

Runway and Airport Capacity

Air Transportation Systems Laboratory

Airport and Airspace Components

The following components of NAS need to be examined:

- a) Airside
 - Airspace
 - Runways
 - Taxiways
- b) Landside
 - Gates
 - Terminal
 - Access road

Methodologies to Study Airport Capacity/ Delay

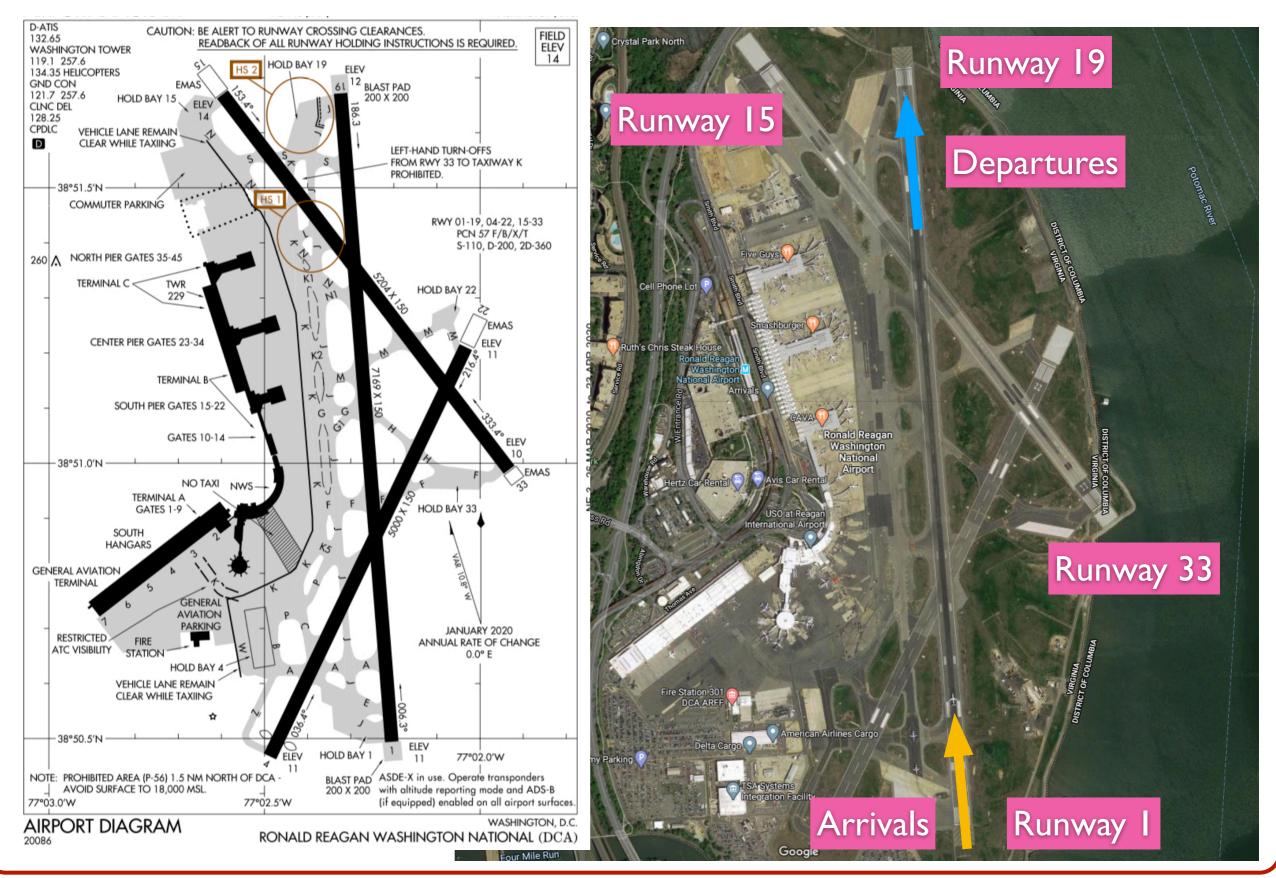
- Analytic models
 - Easier and faster to execute
 - Good for preliminary airport/airspace planning (when demand function is uncertain)
 - Results are generally less accurate but appropriate
- Simulation-based models
 - Require more work to execute
 - Good for detailed assessment of existing facilities
 - Results are more accurate and microscopic in nature

Methodologies in Use to Study Capacity/ Delay

- Analytic models
 - Time-space analysis
 - Queueing models (deterministic and stochastic)
- Simulation-based models
 - Monte Carlo Simulation
 - Continuous simulation models
 - Discrete-event simulation models

Time-Space Analysis

- A solid and simple technique to assess runway and airspace capacity if the headway between aircraft is known
- The basic idea is to estimate an expected headway, *E*(*h*), and then estimate capacity as the inverse of the expected headway


$$Capacity = \frac{1}{E(h)}$$
⁽¹⁾

E(h) is expressed in time units (e.g., seconds)

Example of Busy Airport Operations

- Illustrate the sequence of operations at a busy airport (Ronald Reagan Airport)
- Provides some insight on the technical parameters of the analytic model to estimate runway capacity

The Airport Configuration at DCA

Virginia Tech - Air Transportation Systems Laboratory

UrginiaTech

Observations at a Busy Period of Time

Virginia Tech - Air Transportation Systems Laboratory

UrginiaTech

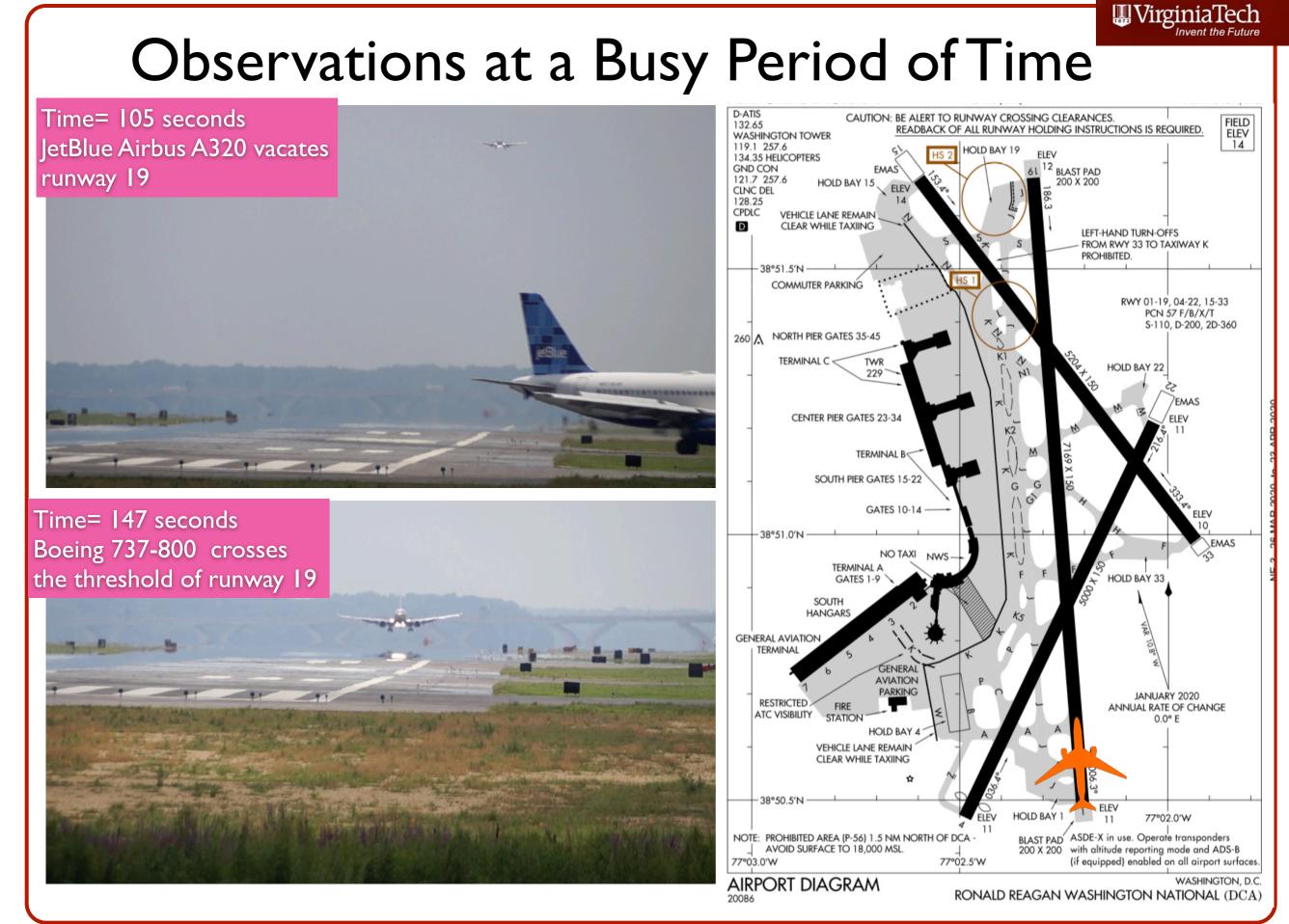
UrginiaTech **Observations at a Busy Period of Time** Time= 57 seconds D-ATIS CAUTION: BE ALERT TO RUNWAY CROSSING CLEARANCES. FIELD 132.65 READBACK OF ALL RUNWAY HOLDING INSTRUCTIONS IS REQUIRED. WASHINGTON TOWER ELEV JetBlue Airbus A320 14 119.1 257.6 HOLD BAY 19 ELEV HS 2 134.35 HELICOPTERS departure crosses the 12 BLAST PAD GND CON EMA! 121.7 257.6 HOLD BAY 15 200 X 200 CLNC DEL threshold of runway 19 128.25 CPDLC VEHICLE LANE REMAIN CLEAR WHILE TAXIING D **LEFT-HAND TURN-OFFS** FROM RWY 33 TO TAXIWAY K PROHIBITED. 38°51 5'N COMMUTER PARKING RWY 01-19, 04-22, 15-33 PCN 57 F/B/X/T S-110, D-200, 2D-360 260 A NORTH PIER GATES 35-45 TERMINAL C TWR HOLD BAY 22 229 EMAS **CENTER PIER GATES 23-34** TERMINAL B SOUTH PIER GATES 15-22 G G õ GATES 10-14 Time= 105 seconds ELEV 38°51.0'N JetBlue Airbus A320 vacates NO TAXI NWS TERMINAL A runway 19 GATES 1-9 HOLD BAY 33 SOUTH HANGARS **GENERAL AVIATION** TERMINAL GENERAL AVIATION PARKING JANUARY 2020 RESTRICTED > RESTRICTED FIRE ATC VISIBILITY STATION ANNUAL RATE OF CHANGE 0.0° E HOLD BAY VEHICLE LANE REMAIN CLEAR WHILE TAXIING 38°50.5 ELEV HOLD BAY 1 FLEV 77°02.0'W 11 NOTE: PROHIBITED AREA (P-56) 1.5 NM NORTH OF DCA -BLAST PAD ASDE-X in use. Operate transponders

Virginia Tech - Air Transportation Systems Laboratory

AVOID SURFACE TO 18,000 MSL

AIRPORT DIAGRAM

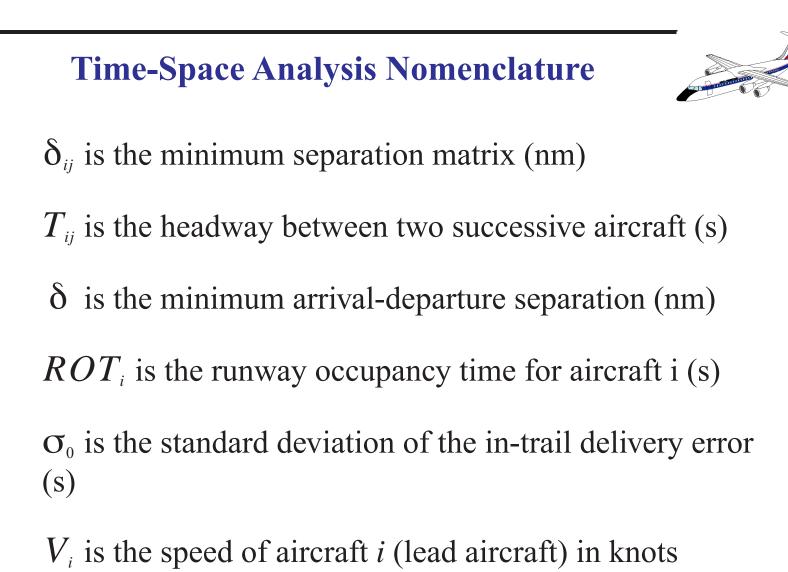
77°02.5'W


77°03.0'W

200 X 200 with altitude reporting mode and ADS-B

RONALD REAGAN WASHINGTON NATIONAL (DCA)

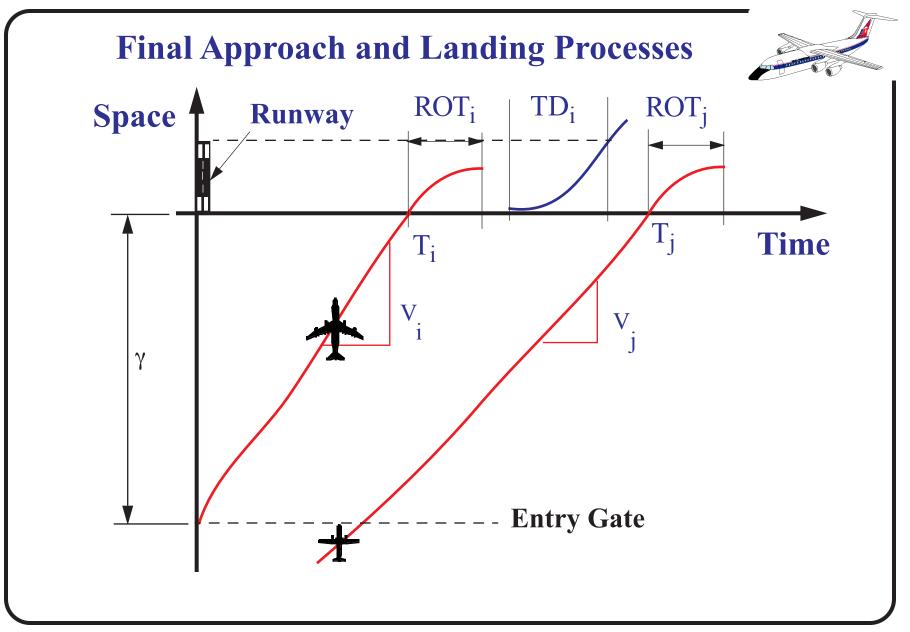
(if equipped) enabled on all airport surfaces


WASHINGTON, D.C.

