Material Presented in this Section

<table>
<thead>
<tr>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queueing Models</td>
</tr>
<tr>
<td>+ Background</td>
</tr>
<tr>
<td>+ Analytic solutions for various disciplines</td>
</tr>
<tr>
<td>+ Applications to infrastructure planning</td>
</tr>
</tbody>
</table>

The importance of queueing models in infrastructure planning and design cannot be overstated.

Queueing models offer a simplified way to analyze critical areas inside an airport terminal to evaluate levels of service and operational performance.
Principles of Queueing Theory

Historically starts with the work of A.K. Erlang while estimating queues for telephone systems

Applications are very numerous:
- Transportation planning (vehicle delays in networks)
- Public health facility design (emergency rooms)
- Commerce and industry (waiting line analysis)
- Communications infrastructure (switches and lines)
Elements of a Queue

a) Input Source
b) Queue
c) Service facility

Arriving Entities ➔ Queue ➔ Served Entities

Input Source Queueing System
Specification of a Queue

- Size of input source
- Input function
- Queue discipline
- Service discipline
- Service facility configuration
- Output function (distribution of service times)

Sample queue disciplines

- FIFO - first in, first out
- Time-based disciplines
- Priority discipline
What Does a Queue Represent?

Queues represent the state of a system such as the number of people inside an airport terminal, the number of trucks waiting to be loaded at a construction site, the number of ships waiting to be unloaded in a dock, the number of aircraft holding in an imaginary racetrack flight pattern near an airport facility, etc.

The important feature seems to be that the analysis is common to many realistic situations where a flows of traffic (including pedestrians moving inside airport terminals) can be described in terms of either continuous flows or discrete events.
Types of Queues

Deterministic queues - Values of arrival function are not random variables (continuous flow) but do vary over time.

- Example of this process is the hydrodynamic approximation of pedestrian flows inside airport terminals
- “Bottleneck” analysis in transportation processes employs this technique

Stochastic queues - deal with random variables for arrival and service time functions.

- In these queues are defined by probabilistic metrics such as the expected number of entities in the system, probability of n entities in the system and so on
Generalized Time Behavior of a Queue

The state of the system goes through two well defined regions of behavior: a) transient and b) steady-state
Deterministic Queues

Deterministic Queues are analogous to a continuous flow of entities passing over a point over time. As Morlok [Morlok, 1976] points out this type of analysis is usually carried out when the number of entities to be simulated is large as this will ensure a better match between the resulting cumulative stepped line representing the state of the system and the continuous approximation line.

The figure below depicts graphically a deterministic queue characterized by a region where demand exceeds supply for a period of time.
Deterministic Queues (Continuous)

- Rates
- Supply
- Supply Deficit
- Demand
- Cumulative Flow
- Cumulative Demand
- Cumulative Supply
- Time

- L_t
- W_t
- t_{in}
- t_{out}
Deterministic Queues (Discrete Case)

- Demand (λ)
- Supply (μ)

- Cumulative Flow
- Cumulative Supply
- Cumulative Demand
- Supply Deficit

- Time (Δt)
Deterministic Queues (Parameters)

a) The queue length, L, (i.e., state of the system) corresponds to the maximum ordinate distance between the cumulative demand and supply curves.

b) The waiting time, w, denoted by the horizontal distance between the two cumulative curves in the diagram is the individual waiting time of an entity arriving to the queue at time t_{in}.

c) The total delay is the area under bounded by these two curves.

d) The average delay time is the quotient of the total delay and the number of entities processed.
Deterministic Queues

e) The average queue length is the quotient of the total delay and the time span of the delay (i.e., the time difference between the end and start of the delay)

Assumptions

Demand and supply curves are derived from known flow rate functions (λ and μ) which of course are functions of time.

The diagrams shown represent a simplified scenario arising in many practical situations such as those encountered in traffic engineering (i.e., bottleneck analysis).
Example (1): Lumped Service Model (Passengers at a Terminal Facility)

In the planning program for renovating an airport terminal facility it is important to estimate the requirements for the ground access area. It has been estimated that an hourly capacity of 1500 passengers can be adequately be served with the existing facilities at a medium size regional airport.

