Air Transportation Cost Models

Material Presented in this Section

- Review of aircraft cost models (supply costs in air transportation)
- How supply of service affects the operational economics of the air transportation service
- Apply aircraft performance functions to derive supply relationships
- Cost development models
- Case study: low-boom aircraft

Aircraft Supply Cost Modeling

- Supply function costs are a very important component in the analysis of air transportation systems
- Supply costs are driven by the economics of the aircraft used, the network structure of the service provider (degree of "hub consolidation"), labor costs, etc.
- Two views of the world to derive supply costs in air transportation:
- Fare-based models
- Life-cycle cost models based on actual information about organizational cost components

Taxonomy of Air Transportation Supply Models

Fare-Based Models

- Look into the public record and attempt to capture the average fare paid by users in a given air transportation segment
- No attempt made to evaluate individual costs of providing service
- Fares vary dramatically in NAS (specially for airlinetype operations)
- These models have appeal because they are simple to derive once you have good access to the fare data
- Best sources of data: airline bookings, DOT BTS DB1B data (go to http://transtats.bts.org)

Fare-Based Models

- We provide you with a sample fare-based model developed at Virginia Tech to predict commercial airline costs across NAS
- This work is part of an integrated transportation systems assessment plan to evaluate new NASA concepts like SATS - Small Aircraft Transportation System
- The model has also been used in mode split analysis calibration for the FAA NAS Strategy Simulator (recently)

What is the DB1B Database?

- A 10% sample of tickets sold in the country by carriers
- Only a sample (so be aware of possible errors in low density markets)
- Collected by DOT and published by the Bureau of Transportation Statistics (BTS) at http:// transtats.bts.org
- Three types of records are collected:
- Coupon
- Market
- Ticket

Brief Summaries of Each Record

- Coupon Record
- Operating carrier, origin and destination airports, number of passengers, fare class, coupon type, trip break indicator, gateway indicator, and distance
- Market Record
- Includes such items as passengers, fares, and distances for each directional market
- Ticket Record
- Reporting carrier, prorated market fare, number of market coupons, market miles flown, and carrier change indicators

Sample Coupon Records

coupt	dest	distand	farecla	itinid	mktid	opcar	origin	passer	quarter	seqnum	year
4	ATL	576.0	Y	200011000075	200011856239	DL	BWI	1.00	1	3	2000
4	JAX	270.0	Y	200011000075	200011856239	DL	ATL	1.00	1	4	2000
4	ATL	270.0	X	200011000076	200011856240	DL	JAX	1.00	1	1	2000
4	BWI	576.0	X	200011000076	200011856240	DL	ATL	1.00	1	2	2000
4	ATL	576.0	Y	200011000076	200011856241	DL	BWI	1.00	1	3	2000
4	JAX	270.0	Y	200011000076	200011856241	DL	ATL	1.00	1	4	2000
4	ATL	270.0	X	200011000077	200011856242	DL	JAX	1.00	1	1	2000
4	BWI	576.0	X	200011000077	200011856242	DL	ATL	1.00	1	2	2000
4	ATL	576.0	Y	200011000077	200011856243	DL	BWI	1.00	1	3	2000
4	JAX	270.0	Y	200011000077	200011856243	DL	ATL	1.00	1	4	2000
4	ATL	270.0	Y	200011000078	200011856244	DL	JAX	1.00	1	1	2000
4	BWI	576.0	Y	200011000078	200011856244	DL	ATL	1.00	1	2	2000
4	ATL	576.0	X	200011000078	200011856245	DL	BWI	1.00	1	3	2000
4	JAX	270.0	X	200011000078	200011856245	DL	ATL	1.00	1	4	2000
4	ATL	270.0	Y	200011000079	200011856246	DL	JAX	1.00	1	1	2000
4	BWl	576.0	Y	200011000079	200011856246	DL	ATL	1.00	1	2	2000
4	ATL	576.0	X	200011000079	200011856247	DL	BWI	1.00	1	3	2000
4	JAX	270.0	X	200011000079	200011856247	DL	ATL	1.00	1	4	2000
2	LAS	1055	X	20001100008	20001185729.0	AA	DFW	1.00	1	1	2000
2	DFW	1055	X	20001100008	20001185730.0	AA	LAS	1.00	1	2	2000
5	ATL	270.0	X	200011000080	200011856248	DL	JAX	1.00	1	1	2000
5	BWI	576.0	X	200011000080	200011856248	DL	ATL	1.00	1	2	2000
5	Cos	1504	N	200011000080	200011856248	--	BWI	1.00	1	3	2000