Virginia Tech - Air Transportation Systems Laboratory

Observations

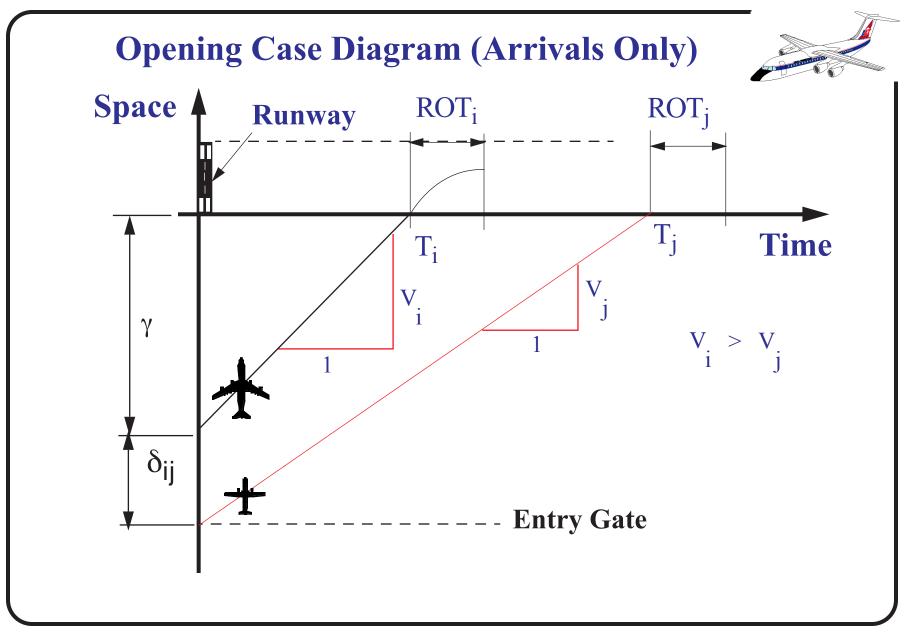
- 57 seconds between a departure starting its takeoff roll and the arrival crossing the threshold
- At 145 knots (typical approach speed for an Airbus A320), 57 seconds is equivalent to 2.3 nautical miles (distance between an arrival and a departure)
- Runway occupancy time is observed to be ~48 seconds
- Time between successive arrivals is ~90 seconds (147-57 seconds) for RECAT D aircraft (i.e., large aircraft in the legacy wake classification)
- At 145 knots (Boeing 737-800), 90 seconds is equivalent to
 3.6 nautical miles (time between two arrivals)



Time-Space Analysis Nomenclature

 V_j is the trailing aircraft speed (knots)

- γ is the common approach length (nm)
- B_{ij} is the buffer times matrix between successive aircraft (s)
- q_v is the value of the cumulative standard normal at probability of violation p_v
- p_v is the probability of violation of the minimum separation criteria between two aircraft

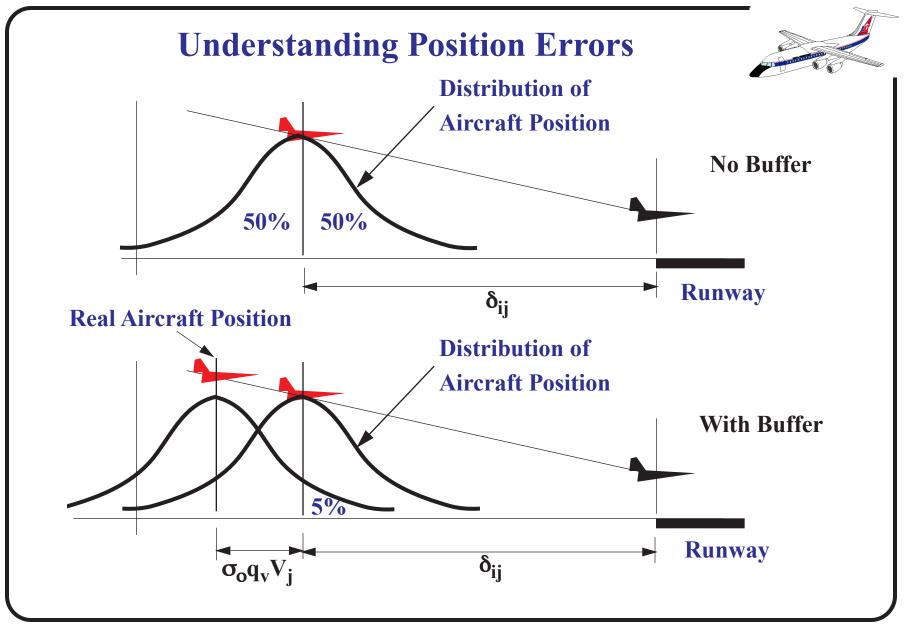


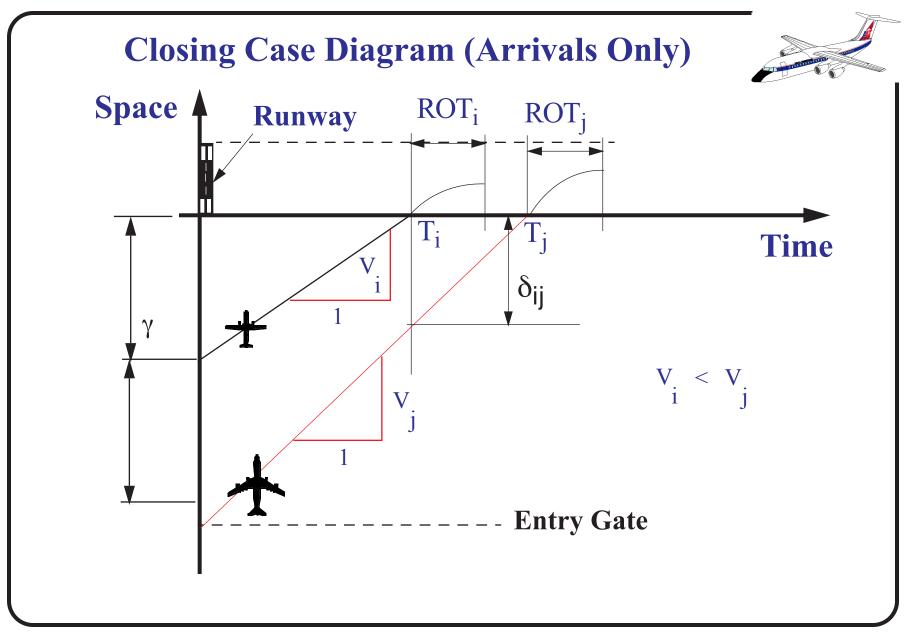
Possible Outcomes of a Single Runway Time-Space Diagram

Since aircraft approaching a runway arrive in a random pattern we distinguish between two possible scenarios:

- Opening Case Instance when the approach speed of lead aircraft is higher than trailing aircraft $(V_i > V_j)$
- Closing case Instance when the approach of the lead aircraft is less than that of the trailing aircraft $(V_i \le V_j)$

Opening Case (Equations)



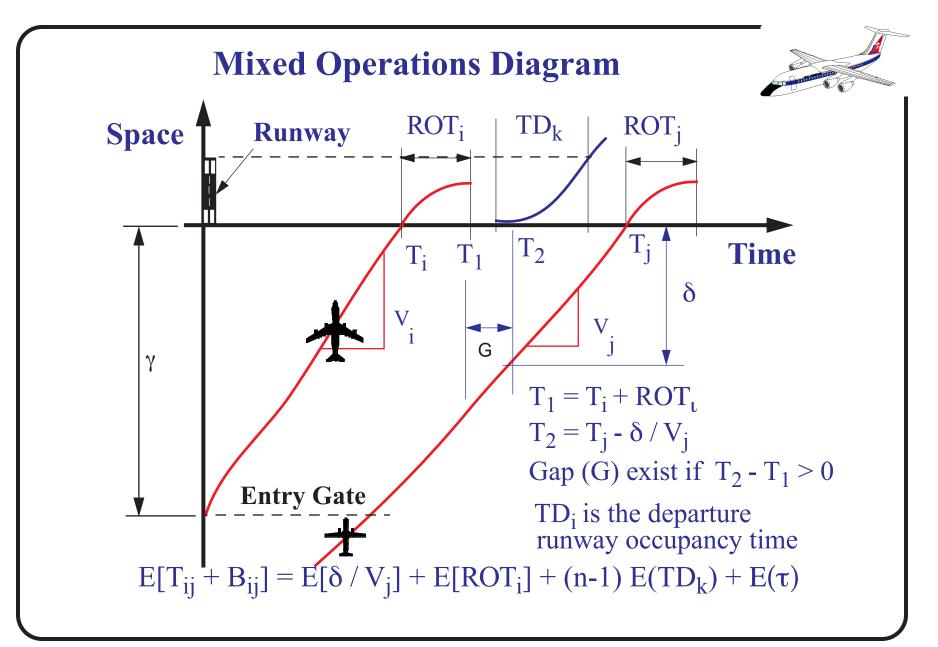

Error free headway, $T_{ij} = T_j - T_i$, (no pilot and ATC controller error) assuming control is exercised as the lead aircraft passes the entry gate,

$$T_{ij} = \frac{\delta_{ij}}{V_j} + \gamma \left(\frac{1}{V_j} - \frac{1}{V_i}\right)$$
(2)

Position error buffer time (with pilot and ATC controller error)

$$B_{ij} = \sigma_o q_v - \delta_{ij} \left(\frac{1}{V_j} - \frac{1}{V_i} \right) \text{ or zero if } B_{ij} < 0.$$
(3)

Closing Case (Equations)



Error free headway, $T_{ij} = T_j - T_i$ (no pilot and ATC controller error) with the minimum separation enforced when the lead aircraft passes the runway threshold,

$$T_{ij} = \frac{\delta_{ij}}{V_j} \tag{4}$$

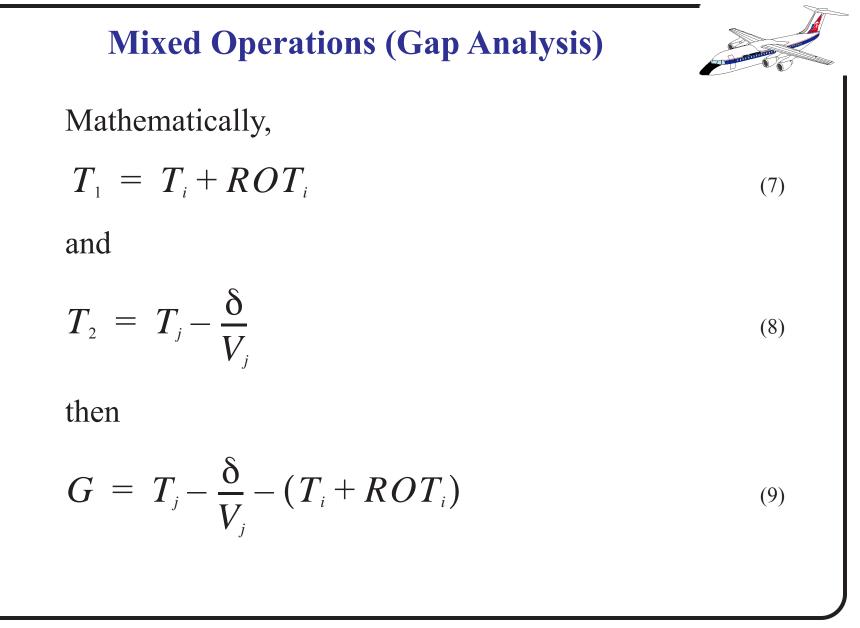
Position error buffer time (with pilot and ATC controller error) is,

 $B_{ij} = \sigma_o q_v \tag{5}$

Mixed Operations Notes

- The arriving aircraft leave natural gaps in the time space diagram
- When gaps (*G*) are sufficiently long, ATC controllers can schedule one or more departures in the gap
- The size of the gaps depends on:
 - Runway occupancy time (for lead aircraft)
 - Runway occupancy time for departing aircraft
 - Minimum departure-departure headway (seconds)
 - Minimum arrival-departure separation (δ)

Mixed Operations Notes



• In the U.S. the current minimum separation between arrivals and departures (δ) is 2 nautical miles

Define:

- T_1 as the time when the lead aircraft completes the landing roll (i.e., exits the runway plane)
- T₂ as the time when the following arriving aircraft is
 (δ) from the runway threshold
- The gap (G) is the time difference between T_2 and T_1 .

$$G = T_2 - T_1 \tag{6}$$

Mixed Operations (Gap Analysis)

$$G = (T_j - T_i) - \frac{\delta}{V_j} - ROT_i$$
⁽¹⁰⁾

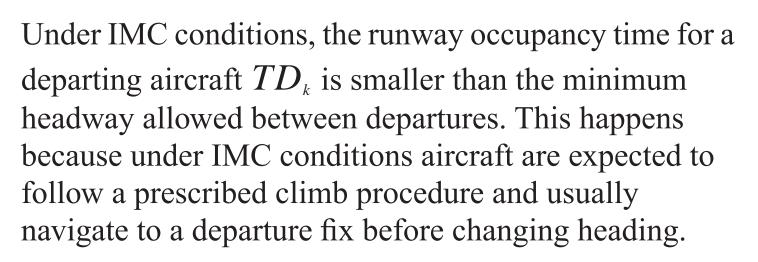
Note that, $(T_j - T_i)$ is the **actual headway** between the lead and following aircraft $(T_{ij} + B_{ij})$. This actual headway includes the buffer times since air traffic control will apply those buffers to each successive arrival pair. Our analysis now concentrates in finding suitable gaps between successive aircraft arrivals leaving.

Assume that we would like to find instances such that the gap is zero. This is the limiting case to schedule one departure between successive arrivals.

$$0 = (T_j - T_i) - \frac{\delta}{V_j} - ROT_i$$
⁽¹¹⁾

knowing

$$0 = (T_{ij} + B_{ij}) - \frac{\delta}{V_j} - ROT_i$$
⁽¹²⁾


$$(T_{ij} + B_{ij}) = \frac{\delta}{V_j} + ROT_i$$
⁽¹³⁾

For *n* departures in gap *k* the expected value of $T_{ij} + B_{ij}$ has to be longer than:

$$(T_{ij} + B_{ij}) = \frac{\delta}{V_j} + ROT_i + (n-1)TD_k$$
 (14)

where TD_k is the runway occupancy time of departure k. This expression typically applies under VFR conditions because controllers can dispatch aircraft as

soon as the previous departure clears the runway end (provided that the lead aircraft turns quickly away from runway heading).

Let ε_{ij} be the minimum departure-departure headway applied by air traffic control. Equation (14) can then be modified to estimate the availability of a gap to release *n* departures.

$$(T_{ij}+B_{ij}) = \frac{\delta}{V_j} + ROT_i + (n-1)\varepsilon_{ij}$$
⁽¹⁵⁾

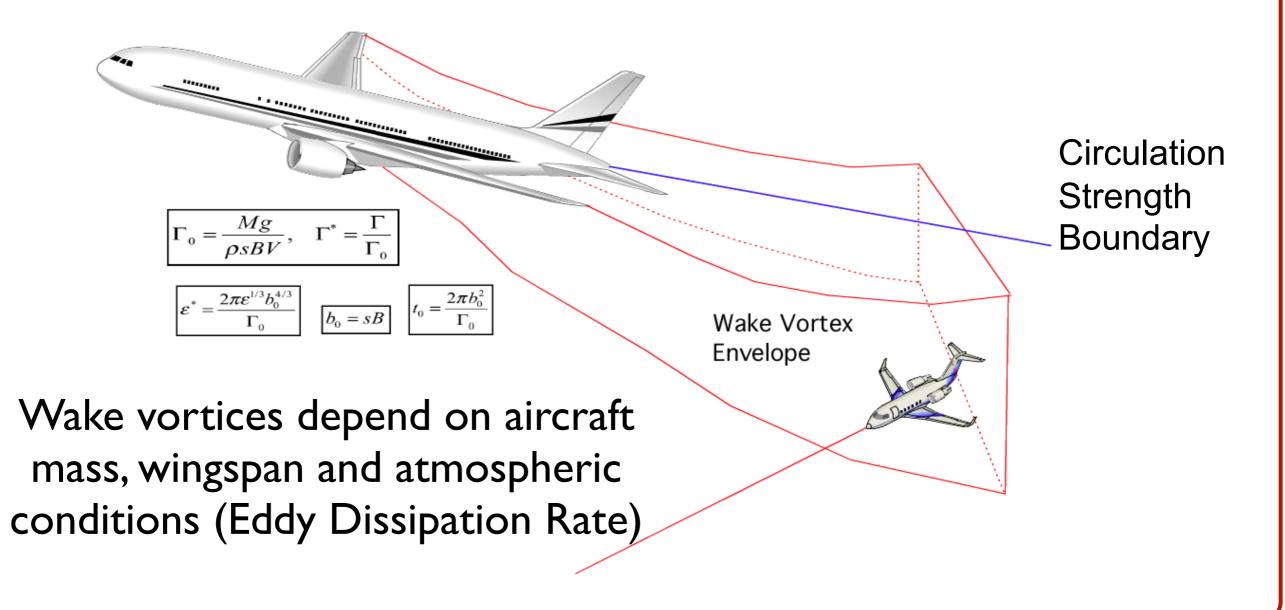
One final term usually added to this equation is a pilot reaction time term to account for a possible delay time (departing aircraft) to initiate the takeoff roll. This time is justified because jet engines used in transport aircraft take a few seconds to "spool up" and generate full thrust. Let τ be the time delay (in seconds) for the departing aircraft.

Adding the time delay term Equation (14) becomes,

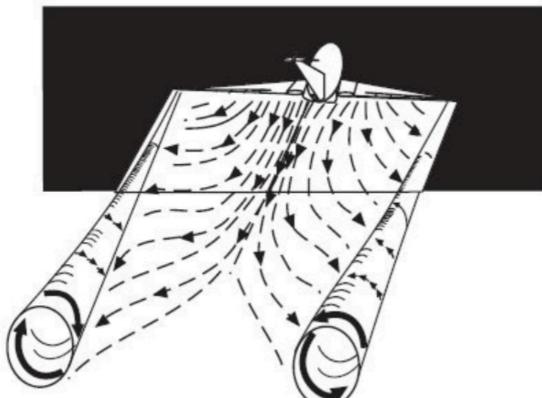
$$(T_{ij}+B_{ij}) = \frac{\delta}{V_j} + ROT_i + (n-1)\varepsilon_{ij} + \tau \qquad (16)$$

Since $(T_{ij} + B_{ij})$ is calculated as an expected value in the analysis for arrivals only,

$$E(T_{ij} + B_{ij}) \ge E\left(\frac{\delta}{V_j}\right) + E(ROT_i) + (17)$$
$$(n-1)E(\varepsilon_{ij}) + E(\tau)$$

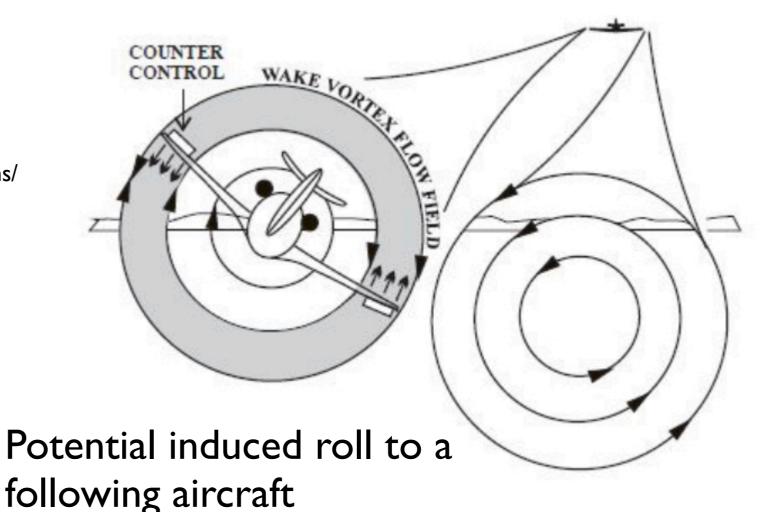


The use of Equation (17) allows us to estimate whether the natural gaps left by successive arrivals (expressed as the expected value of $(T_{ij} + B_{ij})$) is large enough to schedule *n* departures.