Due to future expansion plans for the terminal, one third of the ground service area will be closed for 2 hours in order to perform inspection checks to ensure expansion compatibility. A recent passenger count reveals an arrival function as shown below.
Example Problem (Airport Terminal)

\[\lambda = 1500 \text{ for } 0 < t < 1 \quad t \text{ in hours} \]
\[\lambda = 500 \text{ for } t > 1 \]

where, \(\lambda \) is the arrival function (demand function) and \(t \) is the time in hours. Estimate the following parameters:

- The maximum queue length, \(L(t)_{\text{max}} \)
- The total delay to passengers, \(T_d \)
- The average length of queue, \(L \)
- The average waiting time, \(W \)
- The delay to a passenger arriving 30 minutes hour after the terminal closure
Example Problem (Airport Terminal)

Solution:

The demand function has been given explicitly in the statement of the problem. The supply function as stated in the problem are deduced to be,

\[\mu = 1000 \text{ if } t < 2 \]
\[\mu = 1500 \text{ if } t > 2 \]

Plotting the demand and supply functions might help understanding the problem.
Example Problem (Airport Terminal)

To find the average queue length (L) during the period of interest, we evaluate the total area under the cumulative curves (to find total delay)

\[T_d = 2 \left[\frac{1}{2} (1500-1000) \right] = 500 \text{ passengers-hour} \]

Find the maximum number of passengers in the queue, \(L(t)_{\text{max}} \),

\[L(t)_{\text{max}} = 1500 - 1000 = 500 \text{ passengers at time t=1.0 hours} \]

Find the average delay to a passenger (W)
Example Problem (Airport Terminal)

\[W = \frac{T_d}{N_d} = 15 \text{ minutes} \]

where, \(T_d \) is the total delay and \(N_d \) is the number of passengers that were delayed during the queueing incident.

\[L = \frac{T_d}{t_d} = 250 \text{ passengers} \]

where, \(T_d \) is the total delay and \(t_d \) is the time that the queue lasts.
Example Problem (Airport Terminal)

Now we can find the delay for a passenger entering the terminal 30 minutes after the partial terminal closure occurs. Note that at \(t = 0.5 \) hours 750 passengers have entered the terminal before the passenger in question. Thus we need to find the time when the supply function, \(\mu(t) \), achieves a value of 750 so that the passenger “gets serviced”. This occurs at,

\[
\mu(t + \Delta t) = \lambda(t) = 750
\]

(2.1)

therefore \(\Delta t \) is just 15 minutes (the passenger actually leaves the terminal at a time \(t+\Delta t \) equal to 0.75 hours). This can be shown in the diagram on the next page.
Example Problem (Airport Terminal)

Demand and Supply Functions for Example Problem

![Graph showing demand and supply functions](image)
Remarks About Deterministic Queues

- Introducing some time variations in the system we can easily grasp the benefit of the simulation.
- Most of the queueing processes at airport terminals are non-steady thus analytic models seldom apply.
- Data typically exist on passenger behaviors over time that can be used to feed these deterministic, non-steady models.
- The capacity function is perhaps the most difficult to quantify because human performance is affected by the state of the system (i.e., queue length among others).
Example 2: Deterministic Queueing Model of the Immigration Area at an Airport

Let us define a demand function that varies with time representing the typical cycles of operation observed at airport terminals. This demand function, \(\lambda(t) \) is:

- Deterministic
- Observed or predicted
- A function of time (a table function)

Suppose the capacity of the system, \(\mu(t) \), is also known and deterministic as shown in the following Matlab code
Continuous Simulation Example (Rates)

Demand - $\lambda(t)$

Supply - $\mu(t)$

Time (minutes)

Demand or Capacity (Entities/time)
Plots of Integrals of $\lambda(t)$ and $\mu(t)$

