Assignment 4: Air Transportation Systems Analysis

Solution

Problem 1

Use the new generation Transonic Truss-braced Wing Aircraft (TTBW) file to answer this question (http:// 128.173.204.63/cee5614/cee5614_pub/TBTA_class.m). The TTBW is a NASA proposed aircraft concept reduce fuel burn using a high-aspect ratio wing (see Figure 1).
a) Estimate the aircraft rate of climb after departing Eagle County Regional Airport (EGE) while the aircraft flies at $\mathbf{2 5 0}$ meters above the airport ground level and 180 knots indicated. Assume atmospheric conditions are ISA. Assume the wing flaps are fully retracted and use the regular table lookup function to estimate Cdo provided in the aircraft file. The aircraft departs Denver with a mass of 68,000 kilograms.

EGE airport is located at 1996 meters above mean sea level conditions.
Aircraft state: 180 knots (IAS) and 2,246 meters above mean se a level conditions.
Indicated airspeed $=180$ knots
Altitude $=2245$ meters
Mass of aircraft $=68000$ kilograms
Drag $=26008$ Newtons
Thrust $=138758$ Newtons
Fuel Burn $=18.039 \mathrm{~N} / \mathrm{s}$
Mach Number $=0.303$ dimensionless
TAS $=100.57 \mathrm{~m} / \mathrm{s}$
$R O C=17 \mathrm{~m} / \mathrm{s}$
ROC $=3345.35 \mathrm{ft} / \mathrm{min}$
b) Repeat part(a) if the aircraft suffers an engine failure at 250 meters while traveling at 180 knots indicated airspeed.
Change the value of $n=2$ to $n=1$ in the aircraft file.
Indicated airspeed $=180$ knots
Altitude $=2245$ meters
Mass of aircraft $=68000$ kilograms
Drag $=26008$ Newtons
Thrust = 69379 Newtons
Fuel Burn = $9.019 \mathrm{~N} / \mathrm{s}$
Mach Number $=0.303$ dimensionless
TAS $=100.57 \mathrm{~m} / \mathrm{s}$
ROC $=6.54 \mathrm{~m} / \mathrm{s}$
$\mathrm{ROC}=1286.83 \mathrm{ft} / \mathrm{min}$
c) Can the aircraft fly the MEEKER Standard Instrument Departure (see page 60 of the course notes for Meeker One Departure) and meet the climb gradient required? Current departure is MEEKER three.

The minimum climb gradient to fly the departure is $\mathbf{8 1 5}$ feet per nautical mile. The aircraft climbs at $100.57 \mathrm{~m} / \mathrm{s}$ ($330 \mathrm{ft} / \mathrm{second}$). The climb gradient is:

Assume one engine fails:
TAS $=100.57 \mathrm{~m} / \mathrm{s}$
$\mathrm{ROC}=6.54 \mathrm{~m} / \mathrm{s}$
ROC $=1286.83 \mathrm{ft} / \mathrm{min}$
Climb Gradient $=394.94 \mathrm{ft}$ per nm
The aircraft cannot achieve the climb gradient required by the procedure with one engine failed.
With two engines working:
TAS $=100.57 \mathrm{~m} / \mathrm{s}$
ROC $=17 \mathrm{~m} / \mathrm{s}$
$\mathrm{ROC}=3345.35 \mathrm{ft} / \mathrm{min}$
Climb Gradient $=1026.72 \mathrm{ft}$ per nm
d) Compare the rates of climb obtained in parts (a-b). Comment on the implications of an engine out condition at 250 meters.

The rate of climb with one engine failed is 38% of the ROC with two engines working. The aircraft needs to operate at a lower mass and perhaps adjust the climb speed to satisfy the climb gradient required in the procedure.
e) Use the Unrestricted climb rate Matlab script to estimate the Top of Climb (TOC) for the TTBW aircraft concept if the pilot would like to maintain a 500 feet per minute climb potential at the TOC.

Figure 1.TTBW Rate of Climb Profile. For $152 \mathrm{~m} / \mathrm{min}$ climb rate we can use FL390 as the initial cruise altitude.

The initial TOC can be FL390 to provide the $500 \mathrm{ft} / \mathrm{min}(152 \mathrm{~m} / \mathrm{min})$ climb rate.
f) Find the fuel burn near the TOC if the pilot starts the cruise phase at Mach 0.73.

The aircraft reaches FL390 after burning 1002 kilograms in the climb profile. The TOC mass is 66,998 kilograms.
Indicated airspeed $=257$ knots
Altitude $=11890$ meters
Mass of aircraft $=66998$ kilograms
Drag $=29915$ Newtons
Thrust $=34910$ Newtons
Fuel Burn $=4.538 \mathrm{~N} / \mathrm{s}$
Mach Number $=0.73$ dimensionless

Problem 2

Use the new generation TTBW file provided to answer this question. The TTBW aircraft now operates out of Dubai with a mass of 69,000 kilograms at at ISA +20 deg. C.
a) Run the unrestricted climb Matlab code demonstrated in class for the aircraft in question. Simulate the climb profile for 3600 seconds (one hour) and estimate the time to climb and distance traveled to reach FL 370 (37,000 feet).