The practical use of Equation (17) is to compare the actual headways between successive arrivals $(T_{ij} + B_{ij})$ against the sum of all four terms in the right hand side of Equation (17). We do this for various possible departure scenarios that include *n* departures (typically 1, 2, 3, ... 6 departures).

Aircraft Separations

 Every aircraft generates wakes behind the wing due to the strong circulation (Γ) required to generate lift



Wake Vortex Issues

Source: https://www.faa.gov/air_traffic/publications/ atpubs/aim_html/chap7_section_4.html

For heavy aircraft, wakes may last 150-200 seconds behind the generating aircraft Greatest danger is when aircraft are heavy, clean (no flap configuration and flying slow)

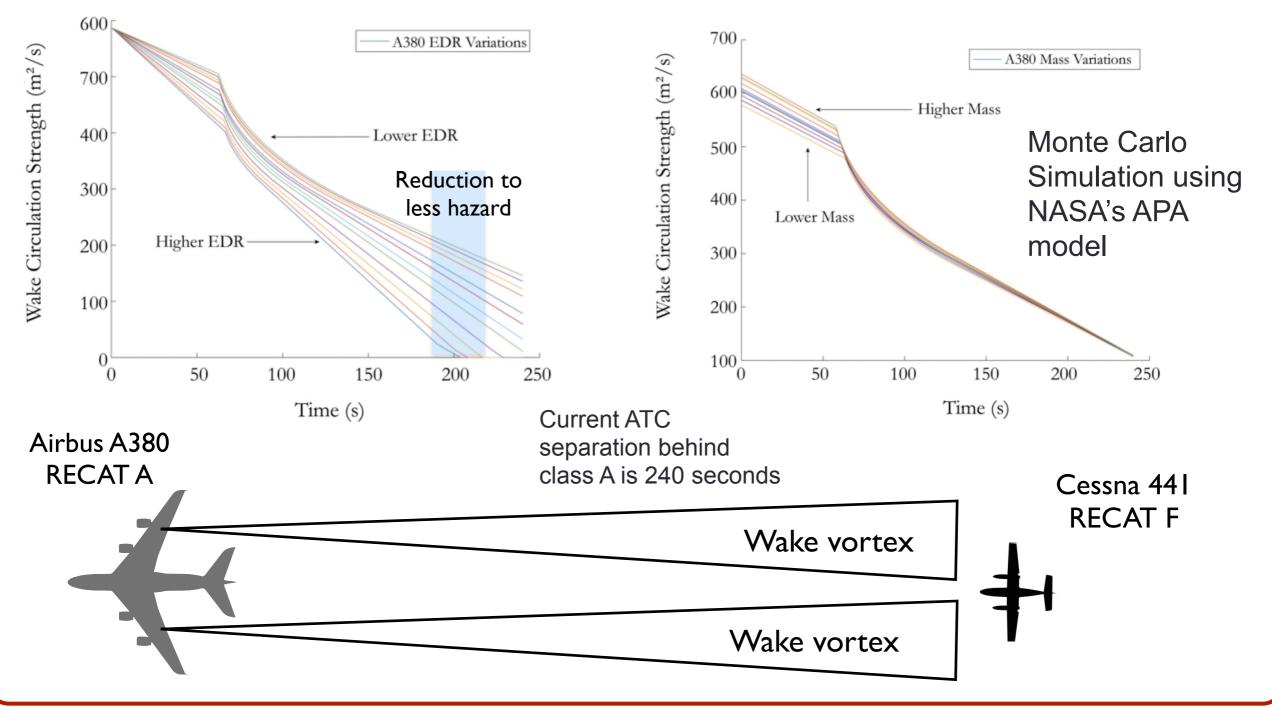
Wake Vortex Issues (3)

Wake vortex visualization behind a small regional jet (VFW 614)

https://commons.wikimedia.org/wiki/File:Visualisation_of_a_wake_vortex_ATTAS.jpg

Air Transportation Systems Laboratory

Wake Vortex Classifications (History)


- I 970s FAA develops a legacy wake vortex classification (small, large, heavy)
- I993 FAA adds Boeing 757-200 to the legacy classification as a group (at the time ATC handles the Boeing 757-200 like a heavy)

FAA Orders 757 Turbulence Alert : Aviation: After crash of private jet in Santa Ana, air controllers are told to alert small planes to wake hazard posed by Boeing craft. Past incidents are cited.

Source: Los Angeles Times (December/23/1993)

- 2012 FAA implements RECAT (re-categorization Phase I) with 6 or 7 groups
- 2019 FAA develops a Consolidated Wake Turbulence Classification (CWT) with 9 groups

Wake Modeling using NASA's APA Model : Arrival Configuration (Source: J. Roa, Virginia Tech, 2019)

UrginiaTech

Learn More About Aircraft Wakes

Evaluation of Fast-Time Wake Vortex Prediction Models

Fred H. Proctor^{*} and David W. Hamilton[†] NASA Langley Research Center, Hampton, Virginia, 23681

NASA/TM-2016-219353

Current fast-time wake models are reviewed and three basic types are defined. Predictions from several of the fast-time models are compared. Previous statistical evaluations of the APA-Sarpkaya and D2P fast-time models are discussed. Root Mean Square errors between fast-time model predictions and Lidar wake measurements are examined for a 24 hr period at Denver International Airport. Shortcomings in current methodology for evaluating wake errors are also discussed.

NASA AVOSS Fast-Time Models for Aircraft Wake Prediction: User's Guide (APA3.8 and TDP2.1)

Nash'at N. Ahmad and Randal L. VanValkenburg Langley Research Center, Hampton, Virginia

Matthew J. Pruis NorthWest Research Associates, Redmond, Washington

Fanny M. Limon Duparcmeur Craig Technologies, Hampton, Virginia Simulation of Runway Operations with Application of Dynamic Wake Separations to Study Runway Limitations

Julio Roa 🖂, Antonio Trani, [...], and Navid Mirmohammadsadeghi (+1) View all authors and affiliations

Volume 2674, Issue 12 https://doi.org/10.1177/0361198120953152

😑 Contents 🔰 🛃 PDF / ePub 😡 Cite article 🛛 😤 Share options 🧻 Information, rights and permissions

Abstract

This paper presents an evaluation of runway operations at Chicago O'Hare International Airport to estimate the impact of proposed wake vortex separation including Recategorization Phase II and III dynamic separations. The evaluation uses a Monte Carlo simulation model that considers arrival and departure operations. The simulation accounts for static and dynamic wake vortex separations, aircraft fleet mix, runway occupancy times, aircraft approach speeds, aircraft wake circulation capacity, environmental conditions, and operational error buffers. Airport data considered for this analysis are based on Airport Surface Detection Equipment Model X records from Chicago O'Hare International Airport from January to November 2016. Dynamic wake separations are tailored to each unique set of conditions by using environmental and aircraft performance parameters as input and allowing aircraft to be exposed to the same wake vortex strength as in Recategorization Phase II (RECAT II). The analysis shows that further reductions beyond RECAT II for aircraft pairs separated by 2 nautical miles or less is not operationally feasible. These wake separations aiready result in little to no wake dependency. When this is the case, the challenges in wake separation are to meet runway occupancy times and to make sure aircraft separations allow for human operational variations without resulting in aircraft turnarounds or double-aircraft-

🛄 Virginia lech

Metrics a

Consolidated Wake Turbulence Recategorization Classification (CWT)

- FAA Introduced a consolidated wake re-categorization in 2019
- Consult FAA Order JO 7110.126A

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

Air Traffic Organization Policy

ORDER JO 7110.126A

Effective Date: September 28, 2019

SUBJ: Consolidated Wake Turbulence (CWT) Separation Standards

1. Purpose of This Order. This order provides procedural guidance to FAA Order JO 7110.65, Air Traffic Control, related to the use of Consolidated Wake Turbulence procedures and separation minima.

2. Audience. This order applies to all Air Traffic Organization (ATO) personnel authorized to use this order and anyone involved in the implementation and monitoring of Consolidated Wake Turbulence separation standards.

3. Where Can I Find This Order? This change is available on the FAA Website at http://faa.gov/air_traffic/publications and https://employees.faa.gov/tools_resources/orders_notices/.

4. What This Order Cancels. FAA Order JO 7110.126, Consolidated Wake Turbulence Radar

Consolidated Wake Vortex Recategorization Classification

- "FAA Order JO 7110.659 (RECAT 1.5) classified aircraft according to certificated takeoff weight, landing speed, wingspan, and the aircraft's ability to withstand a wake encounter."
- "FAA Order JO 7110.123 (RECAT Phase II), Appendix A and Appendix B, described a pairwise separation matrix developed for the most common ICAO type identifier aircraft. Each aircraft was addressed as both a leader and a follower in each pair."
- "The development of a **pairwise separation matrix** relied on wake-based data, rather than weight-based data."
- "Separation reductions were achieved with a better understanding of wake behavior and with pairwise separation of aircraft."
- "CWT is based on a nine category system that further refines the grouping of aircraft, provides throughput gains at many of today's constrained airports, and is manageable for all airports throughout the NAS."

Source: FAA Order JO 7110.126A

Consolidated Wake Turbulence (CWT) Re-categorization Classification

Category	Description
Α	A388
В	Pairwise Upper Heavy aircraft
С	Pairwise Lower Heavy aircraft
D	Non-Pairwise Heavy aircraft (infrequent operations)
E	Boeing 757 aircraft
F	Upper Large aircraft excluding B757 aircraft
G	Lower Large aircraft
н	Upper Small aircraft with a maximum takeoff weight of more than 15,400 pounds up to 41,000 pounds
	Lower Small aircraft with a maximum takeoff weight of 15,400 pounds or less
	Source: FAA Order JO 7110.126A

Consolidated Wake Vortex Recategorization Classification

Α	B	С	Γ		E E		F	(T J	Н	Ι
Super	Upper Heavy	Lower Heavy	Non-Pa Hea		B757	Upper	Large	Lower		Upper Small	Lower Small
A388	A332	A306	A124	DC85	B752	A318	C130	AT43	E170	ASTR	BE10
	A333	A30B	A339	DC86	B753	A319	C30J	AT72	E45X	B190	BE20
	A343	A310	A342	DC87		A320	CVLT	CL60	E75L	BE40	BE58
	A345	B762	A3ST	E3CF		A321	DC93	CRJ1	E75S	B350	BE99
	A346	B763	A400	E3TF		B712	DC95	CRJ2	F16	C560	C208
	A359	B764	A50	E6		B721	DH8D	CRJ7	F18H	C56X	C210
	B742	C17	AN22	E767		B722	E190	CRJ9	F18S	C680	C25A
	B744	DC10	B1	IL62		B732	GL5T	CRJX	F900	C750	C25B
	B748	K35R	B2	IL76		B733	GLEX	DC91	FA7X	CL30	C402
	B772	MD11	B52	IL86		B734	GLF5	DH8A	GLF2	E120	C441
	B773		B703	IL96		B735	GLF6	DH8B	GLF3	F2TH	C525
	B77L		B741	K35E		B736	MD82	DH8C	GLF4	FA50	C550
	B77W		B743	KE3		B737	MD83	E135	SB20	GALX	P180
	B788		B74D	L101		B738	MD87	E145	SF34	H25B	PAY2
	B789		B74R	MYA4		B739	MD88			LJ31	PA31
	C5		B74S	R135			MD90			LJ35	PC12
	C5M		B78X	T144						LJ45	SR22
			BLCF	T160						LJ55	SW3
			BSCA	TU95						LJ60	
			C135	VMT						SH36	
			C141							SW4	

Aircraft Types Categorized

Source: FAA Order JO 7110.126A

Wake Vortex Classification (CWT Categories)

RECAT Class	Representative Aircraft	Picture of Representative Aircraft
A Super	Airbus A380-800	BRITISH AIRWAYS
B Upper Heavy	Boeing 747-400, Boeing 777-300ER, Airbus A330-300, Airbus A350-900, Airbus A300-600, Boeing 787-8/9	
C Lower Heavy	McDonnell Douglas DC-10, Boeing MD-10, Boeing Douglas MD-11, Boeing 767-300	UNITED
D Non-pairwise Heavy	Airbus A340, KC-10, E3CF, A400	IBERIA IBERIA
E B757	Boeing 757-200 and 757-300	ADELTA CADELTA COORDENSIONAL C

UirginiaTech

Wake Vortex Classification (CWT Categories)

RECAT Class	Representative Aircraft	Picture of Representative Aircraft
F Upper Large	Boeing 737-800, Boeing 737-9Max, Airbus A320, Airbus A321, McDonnell Douglas MD-80, Embraer 190, Bombardier CS-300	and a set when the state of the second of th
G Lower Large	Embraer 170/175, Bombardier CRJ-900, Bombardier CRJ-700, Embraer 145, Bombardier CRJ-200, Gulfstream 550, Falcon 7X, Saab 2000	
H Upper Small	Bombardier Challenger 350, Cessna Citation X, Dassault Falcon 50, Raytheon Hawker 800XP	
l Lower Small	Cessna CitationJet 2, Cessna 182, Cessna 172	

UirginiaTech

Consolidated Wake Vortex Separations - Directly Behind

WAKE TURBULENCE APPLICATION

Source: FAA Order JO 7110.126A

🛄 Virginia'

g. Separate aircraft by the minima specified in TBL 5–5–1 in accordance with the following:

1. When operating within 2,500 feet and less than 1,000 feet below the flight path of the leading aircraft over the surface of the earth of a Category A, B, C, or D aircraft.

2. When operating within 2,500 feet and less than 500 feet below the flight path of the leading aircraft over the surface of the earth of a Category E aircraft.

3. When departing parallel runways separated by less than 2,500 feet, the 2,500 feet requirement in subparagraph 2 is not required when a Category I aircraft departs the parallel runway behind a Category E aircraft. Issue a wake turbulence cautionary advisory and instructions that will establish lateral separation in accordance with subparagraph 2. Do not issue instructions that will allow the Category I aircraft to pass behind the Category E aircraft.

		Follower									
		Α	В	С	D	E	F	G	Н	I	
	Α		4.5 NM	6 NM	6 NM	7 NM	7 NM	7 NM	7 NM	8 NM	
	В		3 NM	4 NM	4 NM	5 NM	5 NM	5 NM	5 NM	5 NM	
	С					3.5 NM	3.5 NM	3.5 NM	5 NM	5 NM	
L	D		3 NM	4 NM	4 NM	5 NM	5 NM	5 NM	5 NM	5 NM	
Leader	E									4 NM	
Le	F			Empty Ce	olls: Annly	Minimum	Radar Sep	aration			
	G			3 nm defa		miniani					
	н			Test States Catalogue Science		that mee	t a 50 seco	ond			
	I					Time crit					

Wake Turbulence Separation for Directly Behind

Typical Wake Vortex Behavior

- Boeing 737-800 class (RECAT F in new consolidated wake turbulence class)
 - Wake descends up to 500 feet in 60-90 seconds
 - Time for wake vortex to dissipate ~ 60-90 seconds
- Boeing 777-300 class (RECAT B)
 - Wake descends up to 800 feet in 100-150 seconds
 - Time for wake vortex to dissipate ~ 120-150 seconds
- Airbus A380 class (RECAT A)
 - Wake descends up to 1000 feet in 150-240 seconds
 - Time for wake vortex to dissipate ~ 180-240 seconds

Consolidated Wake Vortex Separations - On Approach

h. ON APPROACH. In addition to subparagraph g, separate an aircraft on approach behind another aircraft to the same runway by ensuring the separation minima in TBL 5–5–2 will exist at the time the preceding aircraft is over the landing threshold.

NOTE-

Consider parallel runways less than 2,500 feet apart as a single runway because of the possible effects of wake turbulence.

