

Working with Polynomials

Polynomials are expressed in vector form

$$y = 3x^3 + 2x^2 + x + 23$$

in MATLAB nomenclature this will be:

y=[3 2 1 23] y = 3 2 1 23

Note: if some powers are not represented in the polynomial just set them to zero

Convoluting Polynomials

Define another polynomial such as:

$$f = x^2 + 3x + 1$$
 or f = [1 3 1]

Now multiply both using MATLAB's 'conv' function conv(y,f) ans = 3 11 10 28 70 23

which is equivalent to,

$$g = 3x^{5} + 11x^{4} + 10x^{3} + 28x^{2} + 70x + 23$$

Roots of Polynomials

Take the polynomial,

$$g = 3x^{5} + 11x^{4} + 10x^{3} + 28x^{2} + 70x + 23$$

To find the roots we use the 'roots' command, roots(g) ans = 0.7458 + 1.7309i 0.7458 - 1.7309i -2.6180 -2.1582 -0.3820

Polynomial Evaluation

Sometimes we would like to evaluate polynomials at particular points. Suppose that we want to find the value of,

$$g = 3x^{5} + 11x^{4} + 10x^{3} + 28x^{2} + 70x + 23$$

at point x=1.4. Use the 'polyval' function in MATLAB.

polyval(g,1.4) ans = 261.7123

Deconvoluting Polynomials

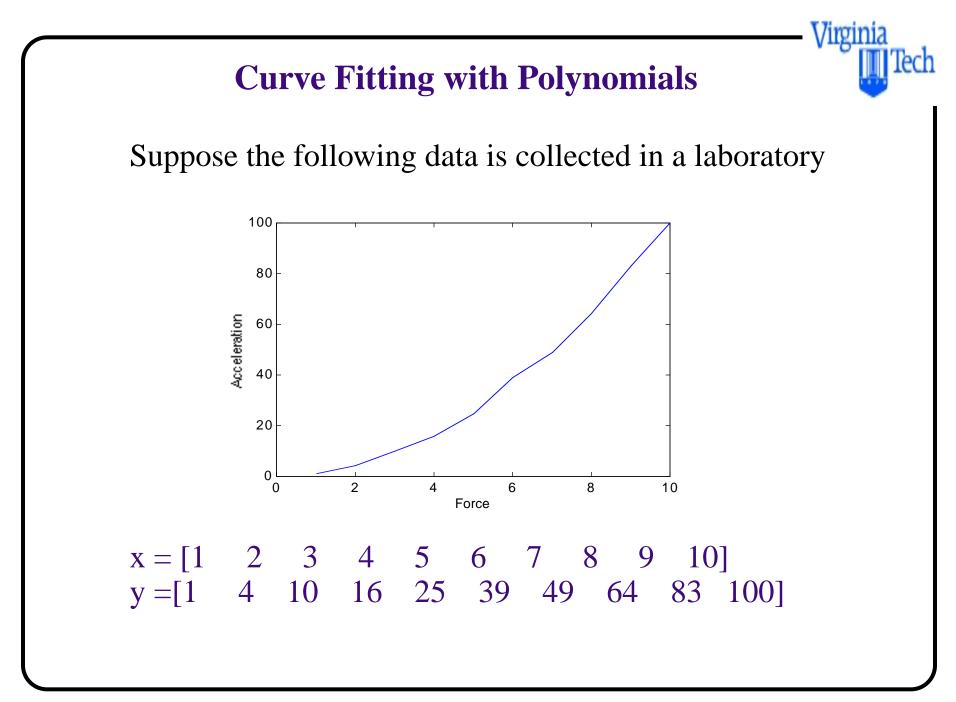
Suppose we want to divide,

$$g = 3x^{5} + 11x^{4} + 10x^{3} + 28x^{2} + 70x + 23$$

by polynomial $f = x^2 + 3x + 1$ (both have been defined)

deconv(g,f)ans = 3 2 1 23

This is the same as polynomial y previously defined.