Figure 1.TTBW Rate of Climb Profile with ISA +20 deg. C. Conditions.

Figure 2. Climb ISA + 20 deg. C. Conditions. Aircraft Travels 111 nm to Reach FL 370.
b) Using the results obtained in part (a), estimate the fuel burned during the climb to reach FL 370.

Mass at FL370 is 67,831 kilograms. The aircraft burns 1169 kilograms.
c) Estimate the L/D ratio at the Top of Climb (TOC) as the aircraft starts its cruise phase at Mach 0.73 .

Indicated airspeed = 269.5 knots
Altitude $=11280.4878$ meters
Mass of aircraft $=67831$ kilograms
Drag $=31765$ Newtons
Thrust $=38516$ Newtons
Fuel Burn $=5.007 \mathrm{~N} / \mathrm{s}$
Mach Number $=0.73$ dimensionless
TAS $=215.4 \mathrm{~m} / \mathrm{s}$
L/D Ratio $=20.95 \mathrm{dim}$
d) On a hot summer day, the aircraft departs Dubai at ISA+30 deg. C. Run the computer simulation (similar to part a) using the same initial takeoff mass of 69,000 kilograms and estimate the time to climb, distance traveled, and fuel used to reach FL370. Compare the results obtained in parts (a-c) and comment on the effect of temperature on rate of climb and time to climb.

Figure 3. Climb ISA +30 deg. C. Conditions. Aircraft Travels 123 nm to Reach FL 370.

Problem 3

Use the Boeing 787 class file (http://128.173.204.63/cee5614/cee5614_pub/B787_class.m) to answer the following questions
a) Estimate the value of Specific Air Range (SAR) for the aircraft while in cruise at Mach 0.84 and 36,000 feet. The mass is 200,000 kilograms.

Indicated airspeed = 321.3 knots
Altitude $=10975.6098$ meters
Mass of aircraft $=200000$ kilograms
Drag = 113623 Newtons
Thrust $=120306$ Newtons
Fuel Burn $=17.384 \mathrm{~N} / \mathrm{s}$
Mach Number $=0.84$ dimensionless
TAS $=248.03 \mathrm{~m} / \mathrm{s}$
L/D Ratio $=17.27 \mathrm{dim}$
$S A R=0.034 \mathrm{~nm} / \mathrm{lb}$
$S A R=0.14 \mathrm{~km} / \mathrm{kg}$
b) Repeat the process in part(a) after a long flight if the mass is now $175,000 \mathrm{kgs}$. Comment on the effect of aircraft mass on SAR.

Indicated airspeed $=321.3$ knots
Altitude $=10975.6098$ meters

Mass of aircraft $=175000$ kilograms
Drag = 105673 Newtons
Thrust $=120306$ Newtons
Fuel Burn $=16.168$ N/s
Mach Number $=0.84$ dimensionless
TAS $=248.03 \mathrm{~m} / \mathrm{s}$
L/D Ratio = 16.25 dim
$\mathrm{SAR}=0.037 \mathrm{~nm} / \mathrm{lb}$
SAR $=0.151$ km/kg
c) Use the Range equation, to estimate the maximum range for the aircraft if the aircraft reaches the TOC point $(36,000$ feet $)$ at 200,000 kilograms. The aircraft cruises at Mach 0.84. The pilot estimates the aircraft carries 85,000 kilograms of fuel remaining at the TOC point. In the range calculation, assume the range is calculated using the aircraft mass at the mid-point between TOC and TOD. Also, assume that 6300 kilograms of fuel are needed in the descent plus a possible diversion to an alternate airport.

Figure 4. Range Analysis using Breguet Range Equation for Aircraft in Problem 3.

Range $=12,591$ kilometers (6799 nm).
d) Solve the problem in part (c) using a piecewise numerical analysis method (as explained class). Use the range value obtained in part (b) and refine the answer obtained by dividing the range into six segments in the numerical solution. Comment on the obtained in parts (c) and (d).

Using six segments

Cruise Fuel (kg) 81562.0
Cruise Time (minutes) 846.5999

Initial Mass (kg) 200000
Final Mass (kg) 118437.9671
Average Fuel Burn (kg/min) 96.3407
Average SAR (nm/kg) 0.08336

Using 500 segments

Cruise Distance (nm) 6799
Cruise Fuel (kg) 80244.5
Cruise Time (minutes) 846.6
Initial Mass (kg) 200000
Final Mass (kg) 119755.45
Average Fuel Burn (kg/min) 94.78
Average SAR (nm/kg) 0.0847

Problem 4

Read the paper entitled: Development of an Efficient Mach=0.80 Transonic Truss- Braced Wing Aircraft article by Harrison et al. (AIAA year 2020) to get familiarized with the latest design procedures of the TTBW aircraft.
A) Explain the aerodynamic refinements made to the original SUGAR Phase III aircraft in order to improve the cruise speed of the TTBW.
B) What kind of L/D ratios are predicted for the Mach 0.8 TTBW and how they compare to the original SUGAR Phase III aircraft?
C) Wing flutter is a concern in high aspect ration wings. Does the paper addresses flutter margins?