		Follower									
		Α	В	С	D	E	F	G	н	I	
	Α		4.5 NM	6 NM	6 NM	7 NM	7 NM	7 NM	7 NM	8 NM	
	В		3 NM	4 NM	4 NM	5 NM	5 NM	5 NM	5 NM	6 NM	
	С					3.5 NM	3.5 NM	3.5 NM	5 NM	6 NM	
r	D		3 NM	4 NM	4 NM	5 NM	5 NM	5 NM	6 NM	6 NM	
Leader	E									4 NM	
Ľ	F									4 NM	
	G										
	н			Er	noty Cells	: Apply Mir	nimum Rac	lar Separat	ion		
	I			Empty Cells: Apply Minimum Radar Separation 3 nm default							
Source: F	AA Orde	er JO 711	0.126A				at meet a . me criteria			-	

Wake Turbulence Separation for On Approach

Implications of Aircraft Wake Classes

- In-trail separations are driven by wake class groups
- Runway capacity today is usually limited by in-trail separations
- For mixed operations, runway occupancy times are also be important

Aircraft Categories Used in Airport Runway Analysis

- Today, the FAA employs 5 aircraft groups to establish aircraft separations inside the terminal area:
 - Small, Large, B757, Heavy and Superheavy
 - The class Small + is seldom used for actual separations
- Today, ICAO (international body that regulates aviation activities outside the US) has 4 aircraft groups

– Light, Medium, Heavy and Superheavy (A380)

• Many air navigation service providers may have deviations from these groups or classes (i.e., NAT UK recognizes 6 groups)

VMC Separations

- Under visual meteorological conditions, pilots are expected to be responsible for separations
- Data collected at airfields in the United States indicates that VMC separations are 10% below those observed under IMC conditions
- Therefore:
 - Runways have more capacity under VMC conditions for the same fleet mix
 - Higher runway utilization is possible under VMC conditions
 - Runway occupancy times and VMC airspace separations are closer in magnitude

Air Traffic Control (ATC) Departure-Departure In-Trail Separations

Typical In-trail Separations (in seconds) for Departing Aircraft on the same Runway. Includes Buffers Applied by ATC.

Lead		Traili	ng Aircrat	ft	
Aircraft	Superheavy	Heavy	B757	Large	Small
Superheavy	120	120	120	120	120
Heavy	120	120	120	120	120
B757	120	120	120	120	120
Large	60	60	60	60	60
Small	60	60	60	60	60

Separations are in seconds

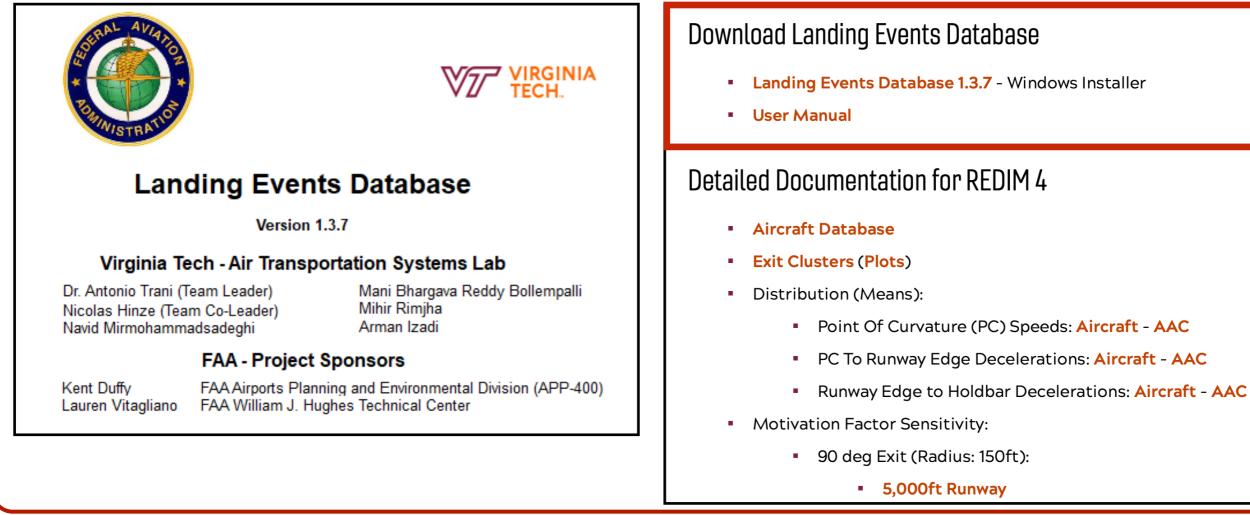
Example 1: Single Runway Problem

- West Coast single runway airport (like San Diego)
- Three aircraft CWT groups operating at the airport

Aircraft CWT Group	F	E	В
ROT (s)	51	54	65
Percent Mix (%)	82	10	8
Vapproach (knots)	132	137	151

Problem Description

- West Coast single runway airport
- Three aircraft groups operate at the airport


Technical Parameters (inputs)	Values
Departure-Arrival Separation (nm)	2
Common Approach Length (nm)	12
Standard deviation of Position Delivery Error (s)	20
Probability of Violation - $P_{_{\mathcal{V}}}$	5
Cumulative Normal at (at 5% violation)	1.65
Buffer for departure-departure (seconds)	10

Data Sources to Obtain ROT and Approach Speeds Data

Landing Events Database (version 1.3.7)

You can download the landing events database at:

https://atsl.cee.vt.edu/products/runway-exit-design-interactive-model-redim-1.html

III Virginia Tech

UrginiaTech

Landing Events Database (version 1.3.7)

- ROT values can be obtained by airport, aircraft, and runway
- Raw data for Anchorage (ANC) International Airport

Image: Note Grammer Deed Row of the Location and L	Hyst D Level D Accel D Description District O District O <thdistrict o<="" th=""> District O</thdistrict>	New Concernance	Aircraft Mix	nway: 07R	 Exit: 	- C	arrier:	 Airc 	:raft:	 Arrival 	 Valid Flig 	ghts •	1/ 1/2020	to 1/ 1/2021	Query Export						
are default in the location of	are default • virtue	are determined in the control in th	Speed	Flight ID	Carrier ID	✓ Aircraft	Runway	v Exit v	Enter Time 🚽	Exit Time 🔽	Down (s)	✓ Down (ft)	Time (s)	Distance (ft)	i) V Time (s)		✓ ROT Edge (s)	ROT Fuselage (s)	ROT Holdbar (s) ✓		✓ Nose Gear Down Speed (kts)
ade loads addies IPS 973 IPS 974 IPS 9	are location with additional states are located by additional states and located by additional states are located by additing additional states are located by additing	de Locado verso	Nose Gear Down I	CAO1045	CAO	B744	07R	G 1	1/1/2020 6:5	1/1/2020 6:	10.0	2,827	32.3	7,011	36.5	7,389	68.7	86.8	89.7	172.5	163.8
aities EVAG EVA EVA 	addies EVA4 PT OF F V PL	aintered Evk482 Evk4 FZ FZ Evk4 FZ	Gate Location	UPS5903	UPS	B763	07R	G 1	1/1/2020 6:5	1/1/2020 6:	9.9	2,444	30.1	6,165	45.1	7,389	59.0	68.1	71.8	151.2	143.6
CALS26 CAL 874 078 0 1/12020 90. 68 1934 FDX37 FDX MD11 078 6 1/12020 90. 69 1765 FDX17 FDX MD11 078 6 1/12020 90. 69 1765 FDX17 FDX MD11 078 6 1/12020 90. 69 1765 CSN43 CSN 877L 078 6 1/12020 10. 1/12020 10. 102 2.641 CSN433 CSN 877L 078 6 1/12020 10. 102 2.641 Carrier, Aircraft, Runway, Runway Exit, and Date All 61.1 62.5 62.2 155.4 147.6 ASA056 ASA 6737 078 0 1/12020 10. 102 2.641 Range 1132 120.1 127.9 143.2 136.0 ASA058 ASA 6737 078 0 1/12020 10. 135 3.181 Range 132.2 120.1 127.9 143.2 136.0 Mor Seed va There Seed va There Seed va Uterce Acceleratin va There Acceleratin va There Acceleratin	C4L526 C4L 674 07 0 1/1/2029 68 1934 FDX37 FDX MD11 078 6 1/1/2029 69 1.765 FDX17 FDX MD11 078 6 1/1/2029 69 1.765 FDX17 FDX MD11 078 6 1/1/2029 192 2.61 CSN43 CSN 877L 078 6 1/1/2020 10.2 2.641 CSN433 CSN 877L 078 6 1/1/2020 10.2 2.641 ASA7055 ASA 8727 078 0 1/1/2020 10.2 2.641 ASA7055 ASA 8727 078 0 1/1/2020 11.3 2.968 ASA7055 ASA 8727 078 0 1/1/2020 11.3 2.968 ASA705 ASA 8737 078 0 1/1/2020 1.35 3.181 ASA705 ASA 8737 078 0 1/1/2020 1.31 1.859 Mor Seed va There See	C4L526 C4L 674 078 0 11/2020 9 68 134 FDX37 FDX MD11 D78 6 11/2020 9 69 176 CX177 FDX MD11 D78 6 11/2020 9 69 176 CX177 FDX MD11 D78 6 11/2020 9 19 199 CSN33 CSN 871 D78 6 11/2020 10 17/2020 10 102 2.641 CAM505 ASA 8727 D78 6 11/2020 10 113 2.968 Range 1132 120.1 127.9 143.2 186.0 ASA105 ASA 8737 D78 6 11/2020 10 17/2020 10 13.2 2.968 Range 1132 120.1 127.9 143.2 136.0 ASA103 ASA 8737 D78 6 11/2020 11 11.3 2.968 Range 132.2 120.1 127.9 143.2 136.0 M* Seed va The Seed va The Seed va The Coeration va The Accession va Ditance Accession va Ditance Accessio	Statistics	EVA662	EVA	B77L	07R	G 1	1/1/2020 8:3	1/1/2020 8:	7.6	2,031	28.2	5,838	54.0	7,389	79.0	96.4	98.4	165.0	156.8
FDX7 FDX ND11 078 6 1/1/2029 ± 175 Filters by: 64.6 79.2 83.2 184.4 195 FDX7 FDX 877. 078 6 1/1/2029 ± 179 1860 Carrier, Aircraft, Runway, Runway Exit, and Date 121.7 138.5 141.2 148.4 141.0 CFA05 CPA 874.8 078 6 1/1/2020 1. 113.2 250 135.4 116 113.2 184.4 181.1 150.2 CFA05 CPA 874.8 078 6 1/1/2020 1. 113.2 250 135.4 131.0 135 131.0 135 131.0 132.2 184.4 184.1 190.2 ASA1095 ASA 877.7 078 6 1/1/2020 1. 13.5 3.101 135.5 132.1 182.2 186.4 192.7 132.1 182.1 192.2 136.1 ASA103 ASA 877.7 078 6 1/1/2020 1.1 1/1/2020 1.3 183.0 185.5 113.2 120.1 127.9 143.2 186.1 182.5 <td>FDX7 FDX N011 078 6 1/1/2029 ± 175 Filters by: 64.6 79.2 83.2 184.4 195 FDX7 FDX 871 078 6 1/1/2029 ± 179 1860 CR433 CSN 871 078 6 1/1/2020 ± 102 2.541 CR405 CPA 874 078 6 1/1/2020 ± 113 2.504 ASA7095 ASA 877 078 6 1/1/2020 ± 13.5 3.181 Seed vs Time Acceleration vs Time Acce</td> <td>FDX7 FDX M011 078 6 11/2020 9. 17/2020 9. 175 Filters by: 64.6 79.2 83.2 184.4 195.5 FDX17 FDX 871. 078 6 11/2020 1. 11/2020 1. 12.2 2.51 CFA05 CFA 874.8 078 6 11/2020 1. 11.2 2.541 CFA05 CFA 874.8 078 6 11/2020 1. 11.3 2.504 A547095 A5A 877.7 078 6 11/2020 1. 11.3 2.504 A547095 A5A 877.7 078 6 11/2020 1. 11.3 2.504 A547095 A5A 877.7 078 6 11/2020 1. 13.5 3.181 Mass 857.7 078 6 11/2020 1. 11.2 2.01 127.7 184.4 184.1 192.2 A54103 A5A 877.7 078 6 11/2020 1. 13.5 3.181 13.85 13.2 182.1 182.2 185.1 182.5 82.1 182.1</td> <td></td> <td>LN547LM</td> <td></td> <td>BE20</td> <td>07R</td> <td>F 1</td> <td>1/1/2020 8:4</td> <td>1/1/2020 8:</td> <td>23.7</td> <td>4,724</td> <td>33.2</td> <td>5,905</td> <td>87.3</td> <td>9,811</td> <td>94.1</td> <td>96.7</td> <td>100.9</td> <td>148.2</td> <td>94.3</td>	FDX7 FDX N011 078 6 1/1/2029 ± 175 Filters by: 64.6 79.2 83.2 184.4 195 FDX7 FDX 871 078 6 1/1/2029 ± 179 1860 CR433 CSN 871 078 6 1/1/2020 ± 102 2.541 CR405 CPA 874 078 6 1/1/2020 ± 113 2.504 ASA7095 ASA 877 078 6 1/1/2020 ± 13.5 3.181 Seed vs Time Acceleration vs Time Acce	FDX7 FDX M011 078 6 11/2020 9. 17/2020 9. 175 Filters by: 64.6 79.2 83.2 184.4 195.5 FDX17 FDX 871. 078 6 11/2020 1. 11/2020 1. 12.2 2.51 CFA05 CFA 874.8 078 6 11/2020 1. 11.2 2.541 CFA05 CFA 874.8 078 6 11/2020 1. 11.3 2.504 A547095 A5A 877.7 078 6 11/2020 1. 11.3 2.504 A547095 A5A 877.7 078 6 11/2020 1. 11.3 2.504 A547095 A5A 877.7 078 6 11/2020 1. 13.5 3.181 Mass 857.7 078 6 11/2020 1. 11.2 2.01 127.7 184.4 184.1 192.2 A54103 A5A 877.7 078 6 11/2020 1. 13.5 3.181 13.85 13.2 182.1 182.2 185.1 182.5 82.1 182.1		LN547LM		BE20	07R	F 1	1/1/2020 8:4	1/1/2020 8:	23.7	4,724	33.2	5,905	87.3	9,811	94.1	96.7	100.9	148.2	94.3
FDX17 FDX B77L 07R G 1/1/2020 9.1 1/1/2020 10. 1/1/2020 11. 10.2 2.841 CSN433 CSN B77L 07R G 1/1/2020 10. 1/1/2020 11. 10.2 2.841 Runway Exit, and Date 61.1 82.5 82.2 155.4 147.6 A5A7056 A5A B772 07R 0 1/1/2020 10. 1/1/2020 11. 13.5 3.181 13.0 13.2 13.2 120.1 127.9 143.2 156.0 A5A7056 A5A B772 07R 0 1/1/2020 11. 11.3 2.908 Runway Exit, and Date 11.1 82.5 82.2 155.4 147.6 A5A7056 A5A B772 07R 0 1/1/2020 11. 1.15.5 3.181 13.0 13.2 120.1 127.9 143.2 156.0 A5A7056 A5A B772 07R 6 1/1/2020 11. 1/1/2020 11. 1.10.2 2.6 11.0 10.57 140.1 13.1 Mar Speed vs Three Speed vs Distance Acceleration vs The Acceleration vs The	FDX17 FDX B77L 07R G 1/1/2020 9.1 1/1/2020 10. <td>FDX17 FDX 971 078 6 1/1/2020 9.1 1/1/2020 9.7 9.9 1.950 Carrier, Aircraft, Runway, Runway Exit, and Date 121.7 139.5 141.2 148.4 141.0 CSN433 CSN B77L 078 6 1/1/2020 10. 1/1/2020 1. 102 2.841 Runway Exit, and Date 61.1 82.5 82.2 155.4 147.6 A5A705 A5A B737 078 0 1/1/2020 10. 1/1/2020 1. 13.5 3.181 130.2 132.2 120.1 127.9 143.2 156.0 A5A105 A5A B737 078 0 1/1/2020 11. 1/1/2020 1. 13.5 3.181 130.2 132.2 120.1 127.9 143.2 156.0 A5A105 A5A B737 078 6 1/1/2020 11. 1/1/2020 1. 8.3 185 113.2 120.1 127.9 140.1 133.1 Mar Speed vs Three Speed vs Three Acceleration vs Three Acceleratin vs Three</td> <td></td> <td>CAL5256</td> <td></td> <td>B744</td> <td></td> <td></td> <td>1/1/2020 9:0</td> <td>1/1/2020 9:</td> <td>6.8</td> <td>-</td> <td>F:14 a ma</td> <td>la</td> <td></td> <td></td> <td>83.1</td> <td>97.7</td> <td></td> <td></td> <td></td>	FDX17 FDX 971 078 6 1/1/2020 9.1 1/1/2020 9.7 9.9 1.950 Carrier, Aircraft, Runway, Runway Exit, and Date 121.7 139.5 141.2 148.4 141.0 CSN433 CSN B77L 078 6 1/1/2020 10. 1/1/2020 1. 102 2.841 Runway Exit, and Date 61.1 82.5 82.2 155.4 147.6 A5A705 A5A B737 078 0 1/1/2020 10. 1/1/2020 1. 13.5 3.181 130.2 132.2 120.1 127.9 143.2 156.0 A5A105 A5A B737 078 0 1/1/2020 11. 1/1/2020 1. 13.5 3.181 130.2 132.2 120.1 127.9 143.2 156.0 A5A105 A5A B737 078 6 1/1/2020 11. 1/1/2020 1. 8.3 185 113.2 120.1 127.9 140.1 133.1 Mar Speed vs Three Speed vs Three Acceleration vs Three Acceleratin vs Three		CAL5256		B744			1/1/2020 9:0	1/1/2020 9:	6.8	-	F :14 a ma	la			83.1	97.7			
CSN433 CSN B71 078 6 1/1/202010. 1/1/20201. 13 298 ASA7095 ASA B737 078 6 1/1/20201. 13.5 3.181 ASA7095 ASA B737 078 6 1/1/20201. 13.5 3.181 ASA7095 ASA B737 078 6 1/1/20201. 13.5 3.181 Name Seed vs Time Speed vs Distance Acceleration vs Time Acceleration vs Distance Acceleration vs Time Acceleration vs Distance Acceleration vs Distance<	CSN433 CSN B7L 07R 6 1/1/202010. 1/1/20201. 102 2.641 Cameri, Alricraft, Runway,	CSN433 CSN B7L 07R 6 1/1/202010. 1/1/20201. 102 2.641 Cameri, Alricraft, Runway,		FDX37	FDX	MD11		G 1	1/1/2020 9:0	1/1/2020 9:	6.9						64.6	79.2	83.2	158.4	150.5
CSN43 CSN B7/L 07R G 1/1/2020 10 1/1/2020 11 10.2 2.841 Runway Exit, and Date 69.1 86.4 88.4 198.1 1902 CPA085 CPA B748 07R G 1/1/2020 10 11.3 2.908 Runway Exit, and Date 61.1 82.5 82.2 155.4 147.6 ASA7055 ASA B737 07R D 1/1/2020 10 11.3 2.908 Runway Exit, and Date 61.1 82.5 82.2 155.4 147.6 ASA183 ASA B737 07R G 1/1/2020 11 11.3 1.908 Runway Exit, and Date 113.2 120.1 127.9 143.2 186.0 ASA183 ASA B737 07R G 1/1/2020 11 171.2020 11 83 1.895 Runway Exit, and Date 92.5 98.1 105.7 140.1 133.1 Mar Speed vs Time Speed vs Distance Acceleration vs Di	CSN43 CSN B7/L 07R G 1/1/20201c. 1/20201.	CSN43 CSN B7/L 07R G 1/1/20201c. 1/20201.		FDX17	FDX	B77L	07R	G 1	1/1/2020 9:1	1/1/2020 9:	7.9		Carrie	: Aircra	aft. Runwav		121.7	139.5	141.2	148.4	
ASA 095 ASA B737 07R D 1/1/2020 10 1/1/2020 11	ASA 095 ASA 8737 07R 0 1/1/2020 10 1/1/2020 11	ASA 095 ASA 8737 07R 0 1/1/2020 10 1/1/2020 11		CSN433	CSN	B77L	07R	G 1	1/1/2020 10:	1/1/2020 1	10.2					, 	69.1	86.4	88.4	158.1	150.2
As its as a brance of the last position reported (ramp)	As As a Br37 OTR G 1/1/2020 11 1/1/2020 1 8.3 1.885 Provide and the second sec	As As a Br37 OTR G 1/1/2020 11 1/1/2020 1 8.3 1.885 Provide and the second sec		CPA085			-														
Map Speed vs Time Speed vs Distance Acceleration vs Distance Data Map Speed vs Time Speed vs Distance Acceleration vs Distance Data Landing track follows the aircraft up to the last position reported (ramp	Map Speed vs Time Speed vs Distance Acceleration vs Distance Data Landing track follows the aircraft up to the last position reported (ramp	Map Speed vs Time Speed vs Distance Acceleration vs Distance Data Landing track follows the aircraft up to the last position reported (ramp						-					Range								
Landing track follows the aircraft up to the last position reported (ramp	Landing track follows the aircraft up to the last position reported (ramp	Landing track follows the aircraft up to the last position reported (ramp		ASA183	ASA	B737	07R	G 1	1/1/2020 11:	1/1/2020 1	8.3	1,885	EU.E	0,004	00.L	1,000	92.5	98.1	105.7	140.1	133.1
								a.			1 de	R	MIGH					111	the start of		
							5							R	aircraft up t position rep	o the last orted (rai					
														R	aircraft up t position rep	o the last oorted (rai gate)	mp	22			
														R	aircraft up t position rep	o the last oorted (rai gate)	mp				