![Plots of Integrals of $\lambda(t)$ and $\mu(t)$](image)
Matlab Source Code for Deterministic Queueing Model (main file)

% Deterministic queueing simulation
% T. Trani (Rev. Mar 99)
global demand capacity time

% Enter demand function as an array of values over time

% general demand - capacity relationships
%
% demand = [70 40 50 60 20 10];
% capacity = [50 50 30 50 40 50];
% time = [0 10 20 30 40 50];

demand = [1500 1000 1200 500 500 500];
capacity = [1200 1200 1000 1000 1200 1200];
time = [0.00 1.00 1.500 1.75 2.00 3.00];
% Compute min and maximum values for proper scaling in plots
mintime = min(time);
maxtime = max(time);
maxd = max(demand);
maxc = max(capacity);
mind = min(demand);
minc = min(capacity);
scale = round(.2 * (maxc + maxd) / 2);
minplot = min(minc, mind) - scale;
maxplot = max(maxc, maxd) + scale;

po = [0 0]; % initial number of passengers
to = mintime;

% where:
tf = maxtime;
tspan = [to tf];
% to is the initial time to solve this equation
% tf is the final time
% tspan is the time span to solve the simulation

[t,p] = ode23('fqueue_2',tspan,po);

% Compute statistics

Ltmax = max(p(:,1));
tdelay = max(p(:,2));
a_demand = mean(demand);
a_capacity = mean(capacity);

clc
disp([blanks(5),'Deterministic Queueing Model '])
disp(' ')
disp(' ')
disp([blanks(5),...Average arrival rate (entities/time) = ', num2str(a_demand)])
disp([blanks(5),' Average capacity (entities/time) = ', num2str(a_capacity)])
disp([blanks(5),' Simulation Period (time units) = ', num2str(maxtime)])

disp(' ')

disp(' ')
disp([blanks(5),' Total delay (entities-time) = ', num2str(tdelay)])
disp([blanks(5),' Max queue length (entities) = ', num2str(Ltmax)])
disp(' ')

pause

% Plot the demand and supply functions

plot(time,demand,'b',time,capacity,'k')
xlabel('Time (minutes)')
ylabel('Demand or Cpacity (Entities/time)')
axis([mintime maxtime minplot maxplot])
grid

pause
% Plot the results of the numerical integration procedure
subplot(2,1,1)
plot(t,p(:,1),'b')
xlabel('Time')
ylabel('Entities in Queue')
grid

subplot(2,1,2)
plot(t,p(:,2),'k')
xlabel('Time')
ylabel('Total Delay (Entities-time)')
grid
% Function file to integrate numerically a differential equation
% describing a deterministic queueing system

function pprime = fqueue_2(t,p)
global demand capacity time

% Define the rate equations
demand_table = interp1(time,demand,t);
capacity_table = interp1(time,capacity,t);

if (demand_table < capacity_table) & (p > 0)
 pprime(1) = demand_table - capacity_table; % rate of change in state variable
elseif demand_table > capacity_table
 pprime(1) = demand_table - capacity_table; % rate of change in state variable
else
 pprime(1) = 0.0; % avoids accumulation of entities
end

pprime(2) = p(1); % integrates the delay
curve over time
pprime = pprime';
Output of Deterministic Queueing Model

Deterministic Queueing Model

Average arrival rate (entities/time) = 866.6667
Average capacity (entities/time) = 1133.3333
Simulation Period (time units) = 3

Total delay (entities-time) = 94.8925
Max queue length (entities) = 89.6247
These models can only be generalized for simple arrival and departure functions since the involvement of complex functions make their analytic solution almost impossible to achieve. The process to be described first is the so-called **birth and death process** that is completely analogous to the arrival and departure of an entity from the queueing system in hand.