Curve Fitting with Polynomials

Use the 'polyfit' function to approximate the observed behavior. In this case lets try a second degree polynomial.

```
d=polyfit(x,y,2)
d =
0.9659 0.4477 -0.5500
```

Suppose we want to evaluate values from this resulting polynomial and compare with the original (x,y) values.

Curve Fitting with Polynomials

Create a new vector (xnew) with values to be evaluated

```
xnew = 1:1:10;

»s = polyval(d,xnew)

ans =

0.8636 4.2091 9.4864 16.6955 25.8364 36.9091

49.9136 64.8500 81.7182

100.5182
```

Plot the original (x,y) versus (xnew,s)

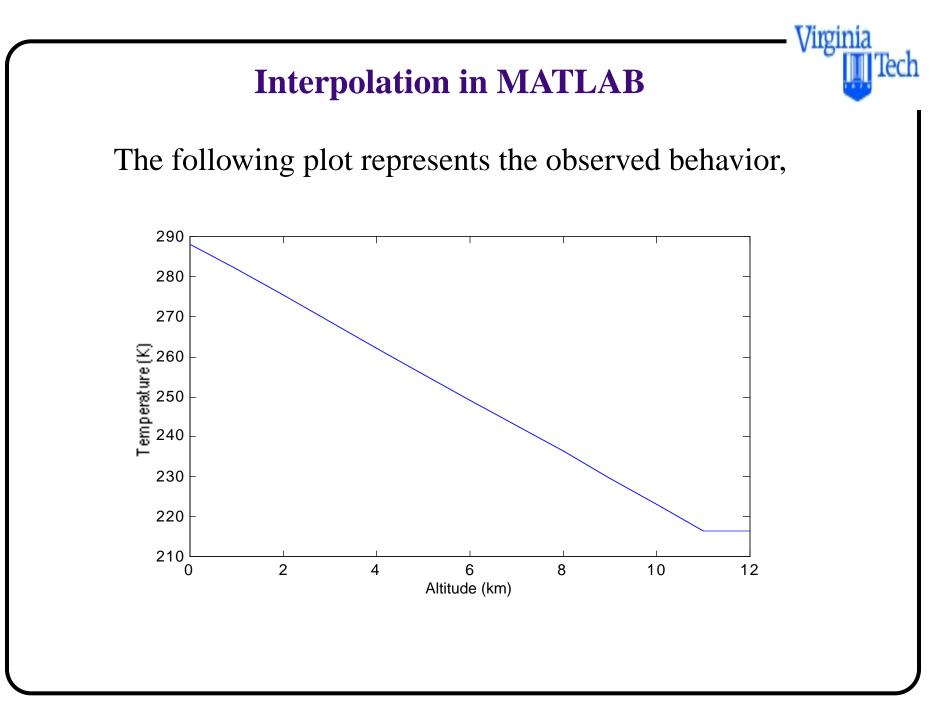


Interpolation in MATLAB

Several interpolation functions exist to facilitate data handling.

Suppose the following data represent temperatures measured in a standard atmosphere as a function of altitude. Altitude (h) in km and temperature (t) in degrees Kelvin.

h=[0 1 2 3 4 5 6 7 8 9 10 11 12] t=[288.2 281.7 275.2 268.7 262.2 255.7 249.2 242.7 236.2 229.7 223.2 216.7]



Interpolation in MATLAB

Suppose we want to include the temperature data in a program and want to evaluate the temperature in Denver (1.58 km above mean sea level).

Define a variable called h_denver representing its altitude,

```
h_denver =

1.5800

»a=interp1(h,t,h_denver)

a =

277.9300
```

Numerical Integration

Some background information is necessary to expose the student to various techniques available to execute numerical integration.