Sample Market Records

	dest	itinid	mkttare	mktid	mktmile	origin	pass	quarter	ar
DL	JAX	200011000072	172.00	200011856233	846.00	BWI	1.00	1	2000
DL	BWI	200011000073	194.00	2000118562	845	IAX	200		2000
DL	JAX	200011000073	194.00	${ }^{20000116}$ Fare Information	Fare Information				2000
DL	BWI	200011000074	197.00						2000
DL	JAX	200011000074	197.00	200011856237	846.00	BWI	1.00		2000
DL	BWI	200011000075	212.00	200011856238	846.00	JAX	1.00		2000
DL	JAX	200011000075	212.00	200011856239	846.00	BWI	1.00	1	2000
AA	DFW	2000199955.0	275.00	20001185624	1055.0	LAS	1.00	1	2000
DL	BWI	200011000076	218.00	200011856240	846.00	JAX	1.00		2000
DL	JAX	200011000076	218.00	200011856241	846.00	BWI	1.00	1	2000
DL	BWI	200011000077	257.00	200011856242	846.00	JAX	1.00	1	200
DL	JAX	200011000077	257.00	200011856243	846.00	BWI	1.00	1	2000
DL	BWI	200011000078	245.00	200011856244	846.00	JAX	1.00		2000
DL	JAX	200011000078	245.00	200011856245	846.00	BWI	1.00	1	2000
DL	EWI	200011000079	289.00	200011856246	846.00	JAX	1.00	1	20
DL	JAX	200011000079	289.00	200011856247	846.00	BWI	1.00	1	2000
DL	Cos	200011000080	1.00	200011856248	846.00	JAX	1.00	1	2000
DL	JAX	200011000080	1.00	200011856249	1455.0	Cos	1.00	1	2000
AA	LAS	2000199956.0	276.00	20001185625	1055.0	DFW	1.00	1	2000
DL	BWI	200011000081	54.00	200011856250	846.00	JAX	1.00	1	2000

Summary of Information Contained in DB1B Records

		TABLE TYP	
FIELD	COUPON	MARKET	TICKET
Itinerary ID	Y	Y	Y
Market ID	Y	Y	
Year	Y	Y	Y
Quarter	Y	Y	Y
Sequence number	Y		
Coupons	Y	Y	Y
No of Passengers	Y	Y	Y
Fare Class	Y		
Market fare		Y	Y
Distance	Y	Y	Y
Origin	Y	Y	Y
Destination	Y	Y	
Carrier	Y	Y	Y
Itinerary yield			Y

Sample Information Provided by Combining DB1B Records

Sample Procedure to Obtain a Fare-based Model

Requires a good data mining software (to handle large records such as SAS, SPSS, or even Matlab)

Fare-Based Models

RESULTS FROM DB1B

Sample Fares Extracted from DB1B

NEXTOR - National Center of Excellence for Aviation Research

First and Business Class Fares in NAS

Virginia Tech Fare-Based Models (Commercial Airline Service in the year 2000)

Coach (general model) For distance >50 miles
fare $=$ distance $/\left(-0.14+0.039{ }^{*}\right.$ distance $\left.{ }^{0.654}\right)$
R -square $=0.76$
Coach (above 100 statute miles) For distance > 100 miles
fare $=$ distance $/\left(-0.26+0.027{ }^{*}\right.$ distance $\left.{ }^{0.727}\right)$
R-square $=0.78$
Business (general model) For distance >50 miles
fare $=$ distance $/\left(-1.599+0.617 *\right.$ distance $\left.{ }^{0.262}\right)$
R-square $=0.46$
Business (above 100 statute miles) For distance > 100 miles
fare $=$ distance $/\left(-0.67+0.241{ }^{*}\right.$ distance $\left.{ }^{0.3508}\right)$
R-square $=0.55$
Coach fares (54,300 OD pairs), Business and First Class fares (13,200 OD pairs) Source: DOT DB1B year 2000 data (all 10\% samples)

Fare Based Models (Graphical)

Models are restricted to distances above $\mathbf{1 0 0}$ miles Source: DB1B data (12 million records, year 2000)

Sample Airline Fuel Cost Function

NEXTOR - National Center of Excellence for Aviation Research

Life Cycle Cost (LCC) Models

- An attempt to derive specific cost components of the service
- Each cost category is modeled as a state variable (an accumulator over time) with cost activities modeled over a long period of time (life cycle)
- Logistic support and maintenance actions are considered in the analysis