Consolidated Wake Vortex Separations - On Approach

h. ON APPROACH. In addition to subparagraph g, separate an aircraft on approach behind another aircraft to the same runway by ensuring the separation minima in TBL 5–5–2 will exist at the time the preceding aircraft is over the landing threshold.

NOTE-

Consider parallel runways less than 2,500 feet apart as a single runway because of the possible effects of wake turbulence.

						Follower				
		Α	В	С	D	E	F	G	н	I
	Α		4.5 NM	6 NM	6 NM	7 NM	7 NM	7 NM	7 NM	8 NM
	В		3 NM	4 NM	4 NM	5 NM	5 NM	5 NM	5 NM	6 NM
	С					3.5 NM	3.5 NM	3.5 NM	5 NM	6 NM
r	D		3 NM	4 NM	4 NM	5 NM	5 NM	5 NM	6 NM	6 NM
Leader	E									4 NM
Ĕ	F									4 NM
	G									
	н			Er	noty Cells	Apoly Mir	nimum Rac	lar Separat	tion	
	ļ				nm default					
Source: I	- AA Orde	er JO 711	0.126A				at meet a . me criteria			

Wake Turbulence Separation for On Approach

Minimum Arrival-Arrival Separation Matrix δ_{ii}

	Trailing A	Aircraft (Header C	Columns)
Lead Aircraft (column 1)	F	E	В
F	3	3	3
E	3	3	3
В	5	5	3

• The minimum radar separation criteria is 3 nm because the runway has runway occupancy times above 50 seconds.

Aircraft CWT Group	F	Е	В
ROT (s)	51	54	65

Probability of an Arrival Following Another Arrival Matrix (P_{ij})

	Trailing Aircraft (Header Columns)				
Lead Aircraft (column 1)	F E B				
F	0.672	0.082	0.066		
E	0.082	0.010	0.008		
В	0.066	0.008	0.006		

The probability matrix implies random arrivals.

Note: Check that the summation of P_{ij} is always one.

Calculation of Error-Free Time Between Arrivals (T_{ij})

- Consider a class E aircraft followed by another class E
- Use the closing case equations

$$T_{ij} = \frac{\delta_{ij}}{V_j}$$
 and $B_{ij} = \sigma_0 q_v$
 $T_{EE} = \frac{\delta_{EE}}{V_E} = \frac{3}{137} = 0.0219$ hours or 79 seconds

 $B_{EE} = (20)1.65 = 33$ seconds

Note: Probability of violation is 5% and $q_v = 1.65$

Calculation of Error-Free Time Between Arrivals (T_{ij})

- Consider a class B (Upper Heavy) aircraft followed by a class F aircraft
- Use the opening case equations

$$T_{ij} = \frac{\delta_{ij}}{V_j} + \gamma(\frac{1}{V_j} - \frac{1}{V_i}) \quad \text{and} \quad B_{ij} = \sigma_0 q_v - \delta_{ij}(\frac{1}{V_j} - \frac{1}{V_i})$$

 $T_{BF} = 178$ seconds

 $B_{BF} = 16$ seconds

Note: Probability of violation is 5% and $q_v = 1.65$

Error-Free (No Buffers) Time Between Arrivals Matrix (T_{ii}) Trailing Aircraft (Header Columns) Lead Aircraft F F B (column 1) 82 72 79 F F 79 72 94 72 B 178 161

- Use the opening and closing equations described in class.
- Cells in orange are opening cases. White cells are closing cases (including cases with equal approach speeds).

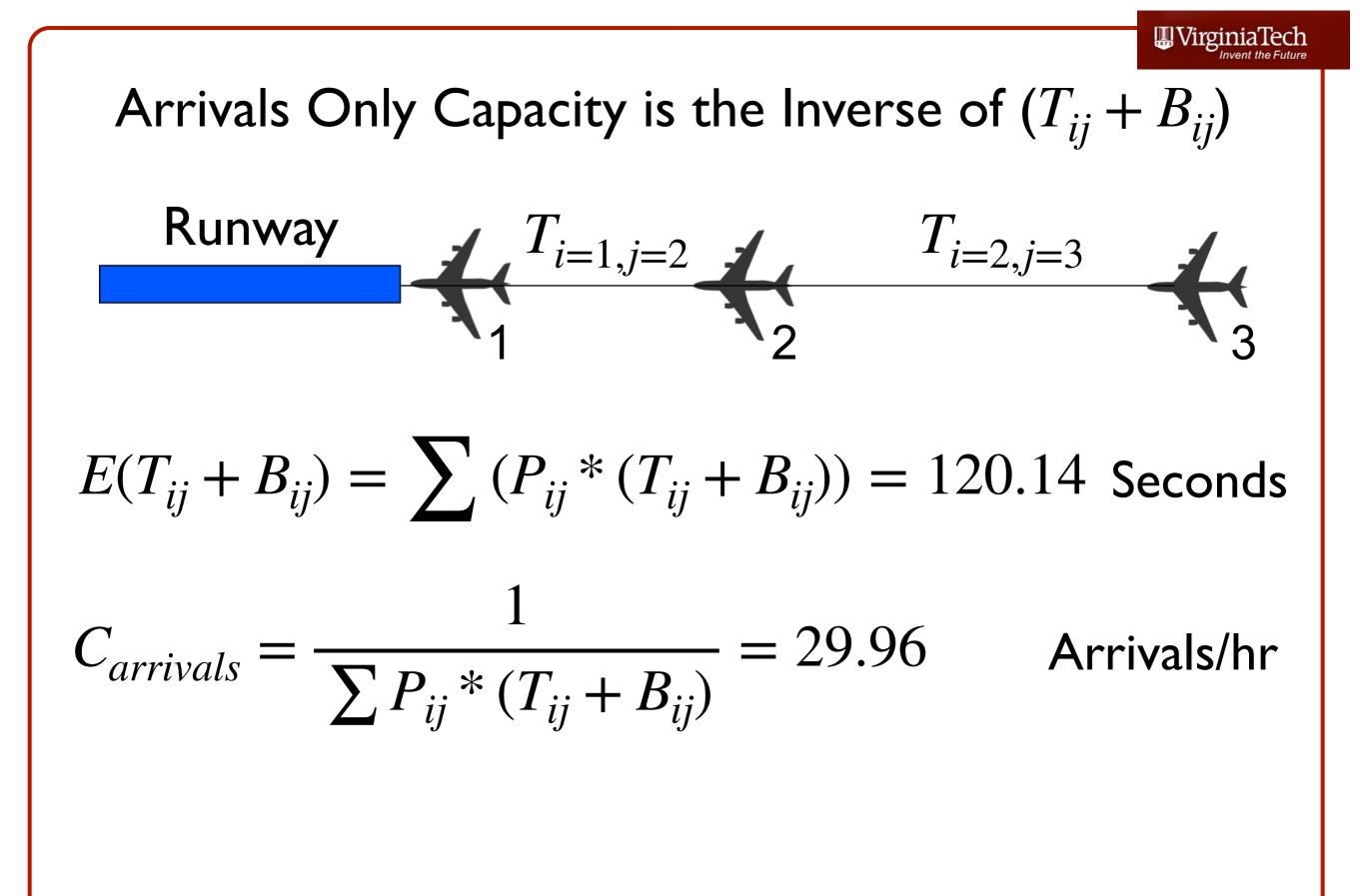
Buffer Matrix (B_{ij})

	Trailing Aircraft (Header Columns)					
Lead Aircraft (column 1)	F E B					
F	33	33	33			
E	30	33	33			
В	16	21	33			

Buffers are estimated using the opening and closing equations described in class.

Closing or equal speeds

 $B_{ij} = \sigma_0 q_v$


$$B_{ij} = \sigma_0 q_v - \delta_{ij} \left(\frac{1}{V_j} - \frac{1}{V_i}\right)$$

Error-Free Plus Buffer Matrix $(T_{ij} + B_{ij})$

	Trailing Aircraft (Header Columns)					
Lead Aircraft (column 1)	F E B					
F	114.8	111.8	104.5			
E	123.8	111.8	104.5			
В	193.4	181.4	104.5			

The $T_{ij} + B_{ij}$ matrix represents real-separations that are expected at the airport and include safety buffers.

$$E(T_{ij} + B_{ij}) = \sum (P_{ij} * (T_{ij} + B_{ij})) = 120.14$$
 Seconds

Departure-Departure Separation Information on FAA JO 7110.65Z (ATC Handbook)

Example language in FAA JO 7110.65Z

- **i.** Separate aircraft when operating on a runway with a displaced landing threshold if projected flight paths will cross when either a departure follows an arrival or an arrival follows a departure by the following minima:
 - 1. Heavy, large, or small behind super 3 minutes.
 - 2. Heavy, large, or small behind heavy 2 minutes.
 - 3. Small behind B757 2 minutes.
- **j.** Separate an aircraft behind another aircraft that has departed or made a low/missed approach when utilizing opposite direction takeoffs or landings on the same or parallel runways separated by less than 2,500 feet by the following minima:
 - 1. Heavy, large, or small behind super 4 minutes.
 - 2. Heavy, large, or small behind heavy 3 minutes

Language still references Super-Heavy, Heavy, Large, B757, and Small (see aircraft classifications handout)

Departure-Departure Separation Matrix Values in Seconds (no buffers)

	Trailing Aircraft (Header Columns)					
Lead Aircraft (column 1)	F E B					
F	60	60	60			
Е	60	60	60			
В	120	120	120			

The FAA ATC Handbook (JO 7110.65Z) contains the air traffic control separations applied in the United States

https://www.faa.gov/air_traffic/publications/atpubs/atc_html/

🛄 Virgir

Expected Inter-Departure Times

Let ϵ_{ij} be the departure-departure separation between successive departures (in seconds)

The expected value between successive departures is:

$$E(\epsilon_{ij}) = \sum P_{ij} * \epsilon_{ij}$$
 $E(\epsilon_{ij}) = 64.8$ Seconds

 $E(\epsilon_{ij}) = P_{FF} * \epsilon_{FF} + P_{FE} * \epsilon_{FE} + P_{FB} * \epsilon_{FB} + P_{EF} * \epsilon_{EF} + P_{EE} * \epsilon_{EE} + \dots$

	Trailing Aircraft (Header Columns)				Trailing Aircraft (Header Columns)			
Lead Aircraft (column 1)	F	E	В		Lead Aircraft (column 1)	F	E	В
F	0.672	0.082	0.066	\mathbf{v}	F	60	60	60
E	0.082	0.010	0.008		E	60	60	60
В	0.066	0.008	0.006		В	120	120	120

Departure ATC-Pilot Buffers

- ATC-Pilot communications and engine thrust spool-up time add a buffer τ (in seconds) to ϵ_{ii}
- au is the result of two contributing factors:
 - ATC-pilot communications time lags
 - Aircraft engine thrust spool-up time
- In this analysis we use a deterministic value for τ is 10 seconds

	Trailing Aircraft (Header Columns)				
Lead Aircraft (column 1)	F	В			
F	70	70	70		
E	70	70	70		
В	130	130	130		

Departures Analysis with Buffers

Let $E(\epsilon_{ij} + \tau)$ be the expected departure-departure separation between successive departures (in seconds)

$$E(\epsilon_{ij} + \tau) = \sum P_{ij} * (\epsilon_{ij} + \tau)$$

$$E(\epsilon_{ij} + \tau) = 79.84 \text{ Seconds}$$

$$C_{departures} = \frac{1}{E(\epsilon_{ij} + \tau)} = 45.1 \text{ Departures/hr}$$

$$Values of (\epsilon_{ij} + \tau)$$

Air Transportation Systems Laboratory

В

В

130

130

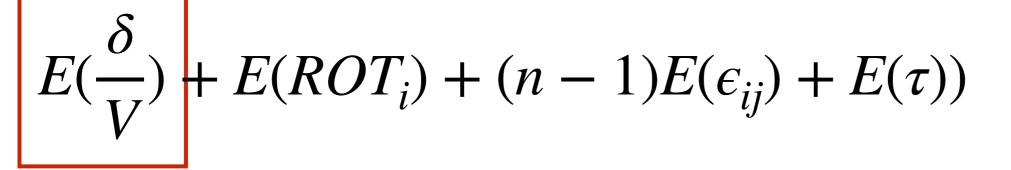
130

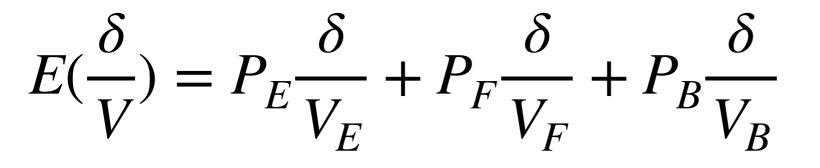
UrginiaTech

Gap Analysis

Goal: To find instances where Gaps exist allowing one departure between two successive arrivals

$$E(T_{ij} + B_{ij}) > E(\frac{\delta}{V}) + E(ROT_i) + (n-1)E(\epsilon_{ij}) + E(\tau))$$


