CEE 5614: Analysis of Air Transportation Systems

Assignment 3: Aircraft Performance Calculations

Solution

Instructor: Trani

Spring 2022

Problem 1

Using the fundamental equation of motion explained in class and the fundamental lift equation (see equations below) explain in three sentences, the following questions:

$$\frac{dV}{dt} = \left(\frac{1}{m}\right)(T - D - F_f - (mg\sin\phi))$$

$$L = \frac{1}{2}\rho V^2 SC_l$$

$$D = \frac{1}{2}\rho V^2 SC_D$$

$$F_f = (mg\cos\phi - L)f_{roll}$$

$$T = f(V, \rho)$$

$$V_{stall} = \sqrt{\frac{2mg}{\rho SC_{lmax}}}$$

a) The effect of airport elevation in takeoff speed.

Airport elevation lowers air density. Using the fundamental lift equation, stall and takeoff speeds increase for the same aircraft mass. Lower density reduces mass flow rate (the amount of air entering the turbofan engine) and hence reduces thrust. Lower thrust produces lower acceleration and hence increases the time to reach takeoff speed. The result is an increase in runway length. The causal effects are non-linear.

b) The effect of airport elevation in aircraft acceleration during takeoff.

Airport elevation lowers air density. Lower density reduces mass flow rate (the amount of air entering the turbofan engine) and hence reduces thrust. Lower thrust produces lower acceleration and hence increases runway length. The causal effects are non-linear.

c) The effect of airport elevation on engine thrust.

Airport elevation lowers air density. Lower density reduces mass flow rate (the amount of air entering the turbofan engine) and hence reduces thrust. The effect is nonlinear because density changes nonlinearly with airport elevation.

d) The effect of runway gradient on aircraft acceleration.

Uphill gradient increases the retarding force to accelerate and aircraft to a takeoff speed. Uphill gradient increases runway length.

e) The effect of aircraft mass in the acceleration during takeoff.

Aircraft mass reduces acceleration on the runway (Newton's second law of motion).

f) The effect of mass and airport elevation on takeoff distance.

Aircraft mass reduces acceleration on the runway and increases the takeoff distance.

Problem 2

A new airline is evaluating two aircraft to operate flights from Washington, Reagan Airport (DCA) to two important southern destinations. The following table shows the aircraft proposed by airline executives to operate from DCA. The critical stage lengths the airline would like to fly with the selected aircraft are: a) DCA-DFW (1,100 nm with detour factor) and b) DCA-MIA (850 nm with detour factor). The critical route is DCA-DFW.

Table 1. Aircraft Considered in the Airline Evaluation.

Aircraft Considered

Boeing 737-8 Max with CFM LEAP-1B28 engines. Aircraft maximum design takeoff weight is 181,000 lb. 162 seats in a two-class layout.

Boeing 737-800 (with winglets) powered by two *CFM56-7B24/-7B26/-7B27 engines at 26,000 LB SLST*)). Aircraft maximum design takeofff weight is 174,200 lb. The aircraft has 160 seats in a two-class layout.

The design airport temperature used should be the average of the daily high temperatures of the hottest month of the year. More detailed information about the airport can be found at the AIRNAV database available on the web at: http://www.airnav.com/airports/ or visit the airport site.

In your analysis use the latest version of the Boeing documents for airport design (http://128.173.204.63/ courses/cee5614/sites_ce_5614.html#Aircraft_Data).

a) Find the average stage length to be flown between each one of the critical OD airport pairs.

The critical stage lengths the airline would like to fly with the selected aircraft are: a) DCA-DFW (**1,100 nm** with detour factor) and b) DCA-MIA (850 nm with detour factor). The critical route is DCA-DFW.

b) Find the runway length needed for each one of the aircraft operating the critical route. Determine if DCA has enough runway length to support these flights.

DCA design temperature is 88.3 degrees (31.3 deg. C.). DCA field elevation is 14 feet. ISA temperature is 58.95 deg. F. (14.97 deg. C.). Temperature offset is 29.35 deg. F. (16.3 deg. C.). **Use the ISA + 15 deg. C. (ISA + 27 deg. F.) runway design charts.**

Table 2. Anal	vsis of Boeina	737-8 Max and	d Boeina 737-800) with Full Pa	assender Load.
	, olo ol Doollig	i oi o max and			looongon Eouun

Parameter	Boeing 737-8 Max	Boeing 737-800
OEW (lbs)	99,000	91,300
MTOGW (lbs)	181,000	174,200
Passenger Seats	162	160
Passenger Load (Ibs)	35,640	35,200
OEW + Payload (lbs)	134,640	126,500
Fuel (lbs)	19,360	31,500
DTW (lbs)	154,000	158,000
Stage length (nm)	1,100	1,100
Fuel per passenger (lbs)	120	197
Runway Length needed (feet)	5,200	6,200
Runway length Available	7,169	7,169
SAR (nm/lb)	0.057	0.035

Figure 1. Boeing 737-800 Information

Figure 2. Boeing 737-8 Max Information

Table 2 shows the analysis for Boeing 737-8 Max and the Boeing 737-800.

c) Estimate the average fuel per passenger assuming a load factor of 0.84 (84% of the seats used) for both routes. Can the airline achieve good fuel savings using the new Boeing 737-8 Max compared to the standard Boeing 737-800?