Sample General Aviation (GA) LCC Model

- Life-cycle GA models developed for NASA Langley Research Center
- Two types of models:
- Generic model to predict cost for any size and weight given an engine technology
- Specific GA aircraft models

GA technologies considered:

- $\mathrm{SE}=$ single engine
- ME = multi-engine piston and turboprop
- Jet $=$ jet engine aircraft

General Costs Categories Considered in the Model

- Variable costs (fuel, maintenance hrs., parts, miscellaneous)
- Fixed costs (hull insurance, liability, software, miscellaneous)
- Periodic costs (engine overhaul, paint, interiors, flight deck upgrades)
- Personnel costs (captain and first officer - if applicable)
- Training costs (crew training and recurrent training, maintenance training)

General Costs Categories Considered in the Model (continuation)

- Facilities costs (hangar space, office lease, miscellaneous)
- Depreciation cost (amortization of aircraft value)

Data Sources: Business and Commercial Aviation and ARG/US data (years 2001-2003)

Generic LCC GA Cost Model

- Derives costs from fundamental relationships such aircraft design and operational parameters

Sample Generic GA Cost Model

Assumption: $\mathbf{6 0 0}$ hours of operation per year

Source of aircraft prices: Business and Commercial Aviation (2001)

Sample Results of the Generic Aircraft Model

Aircraft Specific Cost Models

- Employed when one individual aircraft or technology is to be evaluated in great detail
- Considers actual costs (if available) or scaled costs from other aircraft if the technology is not mature
- An example model provided in the following pages was developed to help NASA Langley establish baseline costs for new generation of very light business jets like the Eclipse 500 and Safire

Aircraft Specific Cost Model (Eclipse 500)

Annual Yarisble Cost	$144,948.47$
Annual Amortization C... $44,411.0$ 	

Annual Fixed Costs	$42,792.0$
Annual Hangar and Offi... $49,800.0$	

Annual Periodic Costs	$43,666.7$		
Annual Personnel Costs $68,750.0$ Annual Traning Cost $10,500.00$ Total Annual Cost Annusl Costs of Opera...		$.$	$404,868.1$
:---			

Percent Ressle Yalue

Modeling Partial Causal Diagram

Vehicle Performance Functions

Mission Profile 1
Stage length $=800 \mathrm{~nm}$
Fuel $=1082 \mathrm{lb}$
Travel time $=2.40$ hours

NEXTOR - National Center of Excellence for Aviation Research

Sample Aircraft Specific Model

1 Professional Pilot, \$2.5/gallon fuel cost, 70\% load factor Eclipse 500 with Pratt and Whitney 610F Engines

Summary of Costs of Air Transportation Supply

- Corporate Jet aircraft
- 50-350 cents ASM
- Regional turboprop aircraft (EMB-120, ATR-72)
- 9.2 to 11.5 cents per ASM
- Regional jets (Bombardier CRJ-200, Embraer 145)
- 9.5 to14.0 cents per ASM
- Transport aircraft (Boeing 737-800, Airbus A321)
- 6.1 to 8.2 cents per ASM

Sample Aircraft Fuel Efficiency in Cruise

Passenger-Miles per Gallon
All Seats Filled

Remarks

- Transportation supply functions are necessary to understand the dynamic relationships between supply and demand forces in air transportation
- Without adequate supply-based aircraft models, the analysis of NAS impact metrics such as delays, capacity and costs to users is not possible
- Fuel costs is just one component of the total LCC of operating aircraft. Other costs components need to be specified in cost-benefit studies
- We advise the use of LCC cost models in NAS costbenefit analysis

Where Can I get Information on Airline Operating Costs?

- DOT

Form 4I, P52
Schedule (available at BTS
web site)