Time between aircraft *i* arrival And aircraft *j*


Gap for
$$(n - 1)$$
 departures

We evaluate the right hand side of the equation parametrically with multiple values of n

Gap Analysis: $E(\frac{\delta}{V})$ Term

Example evaluation:

$$E(\frac{\delta}{V}) = 0.82 \frac{2}{132} + 0.10 \frac{2}{137} + 0.08 \frac{2}{151}$$
 Hours

$$E(\frac{\delta}{V}) = 53.8$$
 Seconds

Gap Analysis: $E(ROT_i)$ Term

Example evaluation:

$$E(\frac{\delta}{V}) + E(ROT_i) + (n-1)E(\epsilon_{ij}) + E(\tau))$$

 $E(ROT_i) = P_F * ROT_E + P_E * ROT_F + P_B * ROT_B$

 $E(ROT_i) = 0.82 * 51 + 0.10 * 54 + 0.08 * 65$

 $E(ROT_i) = 52.4$ Seconds

Gap Analysis: $E(\epsilon_{ij} + \tau)$ Term

Example evaluation:

$$E(\frac{\delta}{V}) + E(ROT_i) + (n-1)E(\epsilon_{ij}) + E(\tau))$$

For one departure per gap:

$$(n-1)E(\epsilon_{ij}+\tau)=(0)E(\epsilon_{ij}+\tau)=0$$

For two departures per gap:

$$(n-1)E(\epsilon_{ij}+\tau) = E(\epsilon_{ij}+\tau) = 79.8$$
 Seconds

Gap Analysis: $E(\tau)$) Term

Example evaluation:

$$E(\frac{\delta}{V}) + E(ROT_i) + (n-1)E(\epsilon_{ij}) + E(\tau))$$

We assume the ATC-pilot and engine spool term is a constant at 10 seconds

Gap Analysis: Collecting Terms The table below shows a summary of the minimum gap to release *n* departures between two successive arrivals

Example: To release one departure between successive arrivals, the gap should be > 116.2 seconds

Departures (n)	Gap for n departures
1	116.2
2	181.0
3	245.8
4	310.6
5	375.4

Compare $(T_{ij} + B_{ij})$ with Minimum Departure Requirements $E(T_{ij} + B_{ij}) > E(\frac{\delta}{V}) + E(ROT_i) + (n - 1)E(\epsilon_{ij}) + E(\tau))$

• The analysis compares the right hand side and the left hand side to evaluate instances where arrival gaps is large enough to allow *n* departures

	Trailing A	ircraft (Header (Departures (n)	Gap for n departures	
Lead Aircraft (column 1)	F	Е	В	1	116.2
F	114.8	111.8	104.5	2	181.0
E	123.8	111.8	104.5	3	245.8
В	193.4	181.4	104.5	4	310.6
				5	375.4

Departures for Each Arrival Gap

$$E(T_{ij} + B_{ij}) > E(\frac{\delta}{V}) + E(ROT_i) + (n-1)E(\epsilon_{ij}) + E(\tau))$$

• The analysis compares the right hand side and the left hand side to evaluate instances where arrival gaps is large enough to allow *n* departures

	Trailing Aircraft (Header Columns)					
Lead Aircraft (column 1)	F	E	В			
F	0	0	0			
Е	1	0	0			
В	2	2	0			

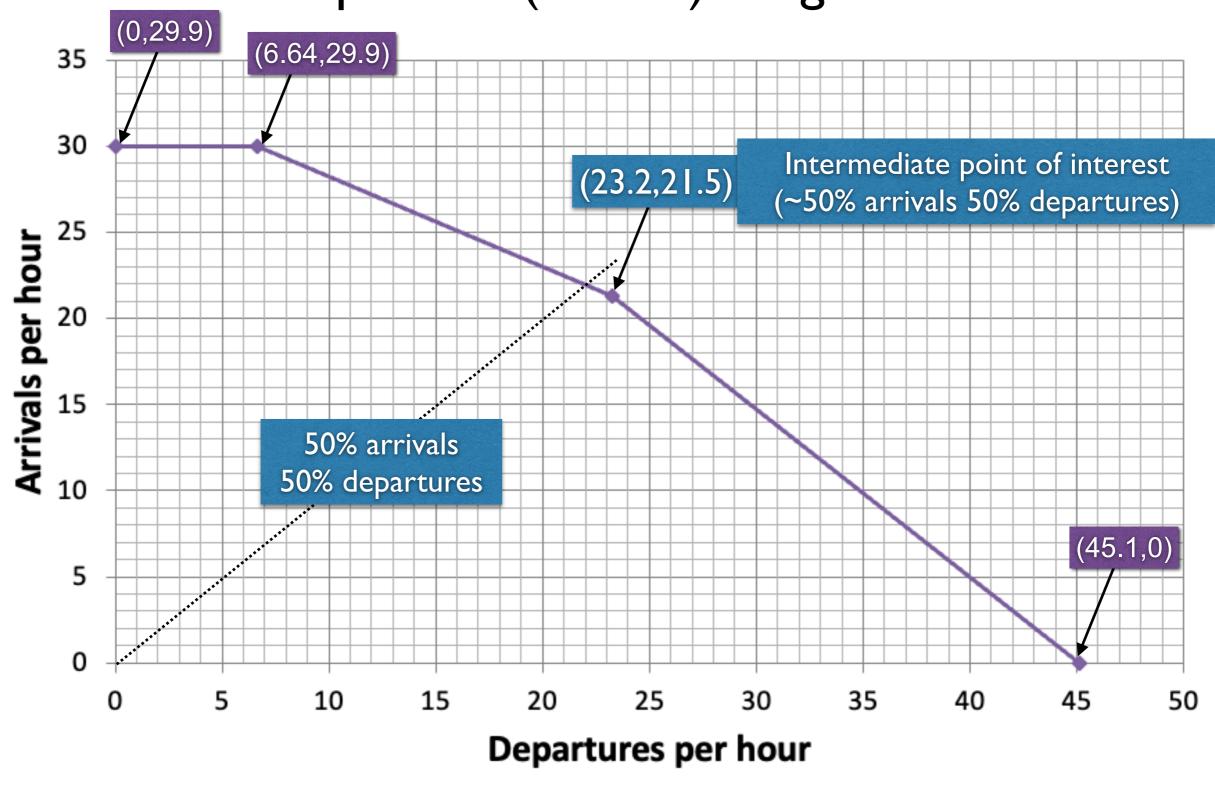
Expected Departures per Arrival Gap

• The analysis estimates the number of expected departures per hour per arrival gap

 $E(D_{ij}) = TG(P_{ij})(DG_{ij})$

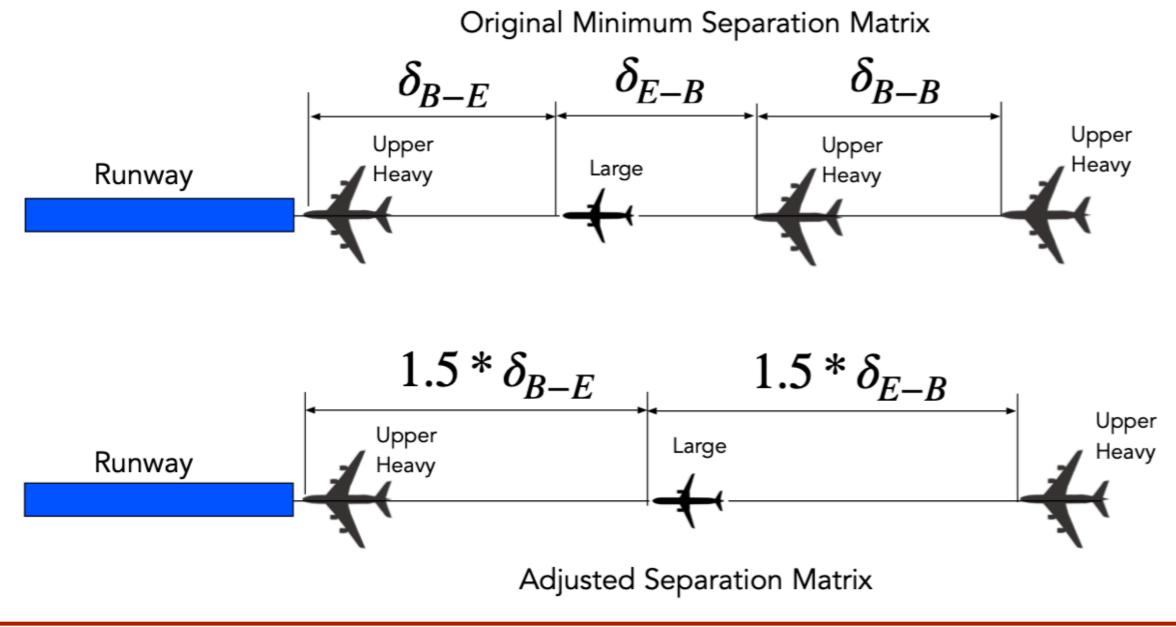
 $E(D_{ij})$ is the expected number of departure per gap when aircraft i follows aircraft j

TG is the number of total gaps in one hour


 P_{ij} is the probability that aircraft i follows aircraft j DG_{ij} is the departures per gap when aircraft ifollows aircraft j Departures for Each Arrival Gap

• The table summarizes the **expected number** of departures per arrival gap in one hour

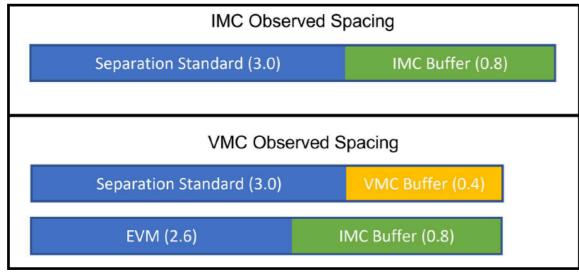
	Trailing Aircraft (Header Columns)						
Lead Aircraft (column 1)	F	E	В				
F	0.00	0.00	0.00				
E	2.38	0.00	0.00				
В	3.80	0.46	0.00				

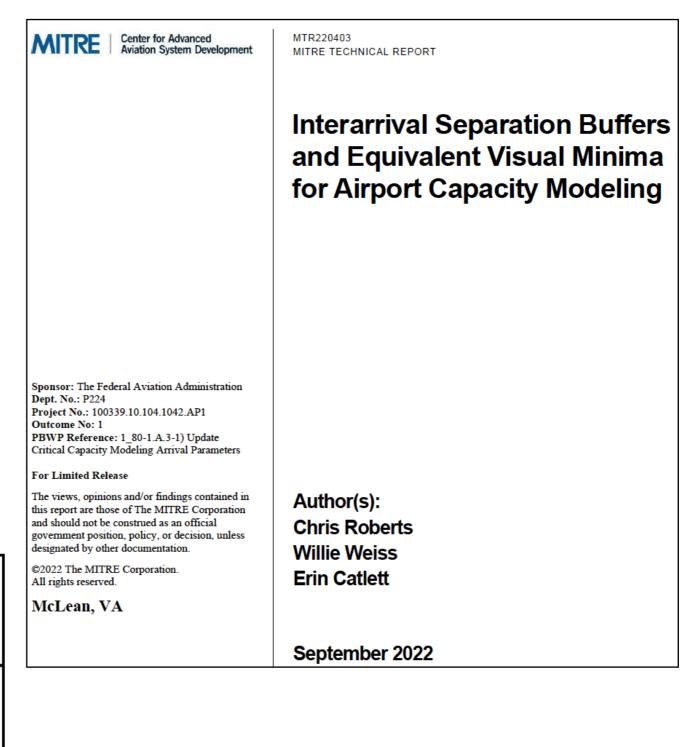

• The total number of departures is 6.64 per hour while keeping the number of arrivals at 29.9 per hour

Collect Numbers and Create an Arrival-Departure (Pareto) Diagram

Calculating Other Points in the Arrival-Departure (Pareto) Diagram

Adjust the minimum arrival-arrival separation matrix by a multiplier factor and recalculate the departure operations




Uvirginia Tech

FAA/MITRE Arrival Delivery Accuracy Updates

Recent work at the MITRE Corporation provides updated information about ATC arrival separation buffers and their standard deviation (σ_0)

The work also provides separations under visual conditions (called Equivalent Visual Minima)

III Virginia Tech

NAS-Wide ATC Arrival Buffers

- 5.3 million landings studied
- NAS-wide buffers are 29 seconds in IMC and 21 seconds in VMC
- Violation rates are 2.9% in VMC and 0.4% in IMC

Measure	VMC	IMC
Observation Count	5,070,478	303,826
Buffer Duration – Excess Inter-Arrival Time (seconds)	21.0	28.8
Buffer Duration – Excess Inter-Arrival Distance (NM)	0.8	1.1
Delivery Accuracy – Excess Inter-Arrival Time Std Dev (secondss)	13.8	13.1
Observed Violation Rate	2.9%*	0.4%
* = In VMC, violating IFR separation is not necessarily a safety concern because appropriate v	visual senaration can st	ill be provided

Table 5-1. NAS-Wide Buffer Duration and Delivery Accuracy

* = In VMC, violating IFR separation is not necessarily a safety concern because appropriate visual separation can still be provided.

Source: Roberts, Weiss, and Catlett, 2022. Interarrival Separation Buffers and Equivalent Visual Minima for Airport Capacity Modeling

ATC Arrival-Arrival Buffers Vary by Airport

Table 5-2. Airport-Specific Buffer Duration and Delivery Accuracy

		Duration onds)		Accuracy onds)	Observati	on Count
Airport	VMC	IMC	VMC	IMC	VMC	IMC
ATL	16.9	32.4	11.9	12.7	843,473	99,786
CLT	16.5	22.6	10.5	10.5	289,195	32,370
DEN	30.1	37.8	14.2	17.0	486,003	408
DFW	23.0	35.8	14.8	14.8	581,340	26,740
DTW	23.5	_	13.1	_	196,519	—
IAH	27.4	36.2	16.2	17.4	345,988	32,425
JFK	18.4	_	15.7	_	81,096	—
LAX	30.9	34.1	18.9	15.8	617,093	37,463
MCO	39.2	40.1	20.4	20.3	288,570	5,956
MEM	33.0	_	17.7	—	35,926	—
MSP	28.6	—	18.0	—	72,524	—
ORD	17.8	23.9	10.7	11.4	563,690	65,468
PHX	29.3	—	18.8	—	235,789	—
SEA	20.8		14.9	_	319,660	
SLC	20.6	39.3	15.5	16.4	113,612	3,210
NAS-wide	21.0	28.8	13.8	13.1	5,070,478	303,826

Source: Roberts, Weiss, and Catlett, 2022. Interarrival Separation Buffers and Equivalent Visual Minima for Airport Capacity Modeling

Air Transportation Systems Laboratory

UrginiaTech

NAS-Wide Equivalent Visual Minima (EVM)

Table 5-3. NAS-wide Equivalent Visual Minima (EVM)

Required IFR Separation in NM	Legacy EVM in NM	Updated EVM in NM	2018-2020 VMC Operations Count
8	N/A	8	66
7	N/A	6.5	7,432
6	4.5	4.5	4,329
5	3.6	4.5	174,826
4.5	N/A	4.2	1,205
4	2.7	3.2	72,213
3.5	N/A	3.1	60,610
3	1.9	2.6	684,383
2.5	1.9	2.2	4,065,414

Source: Roberts, Weiss, and Catlett, 2022. Interarrival Separation Buffers and Equivalent Visual Minima for Airport Capacity Modeling