Before we try to describe the mathematical equations it is necessary to understand the basic principles of the stochastic queue and its nomenclature.
Fundamental Elements of a Queueing System

Queueing System

Entering Customers

Queue

Service Facility

Served Customers
Nomenclature

Queue length = No. of customers waiting for service

$L(t) = \text{State of the system - customers in queue at time } t$

$N(t) = \text{Number of customers in queueing system at time } t$

$P(t) = \text{Prob. of exactly } n \text{ customers are in queueing system at time } t$

$s = \text{No. of servers (parallel service)}$

$\lambda_n = \text{Mean arrival rate}$

$\mu_n = \text{Mean service rate for overall system}$
Other Definitions in Queueing Systems

If λ_n is constant for all n then $(1/\lambda)$ it represents the interarrival time. Also, if μ_n is constant for all $n > 1$ (constant for each busy server) then $\mu_n = m$ service rate and $(1/\mu)$ is the service time (mean).

Finally, for a multiserver system $s\mu$ is the total service rate and also $\rho = 1/s\mu$ is the utilization factor. This is the amount of time that the service facility is being used.
Stochastic Queueing Systems

The idea behind the queueing process is to analyze steady-state conditions. Let's define some notation applicable for steady-state conditions,

- N = No. of customers in queueing system
- P_n = Prob. of exactly n customers are in queueing system
- L = Expected no. of customers in queueing system
- L_q = Queue length (expected)
- W = Waiting time in system (includes service time)
- W_q = Waiting time in queue
There are some basic relationships that have been derived in standard textbooks in operations research [Hillier and Lieberman, 1991]. Some of these more basic relationships are:

\[L = \lambda W \]

\[L_q = \lambda W_q \]

The analysis of stochastic queueing systems can be easily understood with the use of “Birth-Death” rate diagrams as illustrated in the next figure. Here the transitions of a system are illustrated by the state conditions 0, 1, 2, 3,.. etc. Each state corresponds to a situation where there are n customers in the system. This implies that state 0 means that the system is idle (i.e., no customers), system at state 1 means there is one customer and so forth.
Rate Diagram for Birth-and-Rate Process

Note: Only possible transitions in the state of the system are shown.
Stochastic Queueing Systems

For a queue to achieve steady-state we require that all rates in equal the rates out or in other words that all transitions out are equal to all the transitions in. This implies that there has to be a balance between entering and leaving entities.

Consider state 0. This state can only be reached from state 1 if one departure occurs. The steady state probability of being in state 1 (P_1) represents the portion of the time that it would be possible to enter state 0. The mean rate at which this happens is $\mu_1 P_1$. Using the same argument the mean occurrence rate of the leaving incidents must be $\lambda_0 P_0$ to the balance equation,
Stochastic Queueing Systems

\[\mu_1 P_1 = \lambda_0 P_0 \]

For every other state there are two possible transitions. Both into and out of the state.

\[\lambda_0 P_0 = P_1 \mu_1 \]

\[\lambda_0 P_0 + \mu_2 P_2 = \lambda_1 \mu_1 + \mu_1 P_1 \]

\[\lambda_1 P_1 + \mu_3 P_3 = \lambda_2 \mu_2 + \mu_2 P_2 \]

\[\lambda_2 P_2 + \mu_4 P_4 = \lambda_3 \mu_3 + \mu_3 P_3 \]

until,

\[\lambda_{n-1} P_{n-1} + \mu_{n+1} P_{n+1} = \lambda_n \mu_n + \mu_n P_n \]
Stochastic Queueing Systems

Since we are interested in the probabilities of the system in every state \(n \) want to know the \(P_n \)'s in the process. The idea is to solve these equations in terms of one variable (say \(P_0 \)) as there is one more variable than equations.

