Matlab Array and Matrix Manipulations and Graphics

Dr.Antonio A. Trani
Dept. of Civil and Environmental Engineering

Objectives of the Handout

- To illustrate examples of matrix manipulation in MATLAB
- To learn some of the basic plotting functions in MATLAB
- Just for the fun of learning something new (the most important reason)

Basic Matrix Manipulation

- Matlab basic rules are derived from Linear Algebra

$$
\left.\begin{array}{l}
\text { Let } A=\left[\begin{array}{lll}
4 & 3 & 4 \\
4 & 6 & 8 \\
3 & 6 & 6
\end{array}\right] \text { and } b=\left[\begin{array}{l}
35 \\
22 \\
40
\end{array}\right] \\
\mathrm{A}=\left[\begin{array}{llll}
4 & 3 & 4 ; & 4
\end{array} 68 ; 366\right.
\end{array}\right] ;
$$

Results in column vector y ,

$$
y=
$$

$$
366
$$

$$
592
$$

477

Example \# I:Solution of Linear Equations

- Linear equations are important in many engineering problems (optimization, structures, transportation, construction, etc.)

Suppose we want to solve the set of linear equations:
$4 x_{1}+3 x_{2}+4 x_{3}=35$
$4 x_{1}+6 x_{2}+8 x_{3}=22$
$3 x_{1}+6 x_{2}+6 x_{3}=40$
Then in matrix form we have:
$A x=b$

Example \# I: Solution of Linear Equations

where:
$A=\left[\begin{array}{lll}4 & 3 & 4 \\ 4 & 6 & 8 \\ 3 & 6 & 6\end{array}\right], x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ and $b=\left[\begin{array}{l}35 \\ 22 \\ 40\end{array}\right]$
Using MATLAB this can be solved using the operator \backslash
$x=A \backslash b$
"Backslash"
operator
$\mathrm{A}=\left[\begin{array}{lll}4 & 3 & 4 ; \\ 4 & 6 & 8 ; 3 \\ \hline\end{array}\right.$ 6]; $\mathrm{b}=\left[\begin{array}{lll}35 & 22 & 40\end{array}\right]^{\prime} ; \mathrm{x}=\mathrm{A} \mathrm{b} ;$

Example \# I: Solution of Linear Equations

Yields the following answer for x ,
$\mathrm{x}=$
12.0000
15.6667
-15.0000
\% Another solution of the linear equations
$\mathrm{A}=\left[\begin{array}{ll}4 & 3\end{array} ; 468 ; 366\right] ; \mathrm{b}=\left[\begin{array}{ll}35 & 22 \\ 40\end{array}\right]^{\prime} ;$
$\mathrm{x}=\operatorname{inv}(\mathrm{A}) * \mathrm{~b}$;
This gives the same result taking the inverse of A

Array vs. Matrix Operations

- MATLAB differentiates between array and matrix operations
- Matrix operations apply to matrices using Linear Algebra rules (hence also called Scalar operations)
- An example of this is solving a set of linear equations as shown in the previous example
- Array operations apply when you want to do element by element calculations on a multi-dimensional array
- An example of this is calculating the deflection of a cantilever beam problem as shown next

Examples of Matrix Operations

Let matrix $A=[333 ; 222 ; 111]$ and $B=\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]$ '
Valid matrix operations are:

$$
\begin{aligned}
& c=A^{\wedge} 2 \\
& d=A^{*} A \\
& e=A^{*} B \\
& f=A^{*} 3 \\
& g=A+5
\end{aligned}
$$

Array Operations Nomenclature

- Array operators have a period in front of the operand (e.g., .*)
- For example:

$$
\begin{aligned}
& x=0: 0.05: 8 ; \\
& y=\sin \left(x^{\wedge} 2\right)^{*} \exp (-x)
\end{aligned}
$$

Creates a vector x with cell values from 0 to 8 at steps 0.05

- Will not execute correctly because the manipulation of array x requires a period in front of the * and ^ operands
- The following statements will work:

$$
\begin{aligned}
& x=0: 0.05: 8 ; \\
& y=\sin \left(x_{\dot{\wedge}}^{\wedge} 2\right)_{\dot{\wedge}}^{*} \exp (-x) ; \\
& \hline \begin{array}{l}
\text { Note the (.) in front } \\
\text { of the operands }
\end{array}
\end{aligned}
$$

Example \# 2 : Cantilever Beam Calculations

- A cantilever beam with a uniformly varying load is shown below
- We would create a simple Matlab script to estimate the beam deflection for any station (x) along the beam
- The formula to estimate the deflection is:

Example \# 2 : Cantilever Beam Calculations (cont.)