BRANKE PELEISE

LB

4

CAP

(10) (10)

CROSS ARE CENS

4 .000

(2. G) Ь

10 102.2

10.0

3

Seo.

(A)

Ś

Table 3 shows the analysis for both aircraft using 84% load factor. The airline will save 22% per passenger.

Parameter	Boeing 737-8 Max	Boeing 737-800
OEW (lbs)	99,000	91,300
MTOGW (lbs)	181,000	174,200
Passenger Seats	162	160
Passenger Load (Ibs) at 84%	29,938	29,568
OEW + Payload (Ibs)	128,938	120,868
Fuel (Ibs)	17,562	21,132
DTW (lbs)	146,500	142,000
Stage length (nm)	1,100	1,100
Fuel per passenger (lbs)	108	132
Runway Length needed (feet)	4,700	5,300
Runway length Available	7,169	7,169
SAR (nm/lb)	0.063	0.052

Table 3. Analysis of Boeing 737-8 Max and Boeing 737-800 with 84% Passenger Load.

d) Using the Payload-Range diagram of each aircraft, and using the longest flight of the two routes, find the Specific Air Range (SAR) parameter for each aircraft. Comment on the SAR values calculated.

SAR is the distance traveled for each pound of fuel used.

SAR (Boeing 737-8 Max) at full passenger load = 0.057 nm/lbs

SAR (Boeing 737-8 Max) at full passenger load = 0.035 nm/lbs

e) Considering various factors which aircraft is the best for this airline? Explain.

The Boeing 737-8 Max is probably the best choice. Fuel savings and better runway length performance are two important factors that favor the Boeing 737-8 Max. Interestingly, the Boeing 737-8 Max is more expensive than the Boeing 737-800 (~\$5.5 million).

Problem 3

a) An airline is evaluating future operations out of Salt Lake City International Airport. The airline is evaluating the Boeing 787-8 (with maximum takeoff weight of 502,500 lbs., Rolls-Royce engines, and mixed class seating configuration) and the Boeing 787-9 (with maximum takeoff weight of 560,000 lbs., Rolls-Royce engines, and mixed class seating configuration) to fly from SLC to various European cities including Madrid (MAD) Spain. In this analysis consider the runway length available at SLC (consult airnav webwite). Use the Climate Explorer website (<u>https://crt-climate-explorer.nemac.org/climate_graphs</u>) to find the mean maximum temperature of the hottest month of the year at SLC Airport to use in the analysis. The airline is considering both dual class Boeing 787 configuration.

For the aircraft in question investigate the following:

a) What is the design temperature at SLC for runway analysis? How does it compared to ISA conditions?

ISA + 43 deg. F conditions.

b) Can the aircraft operate the route SLC-MAD (Madrid) with a 90% passenger load? State the numbers to justify your answer.

Both aircraft can operate with 90% passenger load.

c) Can the aircraft operate the route SLC-CDG with a full passenger load?

The Boeing 787-8 cannot operate with 100% passenger load.

The Boeing 787-9 can operate with 100% passenger load.

- d) Find the maximum freight capacity for the SLC-MAD route above the full passenger load. State all your assumptions.
- e) What version of the Boeing 787 is best suited for this airline? Explain.

Figure: Temperature Profile for SLC Airport. 87 deg. Fahrenheit is the design temperature. ISA conditions are 44 deg. F at SLC. Hence use ISA + 43 deg. F conditions.