For every state we have,

\[
P_1 = \frac{\lambda_0}{\mu_1} P_0
\]

\[
P_2 = \frac{\lambda_1 \lambda_0}{\mu_1 \mu_2} P_0
\]

\[
P_3 = \frac{\lambda_2 \lambda_1 \lambda_0}{\mu_1 \mu_2 \mu_3} P_0
\]

\[
P_{n+1} = \frac{\lambda_n \ldots \lambda_1 \lambda_0}{\mu_1 \mu_2 \ldots \mu_{n+1}} P_0
\]
Stochastic Queueing Systems

Let C_n be defined as,

$$C_n = \lambda_{n-1} \ldots \lambda_1 \lambda_0 / \mu_1 \mu_2 \ldots \mu_n$$

Once this is accomplished we can determine the values of all probabilities since the sum of all have to equate to unity.

$$\sum_{i=0}^{n} P_n = 1$$

$$P_0 + \sum_{i=1}^{n} P_n = 1$$
Solving for P_0 we have,

$$P_0 + \sum_{i=1}^{n} C_n P_0 = 1$$

Now we are in the position to solve for the remaining queue parameters, L the average no. of entities in the system, L_q, the average number of customers in the
queue, W, the average waiting time in the system and W_q the average waiting time in the queue.

\[
P_n = C_n P_0
\]

\[
L = \sum_{n=1}^{\infty} n P_n
\]

\[
L_q = \sum_{n=s}^{\infty} (n-s) P_n
\]

\[
W = \frac{L}{\lambda}
\]

\[
W_q = \frac{L_q}{\lambda}
\]
This process can then be repeated for specific queueing scenarios where the number of customers is finite, infinite, etc. and for one or multiple servers. All systems can be derived using “birth-death” rate diagrams.
Stochastic Queueing Systems

Depending on the simplifying assumptions made, queueing systems can be solved analytically.

The following section presents equations for the following queueing systems when poisson arrivals and negative exponential service times apply:

a) Single server - infinite source (constant λ and μ)

b) Multiple server - infinite source (constant λ and μ)

c) Single server - finite source (constant λ and μ)

d) Multiple server - finite source (constant λ and μ)
The idea behind the queueing process is to analyze steady-state conditions. Let's define some notation applicable for steady-state conditions,

\[
N = \text{No. of customers in queueing system}
\]

\[
P_n = \text{Prob. of exactly } n \text{ customers are in queueing system}
\]

\[
L = \text{Expected no. of customers in queueing system}
\]

\[
L_q = \text{Queue length (expected)}
\]

\[
W = \text{Waiting time in system (includes service time)}
\]

\[
W_q = \text{Waiting time in queue}
\]
Stochastic Queueing Systems

There are some basic relationships that have been derived in standard textbooks in operations research [Hillier and Lieberman, 1991]. Some of these more basic relationships are:

\[L = \Lambda W \]

\[L_q = \Lambda W_q \]
Stochastic Queueing Systems

Single server - infinite source (constant λ and μ)

Assumptions:

a) Probability between arrivals is negative exponential with parameter λ_n

b) Probability between service completions is negative exponential with parameter μ_n

c) Only one arrival or service occurs at a given time
Single server - Infinite Source (Constant λ and μ)

$\rho = \frac{\lambda}{\mu}$ Utilization factor

$$P_0 = \frac{1}{1 + \sum_{n=1}^{\infty} \rho^n} = \left(\sum_{n=0}^{\infty} \rho^n\right)^{-1} = \left(\frac{1}{1-\rho}\right)^{-1} = 1 - \rho$$

$$P_n = \rho^n P_0 = (1-\rho)\rho^n \quad \text{for } n = 0,1,2,3,\ldots$$

$L = \frac{\lambda}{\mu - \lambda}$ expected number of entities in the system

$L_q = \frac{\lambda^2}{(\mu - \lambda)\mu}$ expected no. of entities in the queue
\[W = \frac{1}{\mu - \lambda} \quad \text{average waiting time in the queueing system} \]

\[W_q = \frac{\lambda}{(\mu - \lambda)\mu} \quad \text{average waiting time in the queue} \]

\[P(W > t) = e^{-\mu(1 - \rho)t} \quad \text{probability distribution of waiting times} \]

(including the service potion in the SF)
Multiple Server

Infinite source (constant λ and μ)