$y=$ deflection of the beam at station $\mathrm{x}(\mathrm{m})$
$E=$ Young's modulus ($\mathrm{N} / \mathrm{m}^{2}$)
$I=$ bean moment of inertia $\left(\mathrm{m}^{4}\right)$
$x=$ beam station (m)

Example \# 2 : Cantilever Beam Matlab Script

1	\% Scrip to calculate the deflection (y) of a cantilever beam
2	\% subject to a linearly decreasing load (W)
3	\% A. Trani (October 10, 2013)
4	
5	\% W = load at station $\times(\mathrm{N} / \mathrm{m})$
6	\% Wo = maximum load at station $\mathrm{x}=0(\mathrm{~N} / \mathrm{m})$
7	\% $\mathrm{E}=$ Modulus of elasticity ($\mathrm{N} / \mathrm{m}-\mathrm{m}$)
8	\% I = Moment of inertia ($\mathrm{m}-\mathrm{m}-\mathrm{m}-\mathrm{m}$)
9	$\% \mathrm{x}=$ beam station $=$ distance from datum point (wall) to any point on the
10	\% beam (m)
11	\% I = beam length (m)
12	$\% \mathrm{y}=$ beam deflection at any station (m)
13	
14	\% Deflection equation
15	\% y = -Wo * x.^2 / (120*E * \| length_of_beam) .* (10 * length_of_beam^3 ...
16	\% - 10 * length_of_beam^2 .*x + 5 * length_of_beam .* x.^2-x.^3);
17	
18	\% Beam properties
19	
$20-$	Wo = 6000; \% Newtons/m
21 -	$\mathrm{E}=200 \mathrm{e} 9 ; \quad \% \mathrm{~N} / \mathrm{m}-\mathrm{m}-$ value for Steel $=200 \mathrm{e} 9$
22 -	$\mathrm{I}=0.001 ; \quad$ \% meters to the fourth power
23 -	length_of_beam $=9 ; \quad \%$ meters
24	
$25-$	$x=$ linspace(0,length_of_beam,100); \% 100 points to the end of the beam
26	
27	\% Calculate deflection to the beam at any point in the beam length
28	
29 -	$\mathrm{y}=-\mathrm{Wo}$ * x.^2 / (120*E * ${ }^{\text {* }}$ length_of_beam) .* (10 * length_of_beam^3 ...
30	- 10 * length_of_beam^2 .*x + 5 * length_of_beam .* x.^2-x.^3);

Example \# 2 : Cantilever Beam Matlab Script (cont.)

27	\% Calculate deflection to the beam at any point in the beam length
28	
29 -	$\mathrm{y}=-\mathrm{Wo}$ * x.^2 / (120*E * 1 * length_of_beam) .* (10 * length_of_beam^3
30	- 10 * length_of_beam^2 .*x + 5 * length_of_beam .* x.^2-x.^3);
31	
32	\% Plot the deflection
33	
34 -	figure
$35-$	$\operatorname{plot}\left(x, y, ' \wedge b^{\prime}\right) \quad$ Note the use of (.) in front
36-	xlabel('Station (meters)')
$37-$	ylabel('Deflection (meters)') of the operands
38 -	grid

Ellipses is used in Matlab to indicate a continuation statement

Example \# 2 : Cantilever Beam Output Plot (beam deflection)

Observations

```
25- x = linspace(0,length_of_beam,100); % 100 points to the end of the beam
26
```

y = -Wo * x.^2 / (120*E * | * length_of_beam) .* (10 * length_of_beam^3 ...

```
y = -Wo * x.^2 / (120*E * | * length_of_beam) .* (10 * length_of_beam^3 ...
    - 10 * length_of_beam^2 .*x + 5 * length_of_beam .* x.^2 - x.^3);
```

 - 10 * length_of_beam^2 .*x + 5 * length_of_beam .* x.^2 - x.^3);
    ```

31
- A vector \(\boldsymbol{x}\) is defined using the "linspace" function (linearly spaced vector) (see line 25 above)
- linspace (starting point, ending point, no. of points)
- Since \(\boldsymbol{x}\) is a vector with 100 elements, vector \(\boldsymbol{y}\) (deflection) is automatically set by Matlab to have 100 elements
- The period before * and \({ }^{\wedge}\) operands is needed to tell Matlab to do element by element computations while calculating \(\boldsymbol{y}\)