Several numerical methods to be reviewed:

- Standard numerical integration
- Numerical differentiation methods
- Differential equation solvers (document 4.2)

Matlab offers several procedures and built-in functions to address these methods

limini

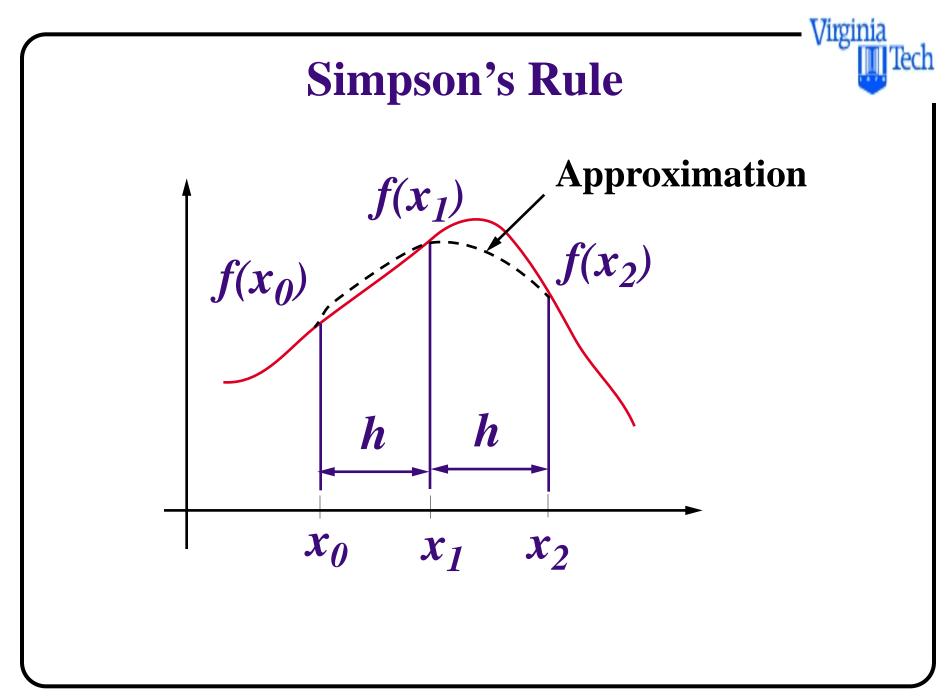
Standard Numerical Integration Methods

Goal is to evaluate definite integrals of the form:

$$J = \int_{a}^{b} f(x) dx$$

Several integration rules are possible:

- Trapezoidal
- Simpson's rule
- Newton-Cotes



Simpson's Rule

$$\int_{x_0}^{x_2} f(x) dx = \frac{h}{3} (f_0 + f_1 + f_2) \text{ for each interval pair}$$

$$\int_{a} f(x) dx = \frac{h}{3} (f_1 + 4f_2 + 2f_3 + \dots + f_{n+1})$$

where *n* is the number of pair intervals and h = (b-a)/(n)

n is an even number of intervals.

Composite Simpson's Rule

In vector form this rule is,

$$\int_{a}^{b} f(x) dx = \frac{h}{3} c f^{T}$$

where,

$$c = \begin{bmatrix} 1 \ 4 \ 2 \ \dots \ 2 \ 4 \ 1 \end{bmatrix}$$

and $f = \begin{bmatrix} f_1 \ f_2 \ f_3 \ \dots \ f_{n+\frac{1}{2}} \end{bmatrix}$

Composite Simpson's Rule

Truncation error of this evaluation is approximated by (Penny and Lindfield),

$$E_{t} \approx (b-a)h^{4}f^{W}\frac{t}{180}$$

where, $a \le t \le b$

Matlab Built-in Functions

Matlab uses Newton-Cotes numerical techniques

Use higher degree polynomials (nth order)

$$\int_{a}^{b} f(x) dx = \frac{3h}{8} (f_{0} + 3f_{1} + 3f_{2} + f_{3})$$

Newton-Cotes formula (*n*=3)

Truncation error is,
$$\frac{3h^5}{80}f^{IV}(t)$$
 where, $a \le t \le b$

Matlab Function 'Quad'

quad('func',a,b)

- % 'func' is the function to be integrated % a and b are the lower and upper limits of integration
- Uses a 2-panel, adaptive recursive Newton Cotes integration method
- Good compromise in accuracy and speed