Assumptions:

a) Probability between arrivals is negative exponential with parameter λ_n

b) Probability between service completions is negative exponential with parameter μ_n

c) Only one arrival or service occurs at a given time
Multiple Server - Infinite Source (constant λ, μ)

\[\rho = \frac{\lambda}{s\mu} \quad \text{utilization factor of the facility} \]

\[P_0 = \frac{1}{\sum_{n=0}^{s-1} \left(\frac{(\lambda/\mu)^n}{n!} + \frac{(\lambda/\mu)^s}{s!} \left(\frac{1}{1-(\lambda/s\mu)} \right) \right)} \]

idle probability

\[P_n = \begin{cases}
\frac{(\lambda/\mu)^n}{n!} P_0 & 0 \leq n \leq s \\
\frac{(\lambda/\mu)^n}{s! s^{n-s}} P_0 & n \geq s
\end{cases} \]

probability of n entities in the system
Finally the probability distribution of waiting times is,

\[L = \frac{\rho P_0 \left(\frac{\lambda}{\mu} \right)^s}{s!(1 - \rho)^2} + \frac{\lambda}{\mu} \]

expected number of entities in system

\[L_q = \frac{\rho P_0 \left(\frac{\lambda}{\mu} \right)^s}{s!(1 - \rho)^2} \]

expected number of entities in queue

\[W_q = \frac{L_q}{\lambda} \]

average waiting time in queue

\[W = \frac{L}{\lambda} = W_q + \frac{1}{\lambda} \]

average waiting time in system
If \(s - 1 - \lambda / \mu = 0 \) then use

\[
\frac{1 - e^{-\mu t(s - 1 - \lambda / \mu)}}{s - 1 - \lambda / \mu} = \mu t
\]
Assumptions:

a) Interarrival times have a negative exponential PDF with parameter λ_n.

b) Probability between service completions is negative exponential with parameter μ_n.

c) Only one arrival or service occurs at a given time.

d) M is the total number of entities to be served (calling population).
Single Server - Finite Source (constant λ and μ)

$\rho = \frac{\lambda}{\mu}$ utilization factor of the facility

$$P_0 = \frac{1}{\sum_{n=0}^{M} \frac{M!}{(M-n)!} \left(\frac{\lambda}{\mu} \right)^n}$$ idle probability

$$P_n = \frac{M!}{(M-n)!} \left(\frac{\lambda}{\mu} \right)^n P_0$$ for $n = 1, 2, 3, \ldots M$ probability

of n entities in the system

$$L_q = M - \frac{\mu + \lambda}{\lambda} (1 - P_0)$$ expected number of entities in

queue
\[L = M - \frac{\mu}{\lambda} (1 - P_0) \]
expected number of entities in system

\[w_q = \frac{L_q}{\ddot{\lambda}} \]
average waiting time in queue

\[w = \frac{L}{\ddot{\lambda}} \]
average waiting time in system

where:

\[\ddot{\lambda} = \lambda(M - L) \]
average arrival rate
Multiple Server Cases

Infinite source (constant λ and μ)

Assumptions:

a) Interarrival times have a negative exponential PDF with parameter λ_n

b) Probability between service completions is negative exponential with parameter μ_n

c) Only one arrival or service occurs at a given time

d) M is the total number of entities to be served (calling population)
Multiple Server - Finite Source (constant λ and μ)

$\rho = \lambda / \mu s$ utilization factor of the facility

$$P_0 = 1 / \left[\sum_{n=0}^{s-1} \left(\frac{M!}{(M-n)!n!} (\lambda / \mu)^n \right) + \sum_{n=s}^{M} \left(\frac{M!}{(M-n)!s!s^{n-s}} (\lambda / \mu)^n \right) \right]$$

idle probability

$$P_n = \begin{cases}
\frac{M!}{(M-n)!n!} (\lambda / \mu)^nP_0 & 0 \leq n \leq s \\
\frac{M!}{(M-n)!s!s^{n-s}} (\lambda / \mu)^nP_0 & s \leq n \leq M \\
0 & n \geq M
\end{cases}$$
\[L_q = \sum_{n=s}^{M} (n - s)P_n \]
expected number of entities in queue

\[L = \sum_{n=0}^{M} nP_n = \sum_{n=0}^{s-1} nP_n + L_q + s \left(1 - \sum_{n=0}^{s-1} P_n \right) \]
expected number of entities in system

\[W_q = \frac{L_q}{\lambda} \]
average waiting time in queue

\[W = \frac{L}{\lambda} \]
average waiting time in system
where:

\[\tilde{\lambda} = \lambda(M - L) \quad \text{average arrival rate} \]
Example (3): Level of Service at Security Checkpoints

