

1 1 2 W X . 1-1.

Runway Exit Design Tool (REDIM 3 Model)

Example Computer Model that Uses Monte Carlo Simulation

A. Trani, N. Hinze, N. Mirmohammadsadeghi, H. Swingle September 21, 2020

1 1 11 man 1 Line

Acknowledgments

- Project supported by the Federal Aviation Administration (FAA)
- FAA Project Technical Monitors: Kent Duffy and Lauren Vitagliano
- Project of the National Center of Excellence for Aviation Operations Research (NEXTOR 2)
- Special thanks to:
- Tom Tessitore (FAA)
- Chicago Department of Aviation (Ginger Evans)
- Charlotte-Douglas International Airport (Jack Christine)
- Metropolitan Washington Airports Authority (Jennifer Dermody)

Project Outcomes

- Landing Events Database containing 12 million landing records from ASDE-X data (all landings at 37 US airport during 2015 and 2016)
 - Stand-alone product (client software)
- Development of tabular and graphical data on runway exit utilization at 37 airports
- Updated Runway Exit Design Tool (REDIM 3 model)
 - Windows-based computer model for evaluating the best location of runway exits (stand-alone software)
 - Considers observed aircraft landing performance and runway exit probabilities

Runway Exit Design Tool

Runway Exit Design Tool (REDIM 3 model)

🖶 REDIM - [REDIM]

🖳 File Window Help

REDIM

Version 3.0.0

Virginia Tech - Air Transportation Systems Lab

Dr. Antonio Trani (Team Leader) Nicolas Hinze (Team Co-Leader) Navid Mirmohammadsadeghi Mani Bhargava Reddy Bollempalli Mihir Rimjha Arman Izadi

FAA - Project Sponsors

Kent Duffy Lauren Vitagliano

FAA Airports Planning and Environmental Division (APP-400) 6 FAA William J. Hughes Technical Center

The Runway Exit Design Tool can be downloaded at:

https://www.atsl.cee.vt.edu/products/redim.html

REDIM is a computer model developed to locate and design high-speed runway exits at airports. The model uses kinematic equations to characterize the aircraft landing dynamics and a polynomial-time dynamic programming algorithm to find the optimal locations of the high-speed exits. The objective of the optimization algorithm is to minimize the weighted average runway occupancy time (ROT) of an aircraft mix selected by the user. A database of aircraft characteristics for four terminal Aircraft Approach Categories (AAC) has been included in the model to facilitate its use in a large variety of airport environments and conditions. The database file relieves the user's data-input burden, specially when the aircraft mix consists of many different types of aircraft. The program is developed to be used as a design and a planning instrument by engineers. Hence, considerable effort has been devoted to user interface such as menu system, interactive data editing, and graphical and tabular outputs.

Download REDIM 3

- REDIM 3.0.1 Windows Installer
- User Manual

Download Landing Events Database

- Landing Events Database 1.2.2 Windows Installer
- <u>User Manual</u>

Download REDIM 2

<u>REDIM 2.1</u>

Runway Exit Design Tool Objectives

- Predict runway occupancy times at any airport given a fleet mix, runway length, runway exits and airport environmental conditions
- Help airport designers locate new runway exits to reduce runway occupancy time

General Information About the Model

- Model has three analysis modules:
 - a) Evaluation of an existing runway
 - b) Improvements to an existing runway
 - c) Design optimal locations for a new runway

- Stand-alone Windows
 application
- Requires ~1.8 Gb of hard disk space
- New runway clustering
- Improvements to landing roll profile calculations

Model predicts the weighted average Runway Occupancy Time (ROT)