Air Transportation Systems Laboratory

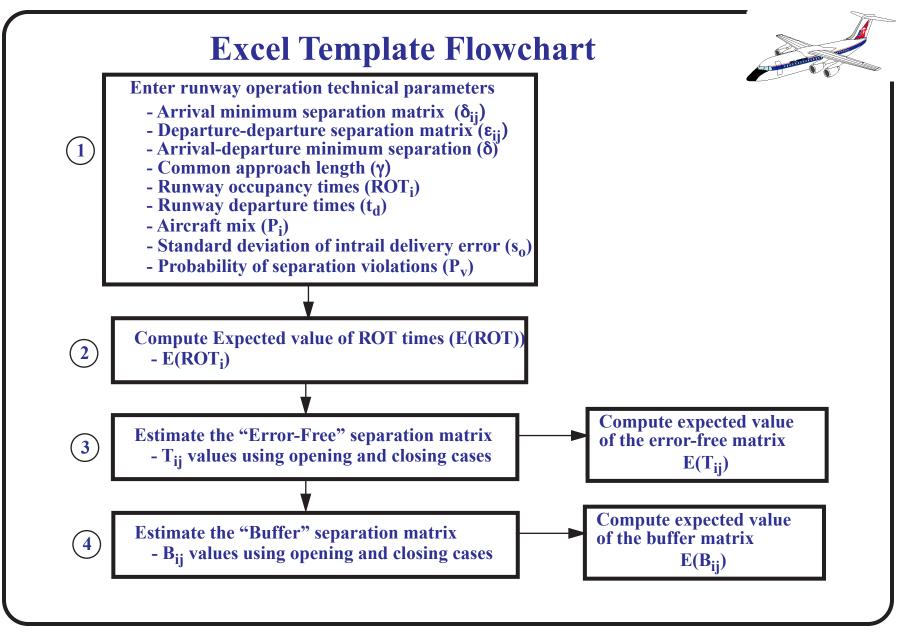
UrginiaTech

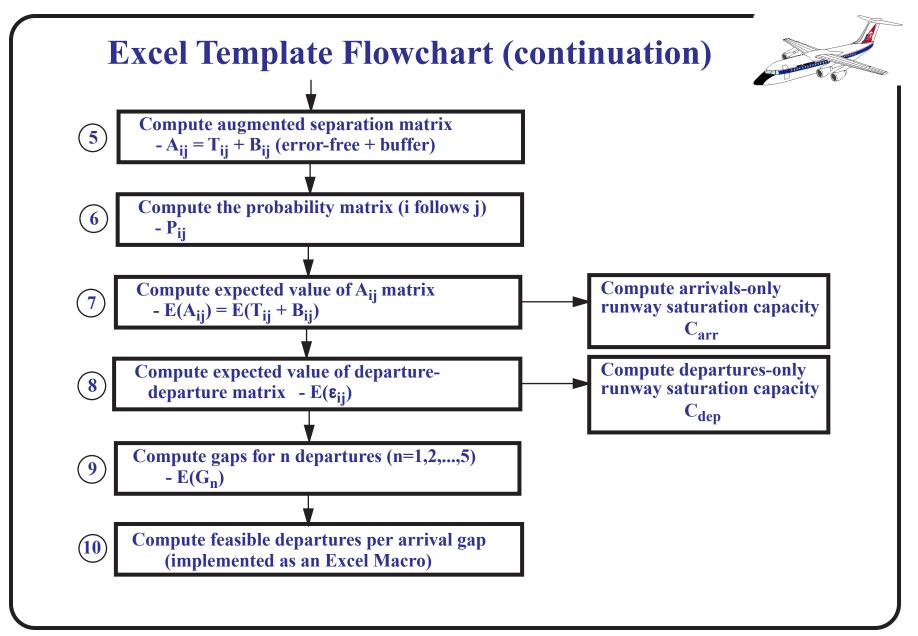
UirginiaTech

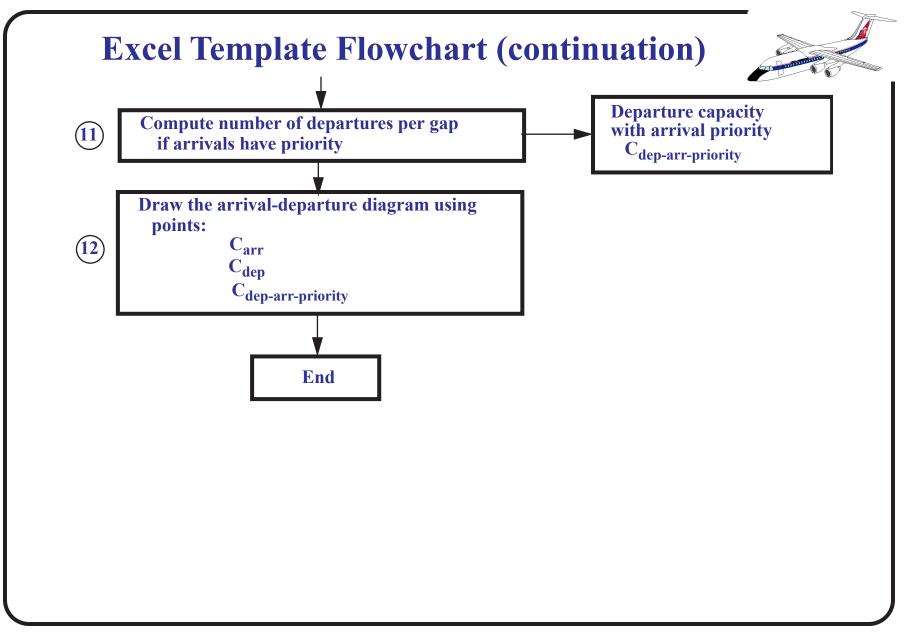
Airport-Specific Equivalent Visual Minima (EVM)

			Airpor	t-Specifi	c Equival	lent Visu	al Minin	na (EVM) in NM	
Required IMC Separation	NAS - Wide	ATL	CLT	DEN	DFW	IAH	LAX	MCO	ORD	SLC
*										
2.5	2.2	1.9	2.2	1.4	2.1	2.1	2.3	2.1	2.3	1.9
3	2.6	2.4	2.7	2.4	2.5	2.8	2.4	2.9	2.8	2.1
3.5	3.1	2.6	2.9	3.1	3.1	3.1	3.2	2.6	3.4	2.6
4	3.2	3.0	3.1	3.6	3.1	3.7	3.2	2.6	3.8	3.1
4.5	4.2	3.9	3.9	4.1	4.0	4.2	4.3	4.5	4.3	3.6
5	4.5	4.1	3.9	4.6	4.7	4.6	4.3	4.5	5.0	4.1
6	4.5	4.4	5.7	5.0	4.9	5.4	4.3	4.6	5.8	5.1
7	6.5	5.2	6.7	5.4	6.5	6.7	6.8	7.0	6.8	<i>6.1</i>
8	8	8	8	8	8	8	8	8	8	8
Italicized entri required to cal			gh data for	direct cal	culation – a	airport-lev	el average	of excess 1	MC spacir	ng was

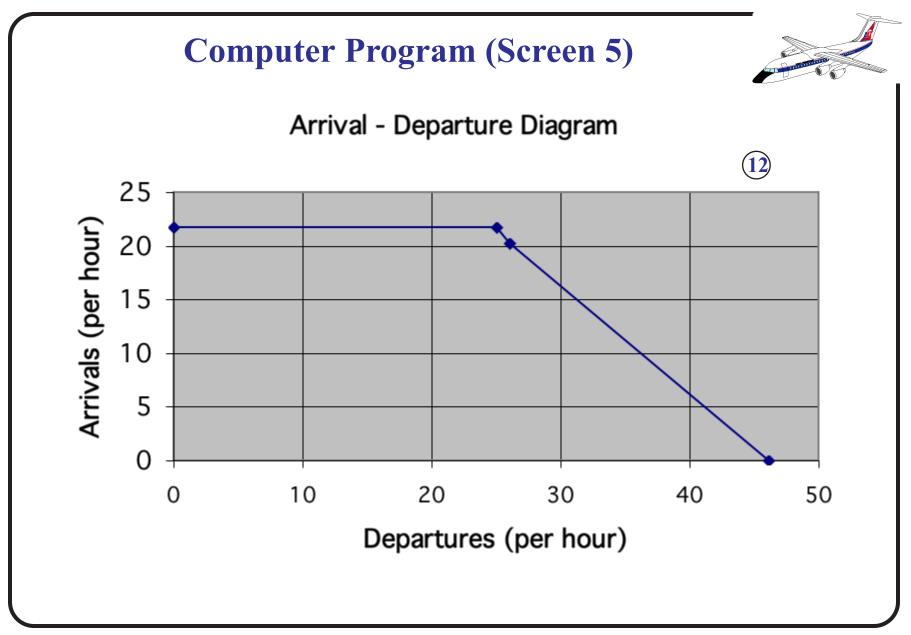
Table 5-4. Airport-Specific Equivalent Visual Minima


Source: Roberts, Weiss, and Catlett, 2022. Interarrival Separation Buffers and Equivalent Visual Minima for Airport Capacity Modeling


Air Transportation Systems Laboratory


Review of Runway Capacity Excel Program

- The Excel template provided in class attempts to illustrate how the time-space diagram technique can be "programmed" in a standard spreadsheet
- You can extend the analysis provided in the basic template to more complex airport configurations
- The program, as it stands now, can only estimate the saturation capacity of a single runway. The program provides a simple graphical representation of the arrival -departure saturation diagram (sometimes called capacity Pareto frontier in the literature)
- The following pages illustrate the use of the program using the values of the previous runway example.



\diamond		В	C	D	E	F	G
1	Runway Satura	ation Capacity E	stimation				
2	Using the Anal						
3	Ĩ	-					
4	Programmer: A	. Trani (January	y 2002)				
5	Amendments:		7-Apr-03		Corrected for	nula to estimate	e E(delta j)
6							
7							
8	Technical Para	meters (inputs))		Parameter	Values	
9	Dep-Arrival Se	paration (nm)			δ	2	\frown
10	Common Appro	oach Length (n	m)		γ	7	(1)
11	Standard devia	ation of Positio	n Delivery Erro	r (s)	σ	20	
12	Probability of V	violation			Pv	5	
13	Cumulative No				qv	1.65	
14							
15		Small	Large	Heavy			
16	ROT (s)	40	48	60	46	E(ROT)	
17	Percent Mix	70	0	30	100	Total %	(2)
18	Vapproach (kr	100	140	150			\bigcirc
19							
	Minimum Separ	-	-	Arrivais-Arriva	lis	Airport Type	
21			Trailing			Small	
22		Small	Large	Heavy			(1)
23	Small	3	3	3		Weather Condi	ions
24	Large	5	3	3		IFR	

25	Heavy	6	5	4		
26	,, j				Separation Mul	tiplier for V
27					1	
28	Error Free Sep	aration Matrix				
29			Trailing			
30		Small	Large	Heavy	Expected Valu	e (3)
31	Small	108.00	77.14	72.00	E(Tij)	
32	Large	252.00	77.14	72.00	139.68	
33	Heavy	300.00	140.57	96.00		
34						
35	Pij Matrix					
36			Trailing			
37		Small	<u> </u>	Heavy	Sum of Pij	(6)
38	Small	0.490	0.000	0.210	0.70	
	Large	0.000			0.00	
40	Heavy	0.210	0.000	0.090	<u>0.30</u>	
41					1.00	
42	Buffer Matrix					
43		C "	Trailing		F	
44	C	Small		Heavy	Expected Valu	e (4)
45	Small	33.00	33.00	33.00	B(Tij)	
	0	0.00			26.07	
47 48	Heavy	0.00	24.43	33.00		

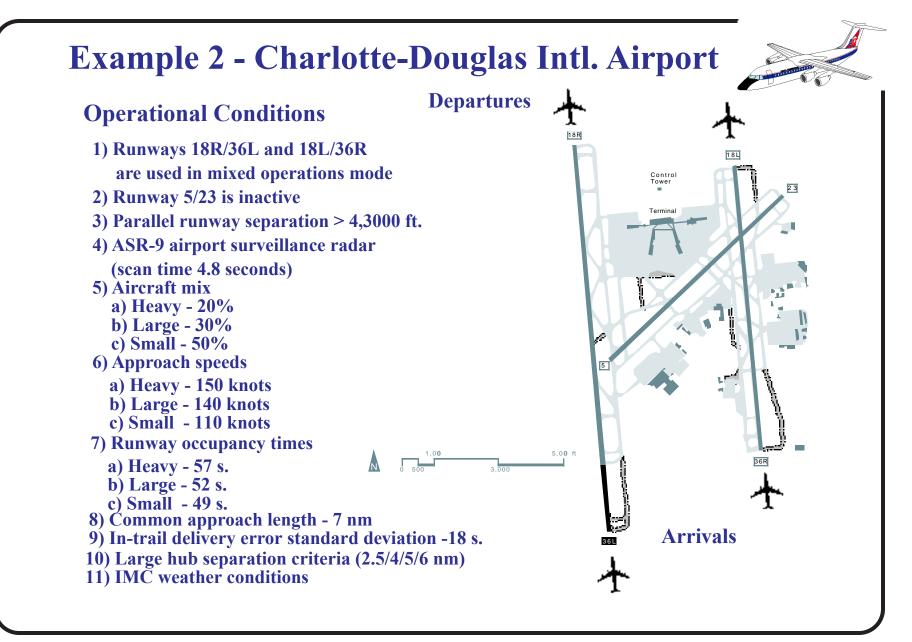
50	Augmented M	atrix					7
51	- 0		Trailing				-
52		Small	Large	Heavy		Expected Value	
53	Small	141.00	110.14	105.00		E(Tij) + B(Tij)	(5)
54	Large	252.00	110.14	105.00		165.75	
55	Heavy	300.00	165.00	129.00			
56							
57	Arrivals Only (Capacity (per h	our)	21.72			
58					(1)		
59							
60	Departure-De	parture Separat	tion Matrix (nm)			
61			Trailing				8)
62		Small	Large	Heavy		Expected Value	9
63	Small	60	60			E(Td)	
64	Large	90	90			78	
65	Heavy	120	120	120			
00							
67	Departures Or	nly Capacity (pe	er hour)	46.15			
00	F 12 12 12						7
69	Estimation of	Critical Departu	re Gaps			40.00	_
70	Dementures				E(ROT)	46.00	- (9)
71	Departures		Gap (E∆Tij)		E(ð∕Vj)	64.80	
72	1		120.70		σg*qv	9.90	-
73	2		198.70				4
74 75	3		276.70 354.70				_

79	8		666.70				
30	9		744.70	6	2		
31	10		822.70	6	0)		
32	11		900.70				
33							
34	Departures pe	er Gap					(11)
85			Trailing				
86		Small	Large	Heavy			
87	Small	1.00	0.00	0.0	00		
88	Large	2.00	0.00	0.0	00		
89	Heavy	3.00	1.00	1.0	00		
90							
91	Departures pe	er hour with 10	0% Arrival Prior	ity			
92							
93			Trailing				
94		Small	Large	Heavy		Expected Valu	e
95	Small	10.15	0.00	0.0	00	10.15	
96	Large	0.00	0.00	0.0	00	0.00	
97	Hea∨y	13.05	0.00	1.6	36	14.92	
98						25.07	Total Departı
99							with 100% ar

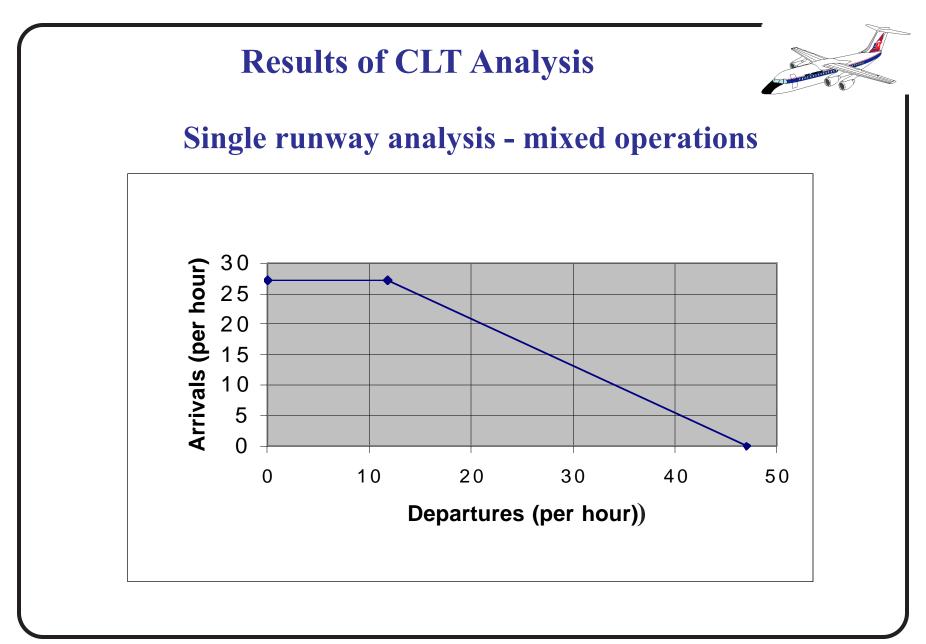
Estimating Runway Saturation Capacity for Complex Airport Configurations