The airport shown in the next figures has two security checkpoints for all passengers boarding aircraft. Each security check point has two x-ray machines. A survey reveals that on the average a passenger takes 45 seconds to go through the system (negative exponential distribution service time).

The arrival rate is known to be random (this equates to a Poisson distribution) with a mean arrival rate of one passenger every 25 seconds.

In the design year (2010) the demand for services is expected to grow by 60% compared to that today.
Relevant Operational Questions

a) What is the current utilization of the queueing system (i.e., two x-ray machines)?

b) What should be the number of x-ray machines for the design year of this terminal (year 2010) if the maximum tolerable waiting time in the queue is 2 minutes?

c) What is the expected number of passengers at the checkpoint area on a typical day in the design year (year 2010)?

d) What is the new utilization of the future facility?

e) What is the probability that more than 4 passengers wait for service in the design year?
Airport Terminal Layout

- Departure Lounges
- Security Check Points
- Ticket Counter Modules
- Utility Space and Concessions
- Parking Area
- Passenger Flows
- Access Road
- Airport Terminal

Virginia Polytechnic Institute and State University
Security Check Point Layout

Circulation Area

From Ticket Counters

Departing Passengers

From Ticket Counters

Arriving Passengers

Queueing System

Service Facility
a) Utilization of the facility, ρ. Note that this is a multiple server case with infinite source.

$$\rho = \frac{\lambda}{(s\mu)} = \frac{140}{(2*80)} = 0.90$$

Other queueing parameters are found using the steady-state equations for a multi-server queueing system with infinite population are:

- Idle probability = 0.052632
- Expected No. of customers in queue (L_q) = 7.6737
- Expected No. of customers in system (L) = 9.4737
- Average Waiting Time in Queue = 192 s
- Average Waiting Time in System = 237 s
b) The solution to this part is done by trail and error (unless you have access to design charts used in queueing models. As a first trial lets assume that the number of x-ray machines is 3 (s=3).

Finding P_0,

$$P_0 = \sum_{n=0}^{s-1} \frac{1}{n!} \left(\frac{\lambda}{\mu} \right)^n + \frac{1}{s!} \left(\frac{\lambda}{\mu} \right)^s \left(\frac{1}{1 - \frac{\lambda}{s\mu}} \right)$$

$P_0 = .0097$ or less than 1% of the time the facility is idle

Find the waiting time in the queue,

$W_q = 332$ s

Since this waiting time violates the desired two minute maximum it is suggested that we try a higher number of x-ray machines to expedite service (at the expense of
cost). The following figure illustrates the sensitivity of P_0 and L_q as the number of servers is increased.

Note that four x-ray machines are needed to provide the desired average waiting time, W_q.
Sensitivity of Po with S

Note the quick variations in Po as S increases.
Sensitivity of L with S
Sensitivity of L_q with S
Sensitivity of W_q with S

This analysis demonstrates that 4 x-ray machines are needed to satisfy the 2-minute operational design constraint.
Sensitivity of W with S

Note how fast the waiting time function decreases with S
Security Check Point Results

c) The expected number of passengers in the system is (with $S = 4$),

$$L = \frac{\rho P_0 \left(\frac{\lambda}{\mu}\right)^s}{s! (1 - \rho)^2} + \frac{\lambda}{\mu}$$

$L = 4.04$ passengers in the system on the average design year day.

d) The utilization of the improved facility (i.e., four x-ray machines) is

$$\rho = \frac{\lambda}{s \mu} = \frac{230}{(4*80)} = 0.72$$
e) The probability that more than four passengers wait for service is just the probability that more than eight passengers are in the queueing system, since four are being served and more than four wait.

\[
P(n > 8) = 1 - \sum_{n=0}^{8} P_n
\]

where,

\[
P_n = \frac{(\lambda/\mu)^n}{n!} P_0 \quad \text{if} \quad n \leq s
\]

\[
P_n = \frac{(\lambda/\mu)^n}{s! s^{n-s}} P_0 \quad \text{if} \quad n > s
\]
from where, $P_n > 8$ is 0.0879.