Runway Exit Design Tool Outputs

Analysis	Purpose	Outputs Produced
Aircraft Mix	Provides an overview of aircraft fleet mix	Percent of aircraft types simulated in the analysis
Runway Occupancy	Provides three values of runway occupancy	1.Average ROT (in seconds) by runway exit and aircraft (table format)
Time	time measured at two locations:	2. Average ROT (in seconds) by runway exit and aircraft (graphical
	1.Fuselage out	format)
	2.At hold bar	3. Weighted average ROT for the complete aircraft mix using the runway
		4. Standard deviation of ROT for the complete fleet mix
		5. Individual landing roll times for every aircraft simulated by the model (~50,000 landings per aircraft)
Runway Exit Utilization	Provides information about aircraft assigned to	1. Percent of individual aircraft assigned to each runway exit
	each exit	2. Individual ROT by aircraft and runway exit
Aircraft Landing Performance	Provides individual landing event information (REDIM uses a Monte Carlo Simulation	1. Landing roll distributions (CDF and PDF) by runway condition (wet or dry) in table format
	Process)	2. Landing roll distributions (CDF and PDF) by runway condition (wet or dry) in graphical form
		3. Landing roll distances and times by aircraft and runway pavement condition (wet or dry)
		a) Air distance and air time (time to nose gear touchdown)
		b) Nominal braking distance and time
		c) Extra roll distance and time
		d) Turnoff distance and time

REDIM 3 Aircraft Database

- The model contains data for 298 aircraft
 - 134 turbofan aircraft
 - 105 piston aircraft
 - 59 turboprop aircraft

🖳 REDIM - FAA AC Runs - [Aircraft Database]								17		
🛃 File Aircraft Database Window He	elp									
 Design a New Runway Improve an Existing Runway Evaluate an Existing Runway 	Aircr	aft Design Group	(ADG): I -						AC	OG I Aircraft
··· Create New Folder ⊕·· AAC A Runs		Aircraft ID	Aircraft Name	Engine Type	Aircraft Design Group	Aircraft Approach Category	Nose Gear to Main Gear (m)	Nose Gear to Tail (m)	Wing Tip Radius (m)	Full Length (m)
AAC C Runs	Þ	AA1	Grumman American AA1	Piston	1	A	1.48	5.14	3.78	5.87
		AA5	Grumman American AA5	Piston	1	A	1.66	5.65	4.92	6.71
		AC11	Rockwell Commander 112	Piston	1	A	2.15	6.65	5	7.63
		AC50	Aero Commander 500	Piston	I	A	4.27	10.95	7.49	11.2
		AC90	Turbo Commander 690	Turboprop	- T	В	5.1	12.89	7.16	13.5
		AEST	Piper Aerostar	Piston	T	В	3.43	8.91	5.2	10.6
		B36T	Beechcraft Bonanza 36	Piston	1	A	3.19	6.99	5.89	8.5
		BE10	Beechcraft B100 King Air	Turboprop	I	В	4.43	11.67	7.02	12.2
		BE23	Beechcraft 23 Musketeer	Piston	- I	A	1.89	7.12	5.02	8.2
		BE24	Beechcraft 24 Sierra	Piston	1	A	1.96	6.85	5.04	7.9
		BE33	Beechcraft F33 Bonanza	Piston	I	A	2.24	7.19	5.17	7.7
		BE35	Beechcraft V35 Bonanza	Piston	I	A	2.2	7.87	5.76	8.6
		BE36	Beechcraft 36 Bonanza	Piston	1	A	2.47	7.63	5.18	8.1
		BE40	Beechcraft 400 Hawker	Jet	1	В	5.88	13.39	6.86	14.8
		BE50	Beechcraft 50 Twin Bonanza	Piston	I	A	1.14	8.18	7.1	9.6
		BE55	Beechcraft 55 Baron	Piston	1	В	2.2	7.87	5.76	8.6

UirginiaTech

REDIM 3 Menu Structure

UirginiaTech

Interface and Panels in the Runway Exit Design Model

VirginiaTech

results

Invent the Future

VirginiaTech Invent the Future

Navigation/Project Panel Hierarchy

13

Runway Exit Model Landing Roll Profile Phases Modeled

' invent the Future

Runway Clusters in REDIM 3

	Runway L	ength (ft)	Number Of Runways
Cluster #	Min	Мах	
14	2555	2890	4
19	3796	4385	10
5	4588	4894	8
11	4989	5515	16
17	5709	6019	6
10	6486	6570	6
7	6806	7236	26
16	7479	7607	12
1	7657	7849	10
9	7946	8197	18
3	8375	8710	30
13	8907	9032	28
8	9190	9503	22
20	9691	10038	20
6	10277	10768	Runway clusters
18	10950	11145	influence the
15	11377	11553	
4	11863	12293	landing roll behavio
2	12962	13436	10
12	16020	16020	2
Total			292

