## Assignment 6: Air Traffic, and Runway Operations

## Problem 1 Basic ATC and Runway Separations

Answer briefly the following ATC-related questions.
a) An Airbus A330-300 cruises at Mach 0.82 at FL 370 and 150 miles East of Labrador enroute to Europe. Name the ATC service that oversees the flight.

## Gander Oceanic control center.

b) Over the ocean, explain how pilots communicate with Air Traffic Control. Describe the time lag in communications for oceanic flights and ATC.
Typically a two-minute time lag for messages to travel back and forth. Use of datalink systems via satellite.
c) State the minimum separation between two parallel runways to serve operations shown in Figure 1. State the surveillance equipment needed to make the operations shown possible.

2,000 feet minimum due to stagger. Rule: 100 feet reduction for each 500 feet of stagger.


Figure 1. Runway Configuration.
d) Use Google Earth and the FAA airport diagram to familiarize yourself with the runway configuration at Los Angeles International airport. Can runways 24R and 25 L be operated independently for simultaneous instrument arrivals? Comment on the rule used.
Yes, at LAX, runways 24R and 25L can be operated independently for arrivals.
e) Can the Denver airport operate three simultaneous arrivals in West flow (flying to the West) in instrument conditions? Name the runways selected in such operations.
Only two arrivals in west flow configuration.

## Problem 2 Runway Capacity

Figure 2 illustrates the configuration of the runways at the airport. Runways 9L and 9R serve different aircraft fleet mix.


Figure 2. Runway Configuration for Problem 2.

Assume IMC conditions in the solution to the problem. The airport operates an East flow configuration with arrivals and departures using both runways. Tables 1 and 2 show the airport fleet mix for runways 9 L and 9R, respectively. For this analysis we use the following technical parameters: a) in-trail delivery error of 17 seconds under IMC conditions, b) probability of violation is $5 \%$. Arriving aircraft are "vectored" by ATC to the Final Approach Fix (FAF) for each runway, and c) 2.5 nautical miles minimum separation between an arrival and a departure. The 2.5 nm arrival-departure separation includes a small 0.5 nm buffer over the minimum value used in the US. Use the arrival-arrival separations for on-approach operations described in the consolidated wake vortex separation document (or notes). Table 3 shows the departure-departure separation matrix employed.

Table 1. Runway 9L Operational Parameters and Fleet Mix. CWT Groups.

| Aircraft CWT Group | Percent Mix (\%) | Runway Occupancy <br> Time (s) | Average Approach <br> Speed (knots) from FAF |
| :--- | :---: | :---: | :---: |
| B | 6 | 61 | 150 |
| E | 18 | 59 | 145 |
| F | 76 | 55 | 138 |
| Totals | 100 |  |  |

Table 2. Runway 9R Operational Parameters and Fleet Mix. CWT Groups.

| Aircraft CWT Group | Percent Mix (\%) | Runway Occupancy <br> Time (s) | Average Approach <br> Speed (knots) from FAF |
| :--- | :---: | :---: | :---: |
| F | 48 | 55 | 138 |
| H | 26 | 49 | 126 |
| I | 26 | 45 | 118 |
| Totals | 100 |  |  |

Table 3. Departure-Departure Separations with Buffers Included. Columns 2-6 are the Following Aircraft.
First Column Presents the Lead Aircraft. Values in are seconds (includes 10-second departure buffers).

|  | Following Aircraft |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lead Aircraft <br> (Below) | B | E | F | H | I |
| B | 130 | 130 | 130 | 140 | 140 |
| E | 95 | 120 | 130 | 130 | 130 |
| F | 70 | 70 | 70 | 70 | 90 |
| H | 70 | 70 | 70 | 70 | 70 |
| I | 70 | 70 | 70 |  |  |

a) Estimate the IMC arrivals-only capacities for runways 9L and 9R at the airport.

Runway 9L arrival capacity is 30.6 operations/hour
Runway 9R arrival capacity is 29.4 operations/hour
b) Estimate the IMC departures-only capacities for the airport

Runway 9L departure capacity is 43.0 operations/hour
Runway 9R departure capacity is 51.4 operations/hour
d) Show the complete Pareto diagram (arrivals and departures on both runways) for the airport under IMC conditions.



Arrivals-Departure Rate Diagram for Runways 9L and 9R.
e) Comment on the differences in runway capacity between runways 9L and 9R.

The departure capacity is significantly different. Flying behind CWT class B requires larger separations. Hence lower departure capacity. A small reduction in arrival capacity due to slower speeds on final approach.

Note: You can employ the Excel spreadsheet provided. However, you must show me some sample calculations.

## Problem 3 Runway Capacity

Figure 3 shows the runway configuration for Problem 3. Use the technical separation parameters similar to those of Problem 2. Table 4 shows the fleet mix and ROT parameters of the airport. Use the departuredeparture separations of Table 3 which include the departure-departure buffers.

Notes:

1) Arrivals touchdown before intersection - typically at 1,500 feet from runway threshold
2) Arrivals touchdown speed is $95 \%$ of the threshold crossing speed
3) Arrivals decelerate at $2.05 \mathrm{~m} / \mathrm{s}-\mathrm{s}$ nominally after touchdown 4) Aircraft departires accelerate at an average $2 \mathrm{~m} / \mathrm{s}-\mathrm{s}$ on takeoff roll


Figure 3. Runway Configuration for Problem 3.
Table 4. Operational Parameters and Fleet Mix for Problem 3.

| Aircraft CWT Group | Percent Mix (\%) | Runway Occupancy <br> Time (s) | Average Approach <br> Speed (knots) from FAF <br> to Runway Threshold |
| :---: | :---: | :---: | :---: |
| F | 69 | 62 | 139 |
| G | 13 | 60 | 134 |
| H | 18 | 54 | 125 |
| Totals | 100 |  |  |

a) Estimate the IMC arrival and departure capacities for the two-runway system. Show me the procedure to estimate departures on runway 03.
Runway 9 arrival capacity is 32.1 operations/hour with $100 \%$ arrivals
Runway 3 departure capacity is 51.4 operations per hour with $100 \%$ departure priority

| Aircraft CWT Group | Time to Cross Intersection after <br> Landing (s) | Time to Cross Intersection when <br> Departing Runway 3 |
| :---: | :---: | :---: |
| F | 18.5 | 23.4 |
| G | 18.8 | 23.4 |
| H | 18.5 | 23.4 |

Assume the minimum distance between an arrival on runway 9 and a departure that crossed the intersection of runway $\mathbf{3}$ is $\mathbf{2 ~ n m}$.
Time from arrival crossing arrival threshold 9 to departure on runway 3 crossing the runway intersection is estimated to be 52.7 seconds. The time includes 10 seconds of time lag for the departure accounting for mechanical and human factors time lags.


Analysis of Departures on Runway 3 if Departures are Released with Between Arrival and Departure at Intersection. 2 nm of Separation
b) Draw the IMC Arrival-Departure diagram for the configuration shown in Figure 3.


Arrival-Departure Rate Diagram for Intersecting Runway Configuration.
c) If the airport ATC decided to operate additional departures on runway 09, estimate the new departure capacity with $100 \%$ arrival priority on runway 09 and $100 \%$ departures on runway 03.
The gaps left by successive arrivals are too small to allow additional operations on runway 9.