\section*{Array Operators}
\begin{tabular}{|l|c|}
\hline Operation & MATLAB Operators \\
\hline Array multiplication &.\(^{*}\) \\
\hline Array power &.\(^{\wedge}\) \\
\hline Left array division &.\(/\) \\
\hline Right array division &.\(/\) \\
\hline Matrix multiplication & \(*\) \\
\hline Matrix power & \(\wedge\) \\
\hline Matrix division & \(/\) \\
\hline Left matrix division & \(\backslash\) \\
\hline
\end{tabular}

Use these to do basic operations on arrays of any size

\section*{Array Manipulation Tips}

Always define the size of the arrays to be used in the program (static allocation)
- Define arrays with zero elements (defines statically array sizes and thus reduces computation time)
»d=zeros(1,3)
\(\mathrm{d}=\)
\(0 \quad 0 \quad 0\)
»c=ones(1,3)
\(\mathrm{c}=\)
111

\section*{Array Manipulation Tips}

Sample of for-loop without array pre allocation
Example:
tic;
for \(\mathrm{i}=1: 1: 10 \mathrm{e} 6\); \(\mathrm{d}(\mathrm{i})=\sin (\mathrm{i})\);
end
\(\mathrm{t}=\mathrm{toc}\);
disp(['Time to compute array ', num2str(t), ' (seconds)'])
Time to compute array 5.2982 (seconds)

Times calculated using a Mac Book Air (10.8.5 OS and i7 Processor)

\section*{Array Pre allocation}

Array pre allocation saves time because MATLAB does not have to dynamically change the size of each array as the code executes
\(\mathrm{d}=\) zeros(1,10e6); \% pre allocates a vector with zeros
tic;
for \(\mathrm{i}=1: 1: 10 \mathrm{e} 6\);
\(\mathrm{d}(\mathrm{i})=\sin (\mathrm{i})\);
end
\(\mathrm{t}=\mathrm{toc}\);
disp(['Time to compute array ', num2str(t), ' (seconds)'])
Time to compute array 1.395 (seconds)

Times calculated using a Mac Book Air (10.8.5 OS and i7 Processor)

\section*{Vector Operations in MATLAB}

The following script is equivalent to that shown in the previous page.
tic;
\(\mathrm{i}=1: 1: 10 \mathrm{e} 6\);
\(\mathrm{d}=\sin (\mathrm{i}) ;\)
\(\mathrm{t}=\mathrm{toc}\);
disp(['Time to compute array ', num2str(t), ' (seconds)'])
Time to compute array 0.90465 (seconds)
Note: MATLAB vector operations are optimized to the point that even compiling this function in \(\mathrm{C} / \mathrm{C}++\) offers little speed advantage (10-15\%).

Times calculated using a Mac Book Air (10.8.5 OS and i7 Processor)

\section*{Comparison of Results}

The following table summarizes the array manipulation results
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Procedure } & \begin{tabular}{c} 
CPU Time \(^{\mathrm{a}}\) \\
(seconds)
\end{tabular} & Ratio \(^{\text {b }}\) \\
\hline Standard for-loop & 5.29820 & 1.00 \\
\hline \begin{tabular}{l} 
Array \\
Pre allocation
\end{tabular} & 1.39500 & 1.54 \\
\hline Vectorization & 0.90465 & 5.85 \\
\hline
\end{tabular}
a. Times calculated using a Mac Book Air (10.8.5 OS and i7 Processor)
b. Higher ratio means faster execution times

\section*{Vectorization Issues}
- To illustrate with a numerical example instances where vectorization is not possible unless the problem is partitioned into two sub-problems
- Problem partitioning to speed up computations

\section*{Example \# 3: Beam Problem}
- Consider the following beam loading condition
\[
\begin{aligned}
R & =W\left(\frac{3 b^{2} L-b^{3}}{2 L^{3}}\right) \\
R_{1} & =W\left(\frac{3 a L^{2}-a^{3}}{2 L^{3}}\right)
\end{aligned}
\]

At \(x:\) when \(x<a\)
\[
V=R
\]