Note that this probability is low and therefore the facility seems properly designed to handle the majority of the expected traffic within the two-minute waiting time constraint.
PDF of Customers in System (L)

The PDF below illustrates the stochastic process resulting from poisson arrivals and neg. exponential service times.
Matlab Computer Code

% Multi-server queue equations with infinite population

% Sc = Number of servers
% Lambda = arrival rate
% Mu = Service rate per server
% Rho = utilization factor
% Po = Idle probability
% L = Expected no of entities in the system
% Lq = Expected no of entities in the queue
% nlast - last probability to be computed

% Initial conditions

S=5;
Lambda=3;
Mu = 4/3;
nlast = 10; % last probability value computed

Rho = Lambda/(S*Mu);

% Find Po
Po_inverse = 0;
sum_den = 0;

for i = 0:S-1 % for the first term in the denominator (den_1)
den_1 = (Lambda/Mu)^i/fct(i);
sum_den = sum_den + den_1;
end

den_2 = (Lambda/Mu)^S/(fct(S)*(1-Rho)); % for the second part of den (den_2)
Po_inverse = sum_den + den_2;
Po = 1/Po_inverse
% Find probabilities (Pn)

Pn(1) = Po; % Initializes the first element of Pn column vector to be Po
n(1) = 0; % Vector to keep track of number of entities in system

% loop to compute probabilities of n entities in the system

for j=1:1:nlast
 n(j+1) = j;
 if (j) <= S
 Pn(j+1) = (Lambda/Mu)^j/fct(j) * Po;
 else
 Pn(j+1) = (Lambda/Mu)^j/(fct(S) * Sc^(j-S)) * Po;
 end
end

% Queue measures of effectiveness

Lq=(Lambda/Mu)^S*Rho*Po/(fct(S)*(1-Rho)^2)
\[L = L_q + \frac{\lambda}{\mu} \]
\[W_q = \frac{L_q}{\lambda} \]
\[W = \frac{L}{\lambda} \]

```
plot(n,Pn)
xlabel('Number of entities')
ylabel('probability')
```
Example 4 - Airport Operations

Assume IFR conditions to a large hub airport with

- **Arrival rates** to metering point are 45 aircraft/hr
- **Service times** dictated by in-trail separations (120 s headways)
Some Results of this Simple Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Numerical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>45 aircraft/hr to arrival metering point</td>
</tr>
<tr>
<td>μ</td>
<td>30 aircraft per runway per hour</td>
</tr>
<tr>
<td>P_o</td>
<td>0.143</td>
</tr>
<tr>
<td>ρ</td>
<td>0.750</td>
</tr>
<tr>
<td>L</td>
<td>3.42 aircraft (includes those in service)</td>
</tr>
<tr>
<td>W_q</td>
<td>2.57 minutes per aircraft</td>
</tr>
<tr>
<td>W</td>
<td>4.57 minutes per aircraft</td>
</tr>
</tbody>
</table>
Sensitivity Analysis

Let's vary the arrival rate (λ) from 20 to 55 per hour and see the effect on the aircraft delay function.
Sensitivity of L_q with Demand

The following diagram plots the sensitivity of the expected number of aircraft holding vs. the demand function.
Conclusions About Analytic Queueing Models

Advantages:

• Good traceability of causality between variables
• Good only for first order approximations
• Easy to implement

Disadvantages:

• Too simple to analyze small changes in a complex system
• Cannot model transient behaviors very well
• Large errors are possible because secondary effects are neglected
• Limited to cases where PDF has a close form solution