DOT Form 41 P52 Schedule - Aircraft Operating Cost			
PILOT_FLY_OPS	3434.00	AIRCRAFT_CONFIG	1
OTH_FLT_FLY_OPS		AIRCRAFT_GROUP	6
TRAIN_FLY_OPS		AIRCRAFT_TYPE	612
PERS_EXP_FLY_OPS	226.00	AIrLine_id	19704
PRO_FLY_OPS		unique_carrier	CO
INTERCHG_FLY_OPS		UNIQUE_CARRIER_NAME	Continental Air Lines Inc.
FUEL_FLY_OPS	10107.00	carrier	CO
OIL_FLY_OPS		CARRIER_NAME	Continental Air Lines Inc.
RENTAL_FLY_OPS	2977.00	UNIQUE_CARRIER_ENTITY	10220
OTHER_FLY_OPS		REGIon	L
INS_FLY_OPS	49.00	CARRIER_GROUP_NEW	3
BENEFITS_FLY_OPS	1116.00	CARRIER_GROUP	3
INCIDENT_FLY_OPS		year	2004
PAY_TAX_FLY_OPS	200.00	Quarter	4
OTH_TAX_FLY_OPS	343.00	f64	
OTHER_EXP_FLY_OPS			
TOT_FLY_OPS	18452.00	AC_TYPEID	
AIRFRAME_LABOR	563.00	AC_GROUP	6
ENGINE_LABOR	-43.00	SSD_NAME	BOEING 737-700/LR
AIRFRAME_REPAIR	370.00	MANUFACTURER	BOEING
ENGINE_REPAIRS	977.00	LONG_NAME	BOEING 737-700/700LR
INTERCHG_CHARG		Average_OperatingCost_per_Hour	2,550.11
AIRFRAME_MATERIALS	137.00	Sum_of_Air_Cost	625,322,125
ENGINE_MATERIALS	-8.00	Sum_ot_Air_Hours	88,242
AIRFRAME_ALLOW		Expected_Value_ot_Costper_Hour	7,086
AIRFRAME_OVERHAULS			
ENGINE_ALLOW		OTH_FLT_EQUIP_DEP_GRP_I	1739.00
engine_overhauls		FLT_EQUIP_A_EXP	
TOT_DIR_MAINT	1996.00	FLY_OPS_EXP_I_A	
AP_Mt_BURDEN	1082.00	TOT_AIR_OP_EXPENSES	22288.00
TOT_FLT_MAINT_MEMO	3078.00	DEV_N_PREOP_EXP	
NET_OBSOL_PARTS	19.00	OTH_INTANGIBLES	
AIRFRAME_DEP	339.00	EQUIP_N_HANGAR_DEP	
engine_dep	155.00	G_PROP_DEP	
PARTS_DEP	30.00	CAP_LEASES_DEP	
ENG_PARTS_DEP	14.00	TOTAL_AIR_HOURS	8.74
OTH_FLT_EQUIP_DEP	201.00	AIR_DAYS_ASSIGN	0.99
		AIR_FUELS_ISSUED	7269.00

Example Information

T100 Aircraft Name	T100 Aircraft Code	Hourly_Operating_Cost
Airbus Industrie A300-600/R/Cf/Rcf	691	10,797
Airbus Industrie A-318	644	3,829
Airbus Industrie A320-100/200	694	4,362
Airbus Industrie A319	698	4,039
Airbus Industrie A320-100/200	694	4,362
Airbus Industrie A321	699	4,572
Aerospatiale/Aeritalia Atr-72	442	2,946
Beechcraft Super King Air	458	1,275
Beech 1900 A/B/C/D	405	1,375
Pilatus Britten-Norman Bn2/A Islander	131	380
Mcdonnell Douglas Dc-9-50	650	4,695
Mcdonnell Douglas Dc9 Super 80/Md81/2/3/7/8	655	5,441
Mcdonnell Douglas Dc9 Super 80/Md81/2/3/7/8	655	5,441
Mcdonnell Douglas Dc9 Super 80/Md81/2/3/7/8	655	5,441
Mcdonnell Douglas Dc9 Super 80/Md81/2/3/7/8	655	5,441
Mcdonnell Douglas Dc9 Super 80/Md81/2/3/7/8	655	5,441
Mcdonnell Douglas Md-90	656	4,415
Boeing 717-200	608	4,475

Tl00 Form 4I Operating Costs (20I2)

Commercial Aircraft List Prices (2013)

Aircraft	List Price (\$M)	Max. Takeoff Mass (kg)		\$ per kg
737-700	76		77,500	980.65
737-800	90.5	106.1 in 2019	79,020	1,145.28
737-900ER	96.1		85,000	1,130.59
737 MAX 7	85.1		72,303	1,176.99
737 MAX 8	103.7	121.6 in 2019	82,200	1,261.56
737 MAX 9	109.9		88,300	1,244.62
747-8	356.9		447,600	797.36
747-8 Freighter	357.5	419.2 in 2019	447,600	798.70
767-300ER	185.8		158,760	1,170.32
767-300 Freighter	188	220.3 in 2019	158,760	1,184.18

Commercial Aircraft List Prices (2013)