Viroini

Example of 'Quad' Function

```
% Matlab quad function use
%
t=clock; flops(0);
```

```
quadeval = quad('fsim',0,1.0) % invokes function
```

```
fprintf('Integral value %15.8f\n',quadeval)
fprintf('\ntime = %4.2f ...
seconds flops = %6.0f\n',etime(clock,t),flops);
```

```
Integral value 0.33333799
time = 0.42 seconds flops = 2969
```

/irgini2

Differential Eqn. Background

Matlab offers several procedures and built-in functions to address these methods:

- Standard ODE solvers
- Stiff ODE solvers

Differential Equations

We want to solve dynamic systems of the form,

$$\frac{df}{dt} = f(y, t)$$

Use a Taylor series expansion,

$$y(t_0 + h) = y(t_0) + y'(t_0)h + y''(\Phi)\frac{h^2}{2}$$

The term $y''(\Phi)\frac{h^2}{2}$ is the reminder (includes all others)

Euler Method

Simplest of all methods of solving an ODE

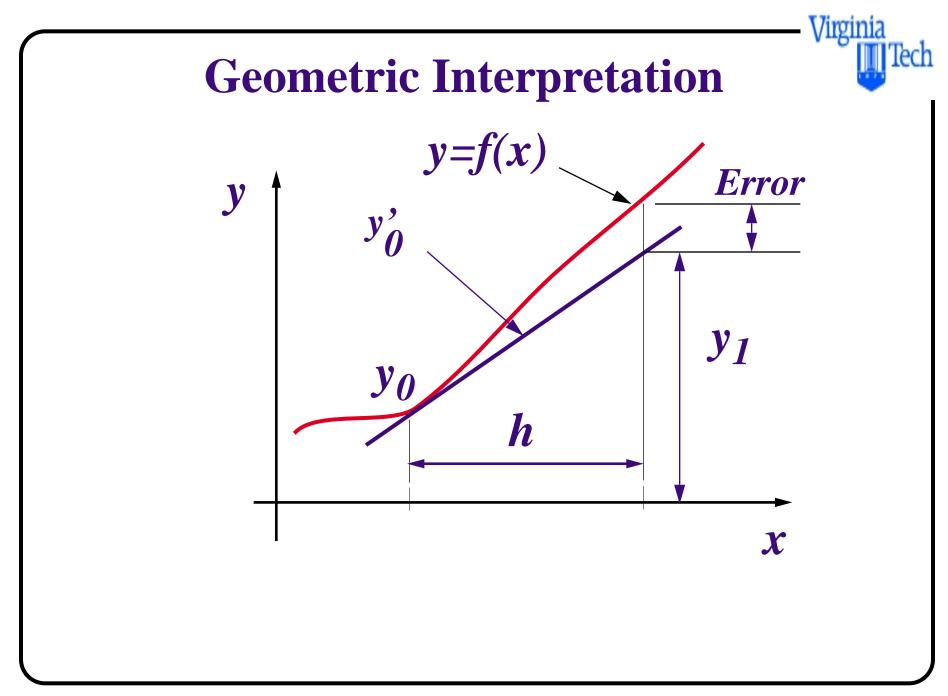
Considers two terms in Taylor series expansion

Most innacurate of all

$$y(t_0 + h) = y(t_0) + y'(t_0)h$$

In general for any n interval of solution,

$$y_{n+1} = y_n + hy'_n$$
 for $n = 0, 1, 2, ...$ error ∞h^2



Matlab Functions

Runge Kutta Methods

Define various intermediate functions:

 $k_{1} = hf(t_{n}, y_{n})$ $k_{2} = hf(t_{n} + h/2, y_{n} + k_{1}/2)$ $k_{3} = hf(t_{n} + h/2, y_{n} + k_{2}/2)$ $k_{4} = hf(t_{n} + h, y_{n} + k_{3})$ $y_{n+1} = y_{n} + (k_{1} + 2k_{2} + 2k_{3} + k_{4})/6 \operatorname{error} \infty h^{4}$

Matlab Function 'ode'

