Assignment 6: Capacity Analysis

Date Due: October 31, 2012

Instructor: Trani

Problem 1

Read the technical paper entitled "Air ground collaboration through delegated separation: Results of simulations for arrivals to closely spaced parallel runways" by Domino, D.A.; Tuomey, D.; Mundra, A.; Smith, A.; Stassen, H.P.; and make a summary of the points stated in the paper in two pages (doubled spaced). This article appeared in the Integrated Communications, Navigation and Surveillance Conference (ICNS), 2011. State some of the challenges to conduct parallel approaches to closely parallel runways. You can obtain the article by logging in to the VT library (see figure below).

Problem 2

Use Google Earth and the FAA Airport Capacity benchmarks document to help you answer the following question about San Francisco International Airport. Figures 1 and 2 show the FAA published Pareto diagrams for SFO under VMC and IMC conditions.

Current Operations - Optimum Rate

- Visual approaches, visual separation
- Optimum Rate of $(50,45)$ was reported by the facility
- Arrive Runways 28L/R, Depart Runways 01L/R
- ASPM data is actual hourly traffic counts for the month of April 2000 for Visual Approach conditions This data includes other runway configurations and off-peak periods.
- Solid line represents the calculated airport capacity during a busy hour, and the tradeoff between arrivals and departure rates

Figure 1. SFO Capacity in VMC Conditions. FAA Airport Capacity Benchmarks Reports (2004).

Current Operations - Reduced Rate

- Instrument approaches (below Visual Approach Minima)
- Arrive Runway 28L/R, Depart 01L/R
- Reduced Rate of $(30,42)$ was reported by the facility
- ASPM data for "Instrument Approaches" can include marginal VFR, with higher acceptance rates
- Chart below represents observed traffic and expected rates in terms of operations per hour

Figure 2. SFO Capacity in IMC Conditions. Source: FAA Airport Capacity Benchmarks Reports (2004).
a) Read about the SOIA approaches at SFO and state the benefits and weather conditions that force this airport to use such approaches. I suggest you read the FAA document http://www.faa.gov/documentLibrary/media/Order/8260.49A.pdf before others. Other documents that can be helpful are:
http://www.flysfo.com/web/export/sites/default/download/about/news/pressres/fact-sheet/pdf/
PRM SOIA version 1.pdf
http://www.faa.gov/about/office org/headquarters offices/apl/environ policy guidance/2012meeting/ media/BEBS\%202B\%20PBN\%20SOIA\%20Approach\%20to\%20SFO\%20RWY\%2028\%20Final.pdf
b) Using the NAS_Operations file provided, filter the arrival and departure operations to SFO. Plot the number departures per hour and arrivals per hour as a function of time (i.e., for a 24 -hour period). Recall that all times provided in the FAA ETMS data are UTC times (London time) and need to be converted to local SFO times (SFO time is -8 hours from London).
c) In the same plot draw horizontal lines representing the restricted IMC and VMC capacities. Comment on the demand vs capacity at the airport under IMC weather conditions.
d) Comment on the ability of this airport to cope with demand under IMC conditions.
e) One of the long-term scenarios for the NAS is to offer SOIA approaches under more inclement weather conditions. Comment on how would this impact airport capacity at airports like PHL and CLE.

Problem 3

You are expected to perform a capacity analysis for the airport shown in Figure 3. The airport has a standard airport surveillance radar (ASR) which tracks aircraft up to 60 miles form the airport site. The radar has a scan rate of 4 seconds. Tables 1 and 2 show the typical ATC separations at the airport under IMC conditions. Assume the minimum separations under VMC conditions are reduced by 10% from those observed under IMC conditions. The airport has the following technical parameters: a) in-trail delivery error of 18 seconds (because there is a radar at the site), b) departure-arrival separation for both VMC and IMC conditions is 2.2 nautical miles, c) probability of violation is 5%. Arriving aircraft are "vectored" by ATC to the final approach fix located 10 miles from the runway threshold. Arrivals follow in-trail after crossing the final approach fix. The airport aircraft mix, runway occupancy times and approach speeds are shown in Figure 3. the IMC separation matrices are shown in Tables 1 and 2.

Figure 3. Airport Arrival and Departure Operational Procedures for Problem 3.

Table 1. Minimum arrival-arrival separations under IMC conditions. Values in are nautical miles. Values Shown Do Not Include Buffers.

		Arrivals-Arrivals			
Minimum Separation Matrix (nm)		Trailing Aircraft (Header Columns)			
Lead (column 1)	Small	Large	B757	Heavy	Superheavy
Small	2.5	2.5	2.5	2.5	2.5
Large	4	3	2.5	2.5	2.5
B757	5	4	3	3	2.5
Heavy	6	5	4	4	4
Superheavy	10	10	10	10	10

Table 2. Minimum departure-departure separations under IMC conditions. Values in are seconds.

a) Calculate the arrival-departure saturation capacity diagram (Pareto diagram) under IMC conditions (show all your work). Because of the shorter runway 36, no superheavies and heavies are allowed to takeoff on runway 36 . Runway 04 is used by all classes of aircraft. In your analysis, assume all aircraft, irrespective of their wake class, accelerate at an average of $2.5 \mathrm{~m} / \mathrm{s}^{2}$ on takeoff roll.
b) Suppose that under new NextGen operations, the in-trail delivery error is reduced to 5 seconds and the common approach path is reduced to 5 nm . Find the benefit to arrival capacity of the airport. Comment on the impact of NextGen to the departure saturation capacity of the airport.