		ENGINE MAN	UFACTURER	STEP CLIMB AT 200 NORMAL POWER E	FT INCREMENTS	ED		DO NOT USE F	OR DISPATCH
CHARACTERISTICS	GENERAL ELECTRIC ROLLS-RO		ROLLS-ROYCE	TYPICAL MISSION RULES			CONSULT USING AIRLINE FOR SPECIFIC OPERATING PROCEDURE AND OEW PRIOR TO FACILITY DESIGN		
MAX DESIGN	POUNDS	503,500	503,500		380				
TAXI WEIGHT	KILOGRAMS	228,383	228,383	1/0	370				
MAX DESIGN	POUNDS	502,500	502,500	165	360 MAY 7000 DUD WOV	T - 25500018 (141025.45)			
TAKEOFF WEIGHT	KILOGRAMS	227,930	227,930	160	200			A DOS AR	
MAX DESIGN	POUNDS	380,000	380,000	155		$\langle \rangle \rangle$		100 100 MG	New York
LANDING WEIGHT	KILOGRAMS	172,365	172,365		340			188 23	
MAX DESIGN ZERO	POUNDS	355,000	355,000	QV 150	350		15 15	130 1	
FUEL WEIGHT	KILOGRAMS	161,025	161,025	ANG 500 145	E 320	1 / 1	50 110. Q30		
SEATING CAPACITY	ONE CLASS	359 ALL-ECO FAA EXIT LIMI	NOMY SEATS; T = 381 SEATS	14 M30 140	310	48 132 142	$\langle \rangle$		12 Harr
	MIXED CLASS	242 DUAL-CLASS; 2 218 ECONOMY CL	4 BUSINESS CLASS, ASS (SEE SEC 2.4)	135	290	40 (140) (150)		$\langle \rangle \rangle$	And a start of the
MAX CARGO -	CUBIC FEET	4,826	4,826	125	280 300 133		/ /		1/1
LOWER DECK *[1]	CUBIC METERS	136.7	136.7		270	\setminus \setminus \uparrow			\wedge \wedge \wedge \rangle
JSABLE FUEL *[2]	U.S. GALLONS	33,340	33,340	120	260				
	LITERS	126,206	126,206		0 1	2 3 4 RANG	E (1000 NAUTICAL MILE	6 7 ES)	8 9
	POUNDS	223,378	223,378	1					
	KILOGRAMS	101,343	101,343	1					

Figure 3. Payload-Range Diagram for Boeing 787-8. Boeing 787-8 Takeoff Field Length. ISA + 45 deg. F.

Table 4. Boeing 787-8 Analysis. 90% Passenger Load.

Parameter	Values for Boeing 787-8
OEW (lbs)	260,000
Passenger Load (Ibs)	47,916
OEW + Payload (Ibs)	307,916
Fuel (lbs)	112,084
DTW (lbs)	420,000
Stage length (nm)	4,850
Fuel per passenger (lbs)	463
Runway Length needed (feet)	11,000
Runway length Available (feet)	12,000

Figure Payload-Range Diagram for Boeing 787-9. Boeing 787-9 Takeoff Field Length. ISA + 45 deg. F.

Parameter	Values for Boeing 787-9
OEW (lbs)	280,000
Passenger Load (Ibs)	57,420
OEW + Payload (lbs)	337,420
Fuel (Ibs)	117,580
DTW (lbs)	455,000
Stage length (nm)	4,850
Fuel per passenger (lbs)	486
Runway Needed (ft)	9,400
Runway Available (ft)	12,000

Table 6. Boei	ng 787-8 Anal	ysis. 100%	Passenger	Load.
---------------	---------------	------------	-----------	-------

Parameter	Values for Boeing 787-8
OEW (lbs)	260,000
Passenger Load (Ibs)	53,240
OEW + Payload (Ibs)	313,240
Fuel (lbs)	136,760
DTW (lbs)	450,000
Stage length (nm)	4,850
Fuel per passenger (lbs)	565
Runway Length needed (feet)	Limited by Tire Speed Limit
Runway length Available (feet)	12,000

Table 7. Boeing 787-9 Analysis. 100% Passenger Load.

Parameter	Values for Boeing 787-9
OEW (lbs)	280,000
Passenger Load (Ibs)	63,800
OEW + Payload (lbs)	343,800
Fuel (Ibs)	126,200
DTW (lbs)	470,000
Stage length (nm)	4,850
Fuel per passenger (lbs)	521
Runway Needed (ft)	10,000
Runway Available (ft)	12,000

Problem 4

Use the data for the transport aircraft similar to the Boeing 737-800 (http://128.173.204.63/courses/ cee5614/cee5614_pub/Boeing737800Jet_class.m) to answer the following questions.

 a) Calculate total drag produced by the 76,000 kilogram aircraft during a climb profile with an Indicated Airspeed of 250 knots at 3000 meters above mean sea level conditions. Assume atmospheric conditions to be ISA.

True airspeed (knots): 279

Altitude (m) : 3,000

Thrust (N) : 141052 Drag (N) : 41409 Aircraft Mass (kg) : 76,000 Rate of climb (m/s) : 19.2

Rate of climb (ft/min) : 3,771

b) Repeat the process when the aircraft is climbing at 9,000 meters and an indicated airspeed of 280 knots.

True airspeed (knots): 393

Altitude (m) : 9,000

Thrust (N) : 60632

Drag (N) : 41407

Aircraft Mass (kg) : 76,000

Rate of climb (m/s) : 5.2

Rate of climb (ft/min) : 1025

c) Estimate the instantaneous fuel consumption for each flight condition given in parts (a) and (b).

Fuel flow at 3000 meters = 26.8 N/s (2.73 kg/s)

Fuel flow at 9000 meters = 11.5 N/s (1.18 kg/s)