[t,y] = ode23('func',tspan,y0); % low order method

[t,y] = ode45('func',tspan,y0); % med. order method

[t,y] = ode113('func',tspan,y0); % var. order method

% 'func' is the function to be integrated
 % tspan is a vector with lower and upper limits of integration

% y0 is the initial value of the state variables

Matlab Function 'odexxs'

[t,y] = ode23s('func',tspan,y0); % stiff low order

[t,y] = ode45s('func',tspan,y0); % stiff med. order

[t,y] = ode113s('func',tspan,y0); % stiff var. order

% 'func' is the function to be integrated
% tspan is a vector with lower and upper limits of integration

% y0 is the initial value of the state variables

What is a Stiff ODE?

Those whose rate variables display very rapid changes over time

Many systems of differential equations display this behavior

- A fast rate vs a slow varying one
- A very fast rate of change

In most systems modeling and analysis stiff system do not pose a problem.

7ironni

Solution of Differential Equations in MATLAB

There are few steps needed to solve ODE in MATLAB:

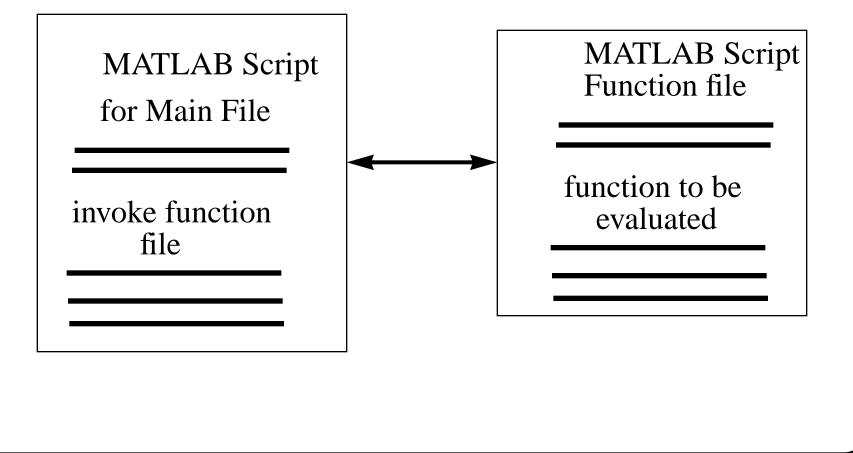
- 1) Write the differential equation(s) as a set of first order ODEs
- 2) Perform necessary variable substitutions and write a MATLAB function to compute the derivatives of the state variables
- This function returns the derivatives of every state of the system
- 3) Use anyone of the MATLAB ODE solvers and invoke the function

Virginiz

MATLAB Scripting Approach

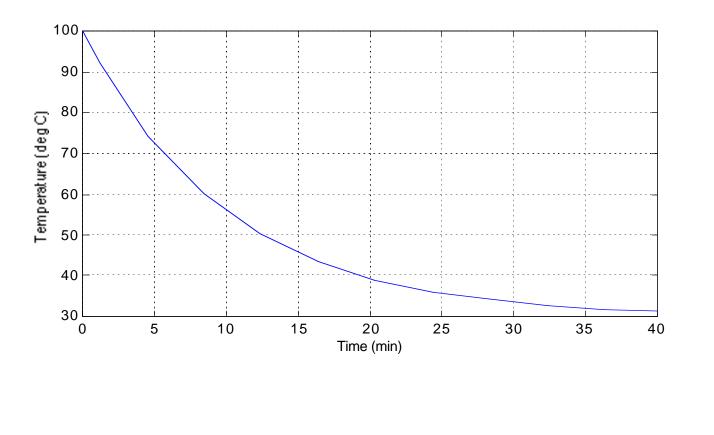
The system is represented by ODE

Create two M files: a) a main file and b) a function file



Sample Experiment

Suppose that we would like to decsribe the process of cooling of water from near boiling point to room temperature. The figure shows our observations.



