;

              [tc z

               a b]

           else

              [c z

                a b]

           end

            if pt > 20,

                 disp(['Hit return to continue'])

                 pause

            else

                 pause(pt)
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            end

%  make cannonical form

if minmax==1

  z=-c(bas)*b;

else

  z=c(bas)*b;

end

clc

for i=1:m,

        c=c-c(bas(i))*a(i,:);                  

end

            clc

                  home,disp([blanks(30)]),
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             %disp(['Price out the cost vector ' blanks(10) ])

             disp(['standard or canonical form of this problem' ])

 

          if minmax==1

      tc=-c;

              tz=-z;

              [tc tz

               a b]

           else

              [c z

                a b]

           end

    

            if pt > 20,
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                 disp(['Hit return to continue'])

                 pause

            else

                 pause(pt)

            end

iter=0;

         %  initialize the iteration count

n=mn-m;

         %  number of nonbasic variables

%  nbas - indices of the nonbasic variables

nbas=[];

for j=1:mn,

       if all(j~=bas),

                nbas=[nbas j];

        end
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end

%  Perform simplex iterations as long as there is a neg cost

while iter<iterm,

%  Find a negative reduced cost.

        ctemp=c;

        % temporary work vector

        neg=[];

        for j=1:n,

                 if ctemp(nbas(j))<-eps1,

                        neg=[neg nbas(j)];

                 end

        end

        ct=-1;

   if length(neg)==0,

            disp(['This phase is completed   - current basis is: '])
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            bas=bas

            disp(['The current basic variable values are : '])

            b

            disp(['The current objective value is:'])

if minmax==1

      c0(bas)*b

        else

             -c0(bas)*b

         end

           

            disp(['The number of iterations is ' int2str(iter) ])

            if norm(a0(:,bas)*b-b0,inf)>eps3, % check solution

                 disp(['^WARNING^ roundoff error is significant'])

            end
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            if any(b<-eps0), % check positive final solution

                      disp(['^WARNING^ final b not nonnegative'])

            end

            pause(3)

            clc

            home,disp([blanks(30)]),

            disp(['Final tableau in this phase' blanks(10)])

                         disp(['           ' blanks(10)])

 if minmax==1

tc=-c;

                    tz=-z;

             [tc tz a b]

        else

            [c z a b]

         end
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                           stop=0;

                           return

   else

              while ct<-eps1,   % continue till we find a suitable pivot

                [ct,i]=min(ctemp(neg));

                if ct>=-eps1,   % no suitable pivot columns are left

                        disp(['a suitable pivot element cannot be found'])

                  disp(['probable cause: roundoff error or ill-cond prob'])

                        disp(['equilibrate problem before solving'])

                        stop=0;

                        return

                end

                t=neg(i);       % index of the most neg reduced cost

%  Now, let x sub t enter the basis
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%

%  First, we need to find the variable which leaves the basis

                pos=[];

                ind=[];

                for i=1:m,

                        if a(i,t)>eps0,

                                ind=[ind i]; % suitable rows

                        end

                end

                if length(ind)==0,

                        disp(['The problem is unbounded '])

                        stop=0;

                        return

                end

                [alpha,i]=min(b(ind)./a(ind,t));
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                i=ind(i); % pivot row

                if a(i,t)>eps2, % a suitable pivot element is found

                        ct=0;

                else

                        ctemp(t)=0;     % column t is unsuitable pivot col.

                end

              end

              if stop==0,

                return  % Ensure that we return

              end

%  Update the basic and nonbasic vectors.

                nbas(nbas==t)=bas(i);

                bas(i)=t;

                alpha=a(i,t);   % pivot element

%  Store the data in ap,bp
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                ap=a;

                bp=b;

%  Now pivot by row

            iter=iter+1;

       

            if pt > 20,

                 disp(['Hit return to continue'])

                 pause

            else

                 pause(pt)

            end

%

                for k=1:m,

                      ratio=ap(k,t)/ap(i,t);

                      a(k,:)=ap(k,:)-ap(i,:)*ratio;
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                      b(k)=bp(k)-bp(i)*ratio;

               

                end

%  Now for the objective row update

                ratio=c(t)/ap(i,t);

                c=c-ap(i,:)*ratio;

                z=z-bp(i)*ratio;

            

%  Now for the pivot row update

                a(i,:)=ap(i,:)/ap(i,t);

                b(i)=bp(i)/ap(i,t);

                  clc

                  home,disp([blanks(30)]),

               disp(['pivot= a(' int2str(i)+1 ',' int2str(t) ')' blanks(10)])

              disp(['after pivoting                 '])
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if minmax==1

tc=-c;

             tz=-z;

    [tc tz a b]

        else

             [c z a b]

         end

            if pt <= 20,

            pause(pt)

            else

            disp(['Hit return to continue'])

            pause

            end
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    end

%

end

if iter>=100,

        text='Iteration bound has been exceeded ^^^ '

end
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LP Example Using Matlab 
Program (sim.m)

Mathematical Formulation

Maximize 

subject to: 

 

 and 

Z 300x1 500x2+=

3x1 2x2+ 180≤

x1 40≤

x2 60≤

x1 0≥ x2 0≥
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Mathematical Formulation 
(adding slacks)

Maximize 

subject to: 

 

 and 

Z 300x1 500x2+=

3x1 2x2 x3+ + 180=

x1 x4+ 40=

x2 x5+ 60=

x1 0≥ x2 0≥
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Osaka Bay Example Using Matlab
% Example: Enter the data:
   minmax=0;
   a=[3 2 1 0 0 
        1 0 0 1 0
        0 1 0 0 1 ]
   b=[180 40 60]'
   c=[-300 -500 0 0 0]
   bas=[3 4 5]

Note: 3 slack variables added (minmax = 0 denotes 
maximization)
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Osaka Bay Example (Matlab Output)
a =
     3     2     1     0     0
     1     0     0     1     0
     0     1     0     0     1

b =
   180
    40
    60
c =
  -300  -500     0     0     0

bas =
     3     4     5
If the input data is correct, hit return to continue
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Matlab (Output)

standard or canonical form of this problem

ans =
  -300  -500     0     0     0     0
     3     2     1     0     0   180
     1     0     0     1     0    40
     0     1     0     0     1    60                            
pivot= a(4,2)          
after pivoting 
                
ans =
        -300           0           0           0         500       30000
           3           0           1           0          -2          60
           1           0           0           1           0          40
           0           1           0           0           1          60
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Osaka Bay Problem - Matlab (Output)

pivot= a(2,1)          
after pivoting                 
ans =
   1.0e+04 *

         0         0    0.0100         0    0.0300    3.6000
    0.0001         0    0.0000         0   -0.0001    0.0020
         0         0   -0.0000    0.0001    0.0001    0.0020
         0    0.0001         0         0    0.0001    0.0060

This phase is completed   - current basis is: 
bas =
     1     4     2
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Osaka Bay Problem - Matlab (Output)

The current basic variable values are : 

b =
    20
    20
    60

The current objective value is:

ans =
       36000

The number of iterations is 2
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Osaka Bay Problem - Matlab (Output)

Final tableau in this phase          
                     
ans =
   1.0e+04 *

         0         0    0.0100         0    0.0300    3.6000
     0.0001     0    0.0000         0   -0.0001    0.0020
         0         0   -0.0000    0.0001    0.0001    0.0020
         0    0.0001         0         0    0.0001    0.0060
»