At \(x\) : when \(x>a\)
\[
V=R-W
\]

At point of load:
At fixed end:
\[
M(\max )=W a\left(\frac{3 b^{2} L-b^{3}}{2 L^{3}}\right)
\]
\[
M_{1}(\max )=W L\left(\frac{3 b^{2} L-b^{3}}{2 L^{3}}\right)-W(L-a)
\]

At \(x\) : when \(x<a\)
At \(x\) : when \(x>a\)
\[
\begin{gathered}
* \\
M \\
\rightarrow a
\end{gathered}=W x\left(\frac{3 b^{2} L-b^{3}}{2 L^{3}}\right)
\]
\[
M=W x\left(\frac{3 b^{2} L-b^{3}}{2 L^{3}}\right)-W(x-a)
\]

At \(x\) : when \(x=a=0.414 L\)
\[
\begin{aligned}
D(\max ) & =0.0098 \frac{W L^{3}}{E I}
\end{aligned}
\]

At \(x\) : when \(x<a\)
\[
D=\frac{1}{6 E I}\left[\begin{array}{c}
3 R L^{2} x-R x^{3}- \\
3 W(L-a)^{2} x
\end{array}\right]
\]

At \(x\) : when \(x>a\)
\[
D=\frac{1}{6 E I}\left[\begin{array}{r}
R_{1}\left(2 L^{3}-3 L^{2} x+x^{3}\right)- \\
3 W a(L-x)^{2}
\end{array}\right]
\]


\section*{Observations}
- The beam deflection and moment formulas change as the station changes from left to right (i.e., \(x<a\) or \(x>a\) )
- Handling two distinct formulas requires a branching statement (like an IF statement in the computations)
\[
\begin{aligned}
& \text { At } x: \text { when } x=a=0.414 L \\
& \qquad D(\max )=0.0098 \frac{W L^{3}}{E I} \\
& \text { At } x: \text { when } x<a \\
& D=\frac{1}{6 E I}\left[\begin{array}{c}
3 R L^{2} x-R x^{3}- \\
3 W(L-a)^{2} x
\end{array}\right] \\
& \text { At } x: \text { when } x>a \\
& D=\frac{1}{6 E I}\left[\begin{array}{l}
R_{1}\left(2 L^{3}-3 L^{2} x+x^{3}\right)- \\
3 W a(L-x)^{2}
\end{array}\right]
\end{aligned}
\]


\section*{Matlab Script (with Branching)}


\section*{Matlab Script (Branching - cont.)}


\section*{Example \# 3 : Beam Deflection}



\section*{Graphs in MATLAB}

There are many ways to build plots in MATLAB. Two of the most popular procedures are:
1) Using built-in MATLAB two and three dimensional graphing commands
2) Use the MATLAB Handle Graphics (object-oriented) procedures to modify properties of every object of a graph

Handle Graphics is a fairly advanced topic that is also used to create Graphic User Interfaces (GUI) in MATLAB. For now, we turn our attention to using Matlab built-in two and three graphics.

\section*{Plots Using Built-in Functions}

MATLAB can generally handle most types of 2D and 3D plots without knowing Handle Graphics
- 'plot' command for 2D plots
- 'plot3d' for 3D plots
- Use 'hold' command to superimpose plots interactively or when calling functions
- Use the 'zoom' function to dynamically resize the screen to new \([\mathrm{x}, \mathrm{y}]\) limits
- Use the 'subplot' function to plot several graphs in one screen

\section*{Basic Plots in MATLAB}

Two-dimensional line plots are easy to implement in MATLAB
\% Sample line plot
\(\mathrm{x}=0: 0.05: 5\);
\(\mathrm{y}=\sin (\mathrm{x} . \wedge 1.8)\);
\(\operatorname{plot}(\mathrm{x}, \mathrm{y})\);
xlabel('x’)
ylabel('y')
title('A simple plot')
grid
\% plot command
\% builds the x label
\% builds the y label
\% adds a title
\% adds hor. and vert. \% grids

Try this out now.