Aircraft	List Price (\$M)	Max. Takeoff Mass (kg)		\$ per kg
777-300ER	320.2	375.1 in 2019	351,540	910.85
777 Freighter	300.5		347,458	864.85
787-8	211.8		228,000	928.95
787-9	249.5	292.5 in 2019	248,000	1,006.05
787-10	288.7	338.4 in 2019	251,000	1,150.20
A318	70.1		68,001	1,030.87
A319	83.6		75,501	1,107.27
A320	91.5	104.6 in 2019	77,001	1,188.30
A321	107.3	122.5 in 2019	93,002	1,153.74
A319neo	92		76,000	1,210.53

Commercial Aircraft List Prices (2013)

Aircraft	List Price (\$M)	Max. Takeoff Mass (kg)	\$ per kg	
A330-200	216.1	233,004	927.45	
A330-200F	219.1	233,000	940.34	
A330-300	239.4	218,000	$1,098.17$	
A350-800	254.3		245,000	$1,037.96$
A350-900	287.7	317.4 in 2018	265,000	$1,085.66$
A350-1000	332.1	366.3 in 2018	295,000	$1,125.76$
A380-800	403.9	445.6 in 2018	573,000	704.89
CRJ-700 Nextgen	37		34,100	$1,085.04$
CRJ-900 Nextgen	46.2		37,420	$1,234.63$
E175	32		37,500	853.33
E190	44		47,800	920.50
E195	47	48,750	964.10	

Commercial Aircraft Price vs. MTOW

Commercial Aircraft Lease Rates (202I)

source:AirFinance Journal Magazine July-August 202I, page 45

Commercial Aircraft Lease Rates (202I)

source:AirFinance Journal Magazine July-August 2021, page 45

Aircraft Development Cost Model

Goal: To Estimate of the Unit Cost of the Developing Aircraft

Aircraft Cost Analysis Workflow

Aircraft design process considers:

- Aircraft range
- Payload
- Runway field length
- Wing loading
- Approach speed
- Mach number
- Aircraft size for airport compatibility

Aircraft Cost Development Model

- Nicolai and Raymer's cost categories
- Airframe engineering
- Development and support
- Flight test
- Engines
- Avionics
- Manufacturing labor
- Material and equipment
- Tooling
- Quality control

Example of cost equations

$E=k_{1} W^{c_{1}} S^{c_{2}} Q^{c_{3}}$
$E=$ Cumulative engineering hours (hrs)
$W=$ aircraft empty weight in pounds
$S=$ aircraft maximum speed (knots) at best altitude
$k_{1}, c_{1}, c_{2}, c_{3}$ are calibration constants

- Flight test operations
- Test facilities
- Model uses L. Nicolai's cost relationships adapted from the DAPCA IV model
- Adaptations made to engine and avionics cost
- Learning curves are different for different activities in the aircraft development cycle

Sources of model equations:
Nicolai, L. and Carichner, G., Fundamentals of Aircraft and Airship Design, American Institute of Aeronautics and Astronautics, 2010
Raymer, D.P., Aircraft Design: A Conceptual Approach, American Institute of Aeronautics and Astronautics, 2018

CEE 5614

Additions to Cost Models

Dr.Antonio A.Trani Professor
 Civil and Environmental Engineering

Spring 2023

A Simple Aircraft Development Cost Model

- Two Matlab scripts to estimate the unit cost of aircraft given four key parameters:
- Operating empty weight (lbs.)
- Aircraft maximum speed (knots)
- Aircraft engine thrust (lbs.)
- Quantity of aircraft to be produced
- Uses an adaptation of the RAND DAPCA IV model (Nicolai and Carichner)

Files to estimate the unit cost of an aircraft given: producton quantity, speed, empty weight and engine thrust. The function below estimates engineering hourly rates for production, research and development and flight testing.
http://I28.I73.204.63/cee56|4/matlab_files_cee56|4.html

Example:Aircraft Development Cost Model

- Estimate the unit cost (in \$2020) for an aircraft with the following parameters:
- Operating empty weight $=370,000 \mathrm{lbs}$.
- Aircraft maximum speed $=516$ knots
- Aircraft engine thrust $=1 \mid 5,000 \mathrm{lbs}$ per engine
- Quantity of aircraft to be produced $=250-700$

16	clear close all clc	
17		
18		
19		
20	\% Enter the key variables (data shown is similar to a large twin engine commercial aircraft lif	
21	Qproduction $\quad=250: 10: 700$;	\% unites produced over the life cycle
22	MaxSpeed_knots = 516;	\% knots - maximum speed at cruise altitude
23	operating_empty_weight_lb $=370000$;	\% Pounds
24	thrust_surrogate_lb = 115000;	\% pounds per engine