Model Uses Individual Aircraft Data

VirginiaTech

Runway Cluster Affects Landing Roll Profile Mean Deceleration Rates for Narrow Body Aircraft

Runway Cluster Effect on Nose Gear Touchdown Locations (Narrow Body Aircraft)

VirginiaTech

Invent the Future

Runway Exit Clusters and Geometry

- Three parameters define the **runway exit cluster**:
 - Radius
 - Path length to hold bar
 - Exit angle

Each runway exit cluster has a distinct aircraft speed behavior

Invent the Future

Runway Exit Clusters in REDIM 3

	Angle (d	leg)	Radius	s (ft)	Path Length	n (ft)	Number Of Exits	Type of Runway
Cluster #	Min	Max	Min	Max	Min	Max		Exit
7	50	76	150	590	426	696	55	Intermediate angle, midsize path length
4	25	53	150	600	494	708	59	Acute angle, modest radius, midsize path length
16	30	70	400	900	966	1158	58	Intermediate angle, long path length
17	21	61	300	900	715	956	28	Acute angle, midsize radius, long path length
5	23	53	500	1000	1130	1546	13	Acute angle, midsize radius, long path length
13	28	65	675	1400	584	872	66	Acute angle, long radius, midsize path length
12	30	52	1200	1503	761	1108	37	Acute angle, midsize radius, long path length
2	30	57	1800	1800	677	1043	96	Acute angle, long radius, midsize path length
6	20	30	1400	1800	1233	1684	63	Acute angle, long radius, long path length
18	20	35	1800	1800	1047	1224	95	Acute angle, long radius, long path
		Moo	del uses :	20 runw	ay exit clu	usters	to diffe	rentiate

runway exit characteristics

VirginiaTech

Effect of Runway Exit Cluster on Exit Speed

	Angle (de	eg)	Radius (ft)		Path Length (ft)		Number Of Exits	Type of Runway
Cluster #	Min	Max	Min	Max	Min	Max		Exit
2	30	57	1800	1800	677	1043	96	Acute angle, long radius, midsize path length
6	20	30	1400	1800	1233	1684	63	Acute angle, long radius, long path length
18	20	35	1800	1800	1047	1224	95	Acute angle, long radius, long path length

REDIM 3 Output (Tabular Form)

AC C Runs AC D Runs 9000ft	Landing Number	Wet Conditions	Exit	Air Distance (ft)	Braking Distance (ft)	Extra Roll Distance (ft)	Turnoff Distance (ft)	Total Distance (ft)
AC_B_Runs	▶ 1		A	2,447	2,154	1,452	258	6,311
dividual_Actt_Runs	2		E-22	2,001	1,963	737	259	4,961
Jinway 13_evaluation	3		E-22	2,000	1,825	877	257	4,958
unway 13_DCA	4		A	2,426	2,596	1,031	260	6,313
	5		A	1,846	2,234	1,973	258	6,311
- Bunway 19	6		Last	2,504	3,216	1,130	258	7,108
	7		A	2,366	2,087	1,600	259	6,312
	8		A	1,999	2,341	1,713	259	6,312
- Runway Occupancy Tim	9		E-22	2,624	1,506	572	259	4,960
Tables	10		F_L	2,049	1,655	716	259	4,678
Plots	11		A	2,191	2,153	1,709	258	6,311
🗄 Runway Exit Aircraft Assi	12		A	2,159	2,010	1,884	259	6,312
Ending Components Dis	13		A	2,247	1,894	1,912	259	6,312
□ Landing Distances and	14		E-22	2,054	1,920	727	260	4,961
···· Tables	15	Yes	A	2,232	1,986	1,835	259	6,316
Plots	16		A	2,141	2,195	1,717	260	6,313
Edit Runway	17		FL	1,700	1,763	956	258	4,677