\section*{Other Types of 2-D Plots}bar bar plotfplot simple plot of one variable (x)
semilogx and semilogy ..... semilog plotsloglog logarithmic plotpolar polar coordinates plotplotyy dual dependent variable ploterrorbar error bar plothist histogram plot

\section*{More 2D Plots}

IIITHCh
stem generates stems at each data point
stairs discrete line plot (horizontal lines)
comet simple animation plot
contour plots the contours of a 2 D function
quiver plots fields of a function

\section*{Sample 2D Plots (semilog plot)}
\[
\begin{aligned}
& \mathrm{x}=0: 0.05: 5 ; \\
& \mathrm{y}=\exp (-\mathrm{x} . \wedge 2) ; \\
& \text { semilogy}(\mathrm{x}, \mathrm{y}) ; \text { grid }
\end{aligned}
\]


\section*{Sample 2D Plots (loglog plot)}
\[
\begin{aligned}
& \mathrm{x}=0: 0.05: 5 ; \\
& \mathrm{y}=\exp (-\mathrm{x} . \wedge 2) ; \\
& \log \log (\mathrm{x}, \mathrm{y}) ; \text { grid }
\end{aligned}
\]


\section*{Sample 2D Plots (bar plot)}
```

x = -2.9:0.2:2.9;
bar(x,exp(-x.*x));
grid

```


\section*{Sample 2D Plots (stairs plot)}
\(\mathrm{x}=0: 0.05: 8\);
stairs(x,sin(x.^2).*exp(-x)); grid


\section*{Sample 2D Plots (errorbar plot)}
```

x=-2:0.1:2;
y=erf(x);
e = rand(size(x))/2; errorbar(x,y,e); grid

```


\section*{Sample 2D Plots (polar plot)}
\% Polar plot
\(\mathrm{t}=0 . .01: 2^{*} \mathrm{pi}\); \(\operatorname{polar}(\mathrm{t}, \sin (2 * \mathrm{t}) . * \cos (2 * \mathrm{t}))\);


\section*{Sample 2D Plots (stem plot)}
```

x = 0:0.1:4;
y = sin(x.^2).*exp(-x);
stem(x,y); grid

```


\section*{Sample 2D Plots (Histogram)}
\(\mathrm{x}=\mathrm{randn}(1,1000)\);
hist(x);
grid


\section*{Sample 2D Plots (plotyy)}

\section*{\(\mathrm{x}=-2: 0.1: 2 ; \mathrm{y} 1=\operatorname{erf}(\mathrm{x})\); \\ \(\mathrm{y} 2=\operatorname{erf}\left(1.35 .{ }^{*} \mathrm{x}\right)\); \\ plotyy(x,y,x,y2);grid}


\section*{Sample 2D Plot (pie plot)}

In this example we demonstrate the use of the gtext function to write a string at the location of the mouse
```

acft = char('A310','A330','MD11','DC-10', 'L1011',...
'B747','B767','B777');
numbers=[12 15 24 35 16 120 456 156];
pie(numbers)
for i=1:8
gtext(acft(i,:)); % get text from char variable
end
title('Aircraft Performing N. Atlantic Crossings')

```

\section*{Resulting Pie Plot}

\author{
Aircraft Performing N. Atlantic Crossings
}


\section*{Quiver Plot}

The quiver plot is good to represent vector fields.
In the example below a quiver plot shows the gradient of a function called 'peaks'
\[
\mathrm{t}=-3: .1: 3 ;
\]
[ \(\mathrm{x}, \mathrm{y}\) ]=meshgrid \((\mathrm{t}, \mathrm{t})\);
\(\mathrm{z}=3^{*}(1-\mathrm{x}) .^{\wedge} 2 . * \exp \left(-\left(\mathrm{x} .{ }^{\wedge} 2\right)-(\mathrm{y}+1) .^{\wedge} 2\right) \ldots\)
\(-10 *(x / 5-x . \wedge 3-y . \wedge 5) . * \exp \left(-x .^{\wedge} 2-y . \wedge 2\right) \ldots\)
\(-1 / 3 * \exp (-(x+1) . \wedge 2-y . \wedge 2) ;\)
[dx,dy]=gradient(z,.2,.2);
quiver(x,y,dx,dy,3)

Note: 'peaks' is a built-in MATLAB function

\section*{Quiver Plot of 'Peaks' Function}


\section*{3D Representation of the Peaks Function}


\section*{2D Plots (Contour Plot)}

The following script generates a contour plot of the peaks function
```

t=-3:.1:3;
[x,y]=meshgrid(t,t);
z=3*(1-x).^2.*exp(-(x.^2)-(y+1).^2) ...
-10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
- 1/3* exp(-(x+1).^2 - y.^2);
colormap(lines)
contour(x,y,z,15) % 15 contours are generated
grid