Assume profit margin is I.I5 (I5\%)

Example:Aircraft Development Cost Model

Functional Form of Cost-Estimating Relationships (CERs)

- Empty weight (equations in original RAND report use AMPR - American Manufacturer Planning Report) (W) in pounds
- Nicolai adapted the equations to introduce W as the aircraft empty weight
- Maximum speed at best altitude (S) in knots
- Aircraft quantity produced (Q)
- Hourly rates are estimated using US Dept. of Labor data and includes:
- direct labor
- administrative cost
- overhead
- miscellaneous

Activity	Hourly Rate (\$2020)	Hourly Rate (\$1998)
Engineering	145.5	88.8
Tooling	157.7	94.2
Quality Control	140.0	82.8
Manufacturing	126.3	75.4

Source: Nicolai - Year 1998 is the baseline year of equations

Application to a 60-Seat Low Boom SST Aircraft

Source: K. Geiselhart, W. Li, and I. Ordaz, NASA Langley Research Center

Aircraft Unit Cost Predicted for 60-Seat, Low-Boom Program

- Assumes 15\% profit margin
- Aircraft quantity produced (Q = 100 to 750 aircraft)

60-Seat, Low-Boom Program Costs (\$2020)

- Aircraft quantity produced (Q = 500 aircraft)

Low Boom Supersonic 40-Passenger Jet Commercial Operation Model Assumptions

- Aircraft cost 227 million dollars per aircraft *
- Aircraft seats = 60
- Fuel cost = $\$ 2.50$ per gallon (airline cost)
- Baseline aircraft utilization - 3,500 hours annually
- Assume fly supersonic at Mach 1.6 overland (Mach 1.8 over water)
- Overhaul cost $=2.72$ million per engine
- Overhaul interval = 5,000 hours
- Maintenance hours per flight hour = 4.0
- Pilot salaries $=\$ 180,000$ per pilot ($+30 \%$ benefits)
- Crew : Two pilots and two cabin crew
- Load factor = 75\%
- 10% adjustment cost for airline administrative costs
- Fuel burn scaling factor = 1.4 (compared to 40 -seat low Boom aircraft)
* Using Model 2 aircraft development cost equations

Low Boom 60 Supersonic Aircraft

- Assumptions:
- \$227 million dollar/ aircraft
- 1.4 fuel scaling factor compared to optimized 40-seat low boom
- 85\% load factor (U.S. Continental)
- $\$ 2.72$ million in overhaul cost (per engine)

60 Seat Low Boom SST Cost per Passenger Mile: Typical Short Missions 85\% Domestic Routes Load Factor

Cost Equations Used to Model Aircraft Development Cost

Adapted from Nicolai, L. and Carichner, G., Fundamentals of Aircraft and Airship Design, American Institute of Aeronautics and Astronautics, 2010

Example of the Aircraft Development Cost Equations

```
% Airframe engineering cost
% Calculate the engineering hours
EHours_DTE = 4.86 * Wempty_lb .^0.777 .* MaxSpeed_knots .^ 0.894 .* Qdevelopment .^ 0.163;
EHours_Total = 4.86 * Wempty_lb .^0.777 .* MaxSpeed_knots .^ 0.894 .* Qtotal.^ 0.163;
EHours_Production = EHours_Total - EHours_DTE ;
% Estimate the hourly rates for all four activities (cost)
[hourlyRateTooling,hourlyRateEngineering,hourlyRateManufacturing,hourlyRateQC] = calculateHourlyRates(yearOfAnalysis);
EngineeringDTE_Cost = EHours_DTE * hourlyRateEngineering;
EngineeringProduction_Cost = EHours_Total * hourlyRateEngineering;
Engineering_DTE_Cost = EHours_Production + EngineeringProduction_Cost;
% Development support cost
DevelopmentCost = 66 * Wempty_lb .^0.63 .* MaxSpeed_knots .^ 1.3; % in 1998 dollars
% Flight test and operations
FlightTestCost = 1852 * Wempty_lb .^0.325 .* MaxSpeed_knots .^ 0.822 .* Qdevelopment .^ 1.21;
```

Adapted from Nicolai, L. and Carichner, G., Fundamentals of Aircraft and Airship Design, American Institute of Aeronautics and Astronautics, 2010