First Law of Cooling ODE

Observations:

- The temperature drops very quickly initially
- The temperature decay (rate of change) tapers as the water and room temperatures get closer
- The temperature approaches to the room temperature as time goes to infinity

Write down possible solutions or forms of the solution

/iroini

Proposed Model

Suppose the model is of the form,

$$\frac{dT}{dt} = -H(T-T_a)$$

where:

H is a constant of proportionality in the experiment

T is the temperature of the water (deg C)

 T_a is the room temperature (deg C)

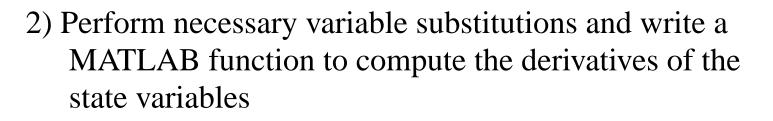
Step 1 in ODE Solution

1) Write the differential equation(s) as a set of first order ODEs

This is already in place since the system has only one ODE to start

$$\frac{dT}{dt} = -H(T-T_a)$$

Step 2 in ODE Solution



This function returns the derivatives of every state of the system

In this case we write two M-files:

- 1) one initializes the problem (state variable definition at time zero)
- 2) one function to computer the derivative of T (temperature)

MATLAB Equations (Main Routine)

% Define Initial Conditions of the Problem global Ta H % define global variables

To = 100; % To is the initial temperature of the water to = 0.0; % to is the initial time to solve this equation tf = 40; % tf is the final time (min) Tspan = [to tf];% Spanning time for the ODE solution

% Define T ambient (Ta) and cooling constant (H) Ta = 30; % ambient temperature (deg C) H = 0.10; % Cooling constant (1/min) /iroini:

Step 3 in ODE Solution

3) Invoke the ODE solver in MATLAB

% Use Runge-Kutta 3rd order solver [t,T] = ode23('ftem',Tspan,To);

% Plot the results of the numerical integration procedure

```
plot(t,T)
xlabel('Time (min)')
ylabel('Temperature (deg C)')
grid
```

MATLAB Function 'ftem.m'

This function estimates the value of the rate of change of the ODE.

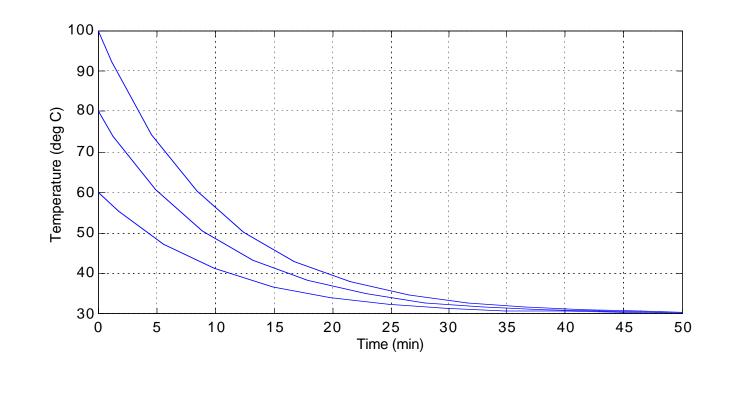
% First Order Differential Equation Function

```
function tprime = ftem(t,T)
global Ta H
tprime = - H * (T - Ta);
```

Note: global variables are "shared" by all functions in the workspace

Use of the Hold Command

Here we use the hold command to plot two solutions to the first order differential equation shown previously



Higher-Order Dynamic Systems

Higher order system can be solved in a simular way using MATLAB recognizing that array variables that contain more than one state variable

- The following highway maintenance example illustrates this (adapted from Drew, 1997)
- The highway maintenance example solves three coupled ODEs to predict the state of the State highways system
- The model assumes investments in ordinary vs.replacement maintenance actions to predict the number of lane-miles of highway in three possible states over time (sufficient, deficient and deteriorating highways)

/iroini

Highway Maintenance Model (main file)