```

Resulting Contour Plot of the 'Peaks' Function


\section*{Sample 2D Plots (comet plot)}
- Useful to animate a trajectory
- Try the following script
\% illustration of comet plot
\(\mathrm{x}=0: 0.05: 8 ;\)
\(\mathrm{y}=\sin (\mathrm{x} . \wedge 2) . * \exp (-\mathrm{x}) ;\)
\(\operatorname{comet}(\mathrm{x}, \mathrm{y})\)

\section*{Handling Complex 2-D Plots}

Tampa Bay

Aircraft Tracks


Plot containing 830 flight tracks arriving or departing Miami Airport Each track has 325 data points
Source: FAA, plot by A. Trani (Air Transportation Systems Lab)

\section*{Zooming Into Previous Plot}


Plot containing 830 flight tracks arriving or departing Miami Airport Each track has 325 data points
Source: FAA, plot by A. Trani (Air Transportation Systems Lab)

\section*{Sample Use of Subplot Function}

Used the subplot function to display various graphs on the same screen
\% Demo of subplot function
\(\mathrm{x}=0: 0.1: 4 ;\)
\(y=\sin (x . \wedge 2) . * \exp (-x) ;\)
\(\mathrm{z}=\operatorname{gradient}(\mathrm{y}, .1)\)
subplot(2,1,1)
plot(x,y); grid
subplot(2,1,2)
plot(x,z); grid
\% takes the gradient of y every \(\% 0.1\) units
\% generates the top plot
\% generates the lower plot

\section*{Resulting Subplot}



\section*{Sample Plot Commands}

\section*{Standard 2D plot using the 'subplot' function}



Plot containing 104 flight tracks crossing an airspace sector in Florida Source: FAA, plot by A. Trani (Air Transportation Systems Lab)

\section*{Zoom Command}

\section*{The 'zoom' command is used to examine a smaller area}


Plot containing 104 flight tracks crossing an airspace sector in Florida Source: FAA, plot by A. Trani (Air Transportation Systems Lab)

\section*{3-D Graphing in MATLAB}
- A 3-D plot could help you visualize complex information
- 3D animations can be generated from static 3D plots
- 3D controls fall into the following categories:
- viewing control (azimuth and elevation)
- color control (color maps)
- lighting control (specular, diffuse, material, etc.)
- axis control
- camera control
- graph annotation control
- printing control

\section*{Viewing Control}
- 3D plots have two viewing angles than can be controlled with the command view
- azimuth
- elevation

Example use: view(azimuth, elevation)
- Default viewing controls are: -37.5 degrees in azimuth and 30 degrees in elevation
- Try the traffic file changing a few times the viewing angle

\section*{Rotating Interactively a 3D Plot}
- Use the rotate3d command to view interactively the 3D plots (good for quantitative data analysis)
- The zoom command does not work in 3D
>> plot3d(x,y,z)
\(\gg\) rotate3d
>>
- Try rotating the traffic characteristics file using rotate3d

Retrieve the data file called: traffic flow data from our syllabus web site

\section*{Sample 3D Plot (plot3 function)}
plot3(density,speed,volume,'*')


\section*{Rotate Command}

\section*{The rotate 3 d command is useful to visualize 3D data interactively}


\section*{Sample 3D Graphics (mesh)}
\% Mesh Plot of Peaks
\(\mathrm{z}=\mathrm{peaks}(50)\); mesh(z);


\section*{Sample 3D Graphics (surf)}
```

z=peaks(25);
surf(z);
colormap(jet); ;

```


\section*{Sample 3D Graphics (surfl)}
\(\mathrm{z}=\mathrm{peaks}(25)\);
surfl(z);
shading interp; colormap(jet);;


\section*{Sample 3D Graphics (slice)}

Slice 3D plots visualize the internal structure of set of numbers as gradients
```

[x,y,z] = meshgrid(-2:.2:2,-2:.2:2,-2:.2:2);
v = x .* exp(-x.^2 - y.^2 - z.^2);
slice(v,[5 15 21],21,[1 10])
axis([0 21 0 21 0 21]);
colormap(jet)

```

\section*{Slice Plot of Pseudo-Gaussian Function}


\section*{Sample 3D Graphics (stem3)}
stem3 - plots stems in three dimensions as shown below
```