Landing Speeds Decelerations for A320

	Landing Number	Wet Conditions	Exit	Crossing Speed (knots)	Touchdown Speed (knots)	Nominal Speed (knots)	Speed at PC (knots)	Nominal Deceleration (m/s^2)	Deceleration to PC (m/s^2)	Deceleration after PC (m/s^2)	Touchdow Speed Coefficier
١.	1		A	132	125	70	16	-2.17	-1.38	-0.34	0.95
	2		E-22	132	125	70	22	-2.37	-2.61	-0.34	0.95
	3		E-22	129	122	70	23	-2.39	-2.16	-0.34	0.95
1.0	4		A	129	122	70	23	-1.69	-1.84	-0.34	0.95
	5		A	138	131	70	23	-2.40	-0.96	-0.34	0.95
	6		Last	141	134	70	21	-1.77	-1.71	-0.34	0.95
	7		A	135	128	70	25	-2.41	-1.17	-0.34	0.95
	8		Α	130	123	70	24	-1.91	-1.09	-0.34	0.95
	9		E-22	127	121	70	28	-2.80	-3.13	-0.34	0.95
	10		F_L	131	124	70	22	-2.77	-2.68	-0.34	0.95
	11		A	134	127	70	18	-2.29	-1.16	-0.34	0.95
	12		A	128	122	70	17	-2.14	-1.06	-0.34	0.95
	13		A	126	119	70	20	-2.15	-1.02	-0.34	0.95
	14		E-22	140	133	70	24	-2.91	-2.58	-0.34	0.95
	15	Yes	A	131	124	70	28	-2.29	-0.97	-0.34	0.95
<					1						
Þ	Average			133	126	70	24	-2.21	-1.62	-0.34	0.9

Landing events with a wet runway

Every landing simulated in REDIM 3 is reported in tables

Application of Runway Exit Design Tool to Selected US Airports

Uirginia Tech

Application of the Runway Exit Design Tool to Four Airports

is the minimum S11 located at 6,073 feet from threshold distance to Earliest PC of new high-speed runway exit ~ 4150 feet locate two high-speed Furthest PC of new high-speed runway exit ~ 5273 feet exits Cross-ave Cross-ov S10 Runway 27L Landing Direc 511 at 607 at 4400 feet 1,913 feet displaced threshold P2 = 5273 feet P1 = 4,150 feet Cross-over Cross-over Taxiway Taxiway Taviwa S11 S10 Runway 27L **S8 S**9 z S6 **S7** Landing Direction Z at 7135 feet S11 at 6073 feet S9 at 5720 feet S8 at 4865 fee Y at 4400 fee S7 at 3350 feet 800 feet (240 meters) 800 feet (240 meters) P1 = 4.150 feet P2 = 5273 feet

PHL Runway 27L

S7 located at 3,350 feet from threshold

VirginiaTech

Invent the Future

If 800 feet

Case: One New High-Speed Runway Exit, 20/80 (wet/dry pavement design)

- Optimal location of a new High-Speed Runway exit designed for 20/80% wet/dry pavement conditions is <u>5,280</u>
 <u>feet</u> (point of curvature)
- Runway exit Sierra-9 is eliminated
- **793 feet** distance between new exit high-speed exit HS2 and Sierra-11
 Optimally located runway exit in yellow

An Optimally Located High-Speed Runway Exit at PHL Runway 27L Could Reduce the Weighted Average Runway Occupancy Time by 4.4 to 4.2 Seconds

PHL Fleet Mix (Jan/2018 to Aug/2019) provided by FAA

VirginiaTech

Invent the Future

VirginiaTech

54% of Landings on Runway 27L Could Use the New High-Speed Exit at 5,280 feet (20/80 wet/dry Design Scenario)

New HS Exit (5280 feet)

High-Speed Exit Sierra 11 (6073 feet)

UrginiaTech

Runway Exit Use with High-Speed Runway at PHL 27L

Contact Information

- For more information or questions about the tools presented you can contact us:
- Toni Trani (<u>vuela@vt.edu</u>)
- Nick Hinze (<u>nhinze@vt.edu</u>)