% Highway Maintenance Model global HME FEOM OMC FEMR MRC HDETT HAT	
% Define constants of the problem	
HME = 5E7; % Hwy maintenance expenditure (\$/yr)	
FEOM = 0.5;	% Fract. of expenditures to ordinary maint (%)
OMC = 5E5;	% Ordinary maintenance cost(\$/lane- mile)
MRC = 2E6;	% Maintenance replacement action (\$/ la-mi)
FEMR = 0.5;	% Frac of expenditures for maint. replacement (%)
HAT = 4;	% Hwy aging time (yr)
HDETT $= 8;$	% Hwy deterioration time (yr)

Virginia

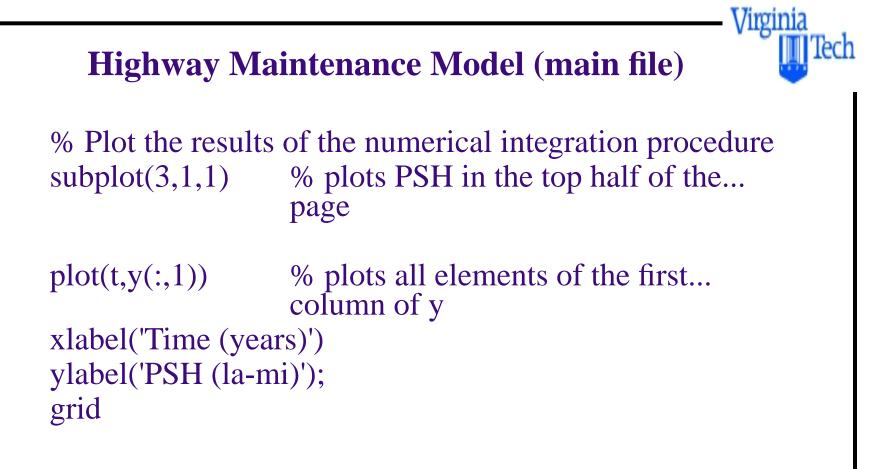
ech

Highway Maintenance Model (main file)

% Define Initial Conditions of the Problem

 $yN = [200 \ 200 \ 0];\% yN defines initial conditions for...$ state variablesto = 0.0; % to is the initial time to solve this...equation (yr)tf = 10.0; % tf is the final time (yr)tspan = [to tf]

% Invoke the ordinary differential equation solver [t,y] = ode23('fhwy3_rev',tspan,yN); Jiroiniz



Highway Maintenance Model

```
subplot(3,1,2)% plots I in the bottom half of the page<br/>% plots all elements of the second<br/>column of yxlabel('Time (years)')<br/>ylabel('PDTH (la-mi)');<br/>grid
```

```
subplot(3,1,3) % plots PDTH in the bottom third of
the page
plot(t,y(:,3)) % plots all elements of the first column
of y
xlabel('Time (years)')
ylabel('PDFH (la-mi)')
grid
```

Function File (fhwy3_rev)

```
function yprime = fhwy3_rev(t,y)
global HME FEOM OMC FEMR MRC HDETT HAT
```

% define rate equation(s) HD = y(2) / HDETT; % Hwy deteriorating (lane-mi/yr) HA = y(1) / HAT; % Hwy aging (lane-mi/yr)

HOM = HME * (FEOM / OMC); % Highway with ordinary maintenance (lane-mi/yr)

HMR = HME * (FEMR / MRC); % Highway with maint replacement (lane-mi/yr)

Function File (fhwy3_rev)

- % Define the rate equations (3 rate variables representing PSH, PDFH and PDTH)
- %
- % PSH Physically sufficient highways (y1)
- % PDFH Physically defficient highways
- % PDTH Physically deteriorated highways
- % Model equivalencies for state variables
- % y1 = PSH % y2 = PDFH % y3 = PDTH

Function File (fhwy3_rev)

```
yprime(1) = HOM + HMR - HA;
% Rate of change of PSH (la-mi/yr)
```

```
yprime(2) = HA - HD - HOM ;
% Rate of change of PDFH (la-mi/yr)
```

```
yprime(3) = HD - HMR;
% Rate of change of PDTH (la-mi/yr)
```

yprime=yprime'; % returns a column vector to main file