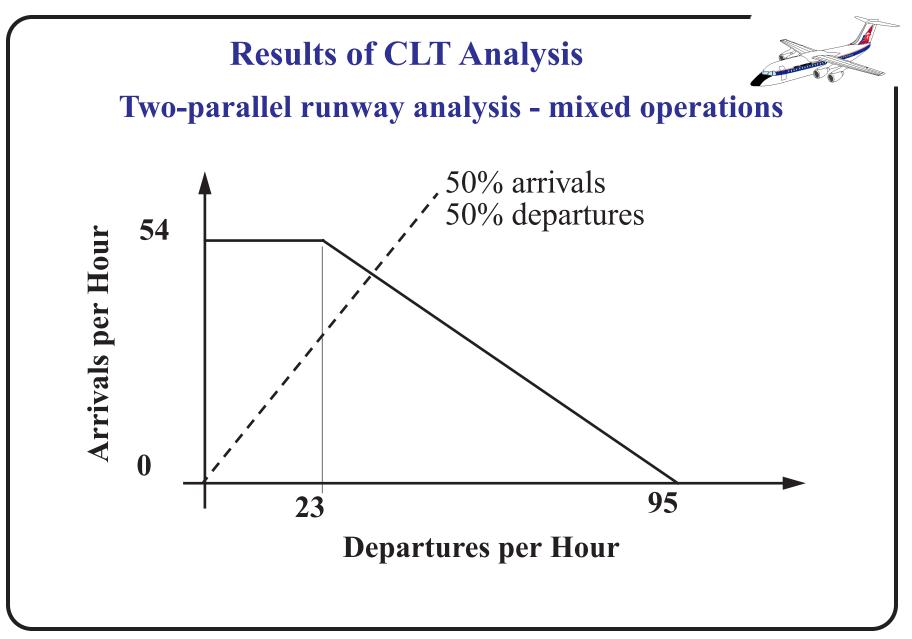
- The methodology explained in the previous handout addresses a simple Time-Space diagram technique to estimate the runway saturation capacity
- The time-space approach can also be used to estimate the saturation capacity of more complex runway configurations where interactions occur between runways
- Example problems taken from the FAA Airport Capacity benchmark document will be used to illustrate the points made

Methodology



- Understand the runway use according to ATC operations
- Select a primary runway as the basis for your analysis
- Estimate the saturation capacity characteristics of the primary runway using the known time-space method
- Examine gaps in the runway operations at the primary runway. These gaps might exist naturally (i.e., large arrival-arrival separations) or might be forced by ATC controllers by imposing large in-trail separations allowing operations at other runways

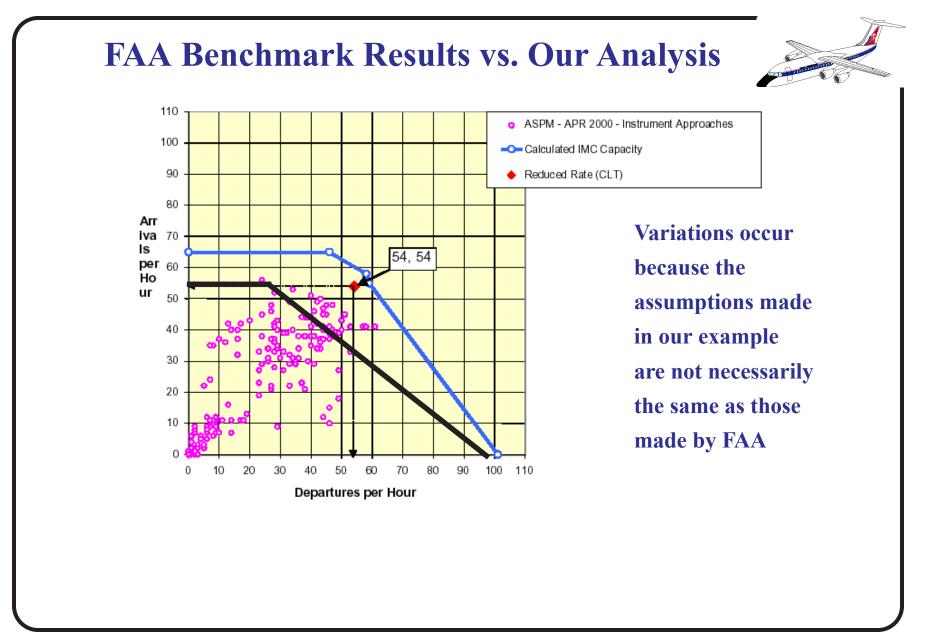

• If runway operations are independent you can estimate arrival and departure saturation capacities for each runway independently

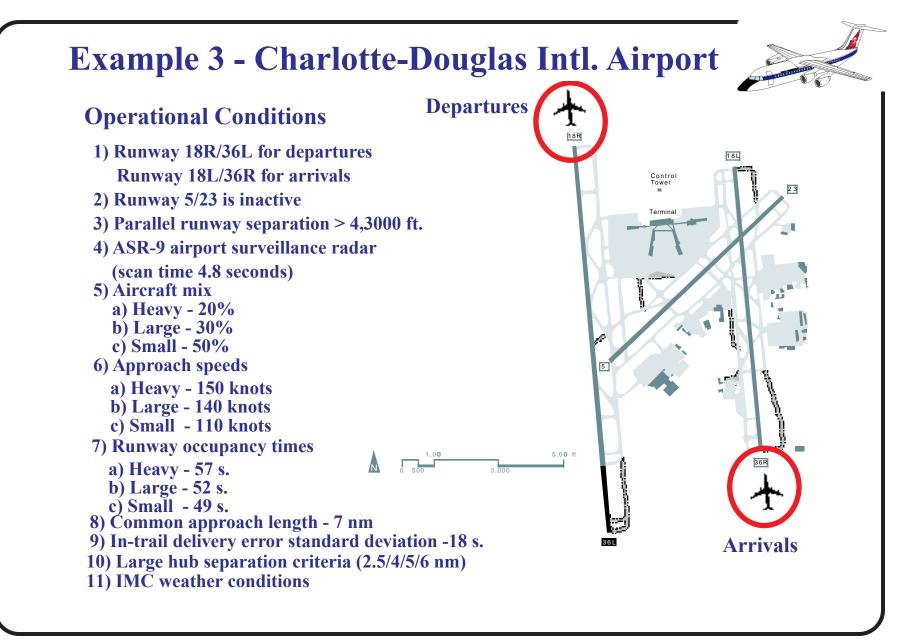


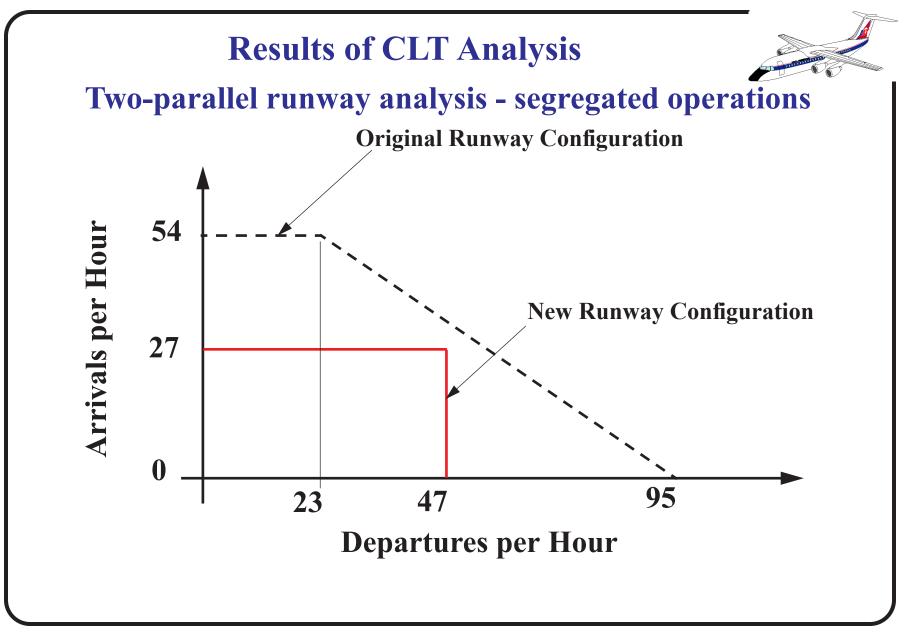
• If the operations on runways are dependent estimate the runway occupancy times (both for arrivals and departures) very carefully and establish a logical order f operations on the runways.

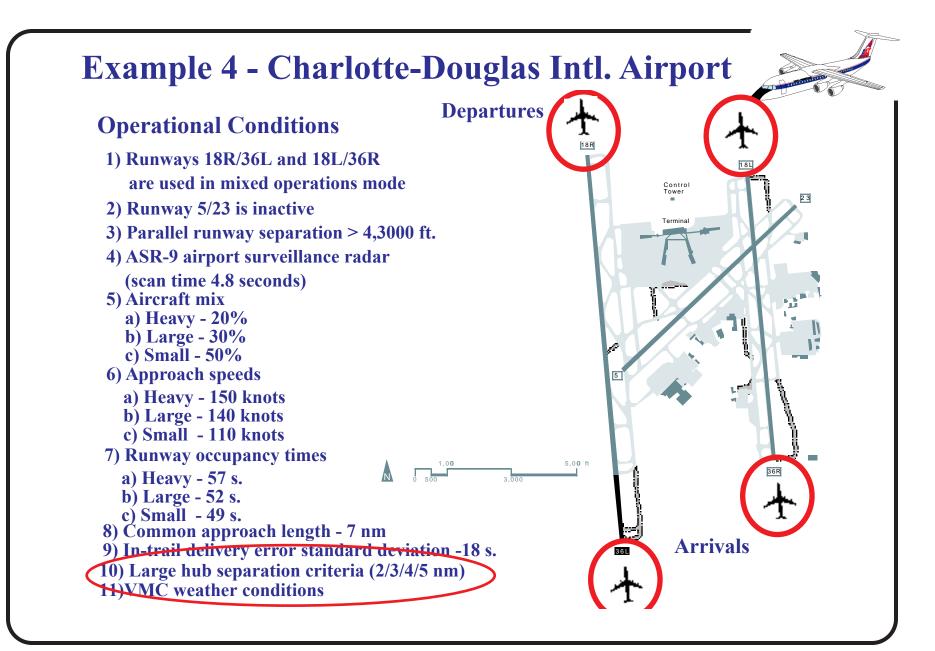
0						
49	A	- h - h - h				
	Augmented Ma	atrix	T			
51		C	Trailing	11		
52	o "	Small	Large	Heavy		Expected Value
	Small	111.52				E(Tij) + B(Tij)
54	Large	181.65				132.51
	Heavy	257.45	161.70	125.70		
56						
57	Arrivals Only C	apacity (per h	our)	27.17		
58					Doporturo	Donantura
59					Departure-	-
60	Departure-Departure Separation Matrix (seconds) Separation Matrix					
61			Trailing			
62		Small	Large	Heavy		Expected Value
63	Small	60	60	_		E(Td)
64	Large	90	60	60		76.5
_	Heavy	120	120	120		
66	,				•	
	Departures Or	ly Capacity (pe	er hour)	47.06		
68						

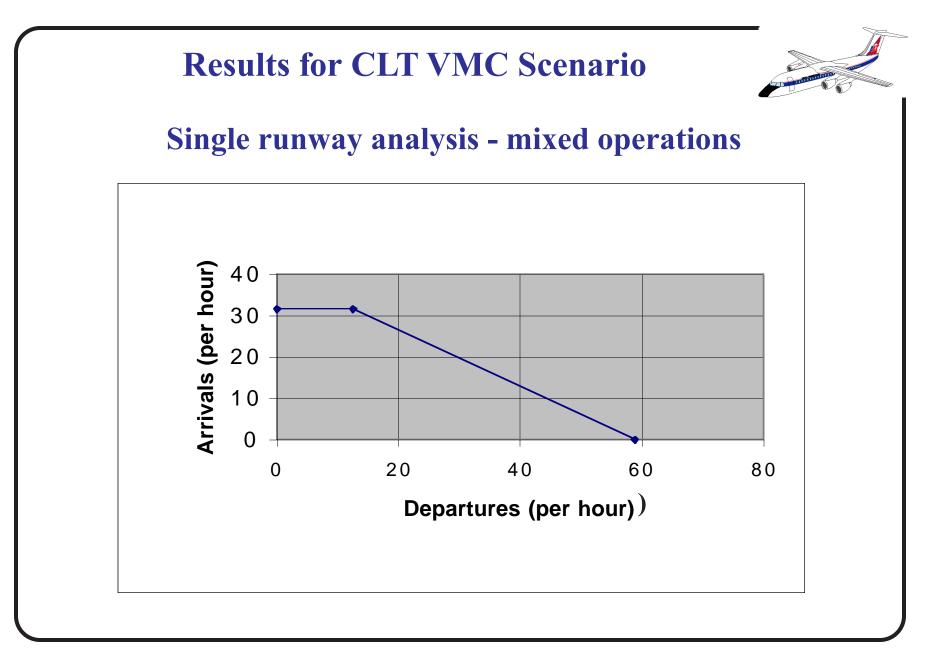
Capacity Benchmark Results

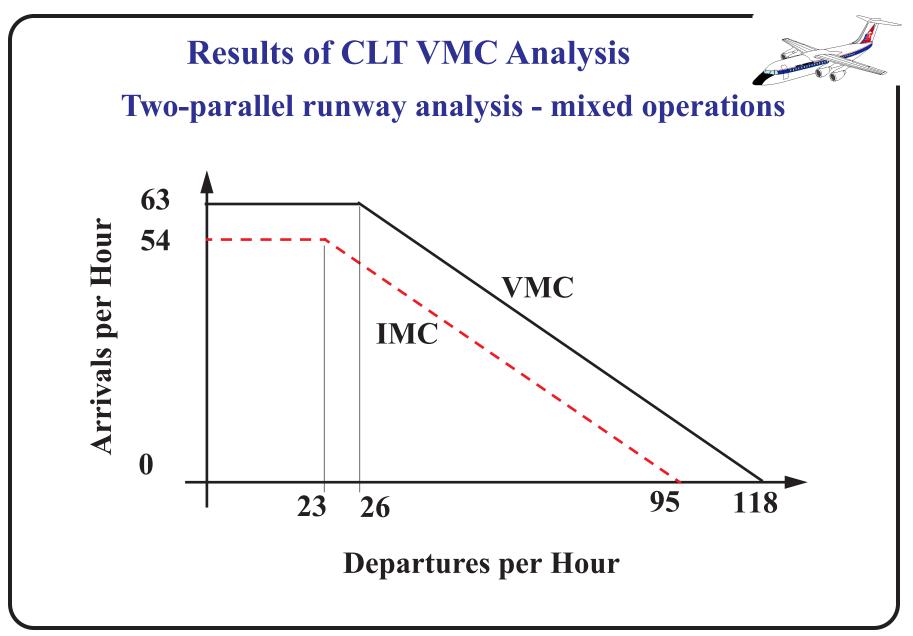


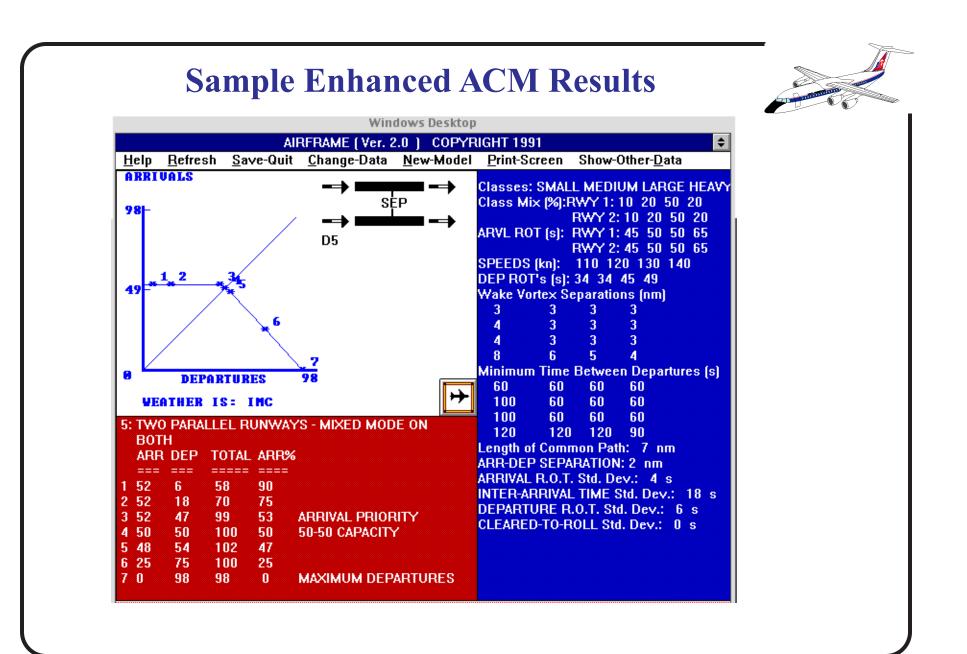

The FAA capacity benchmarks offer an assessment of the estimated capacity by the FAA


	Airport	Optimum	Reduced
ATL	Atlanta Hartsfield International	185–200	167-174
BOS	Boston Logan International	118–126	78–88
BWI	Baltimore-Washington International	111–120	72–75
CLT	Charlotte/Douglas International	130–140	108–116
CVG	Cincinnati-Northern Kentucky	123–125	121–125
DCA	Washington Reagan National	76–80	62–66

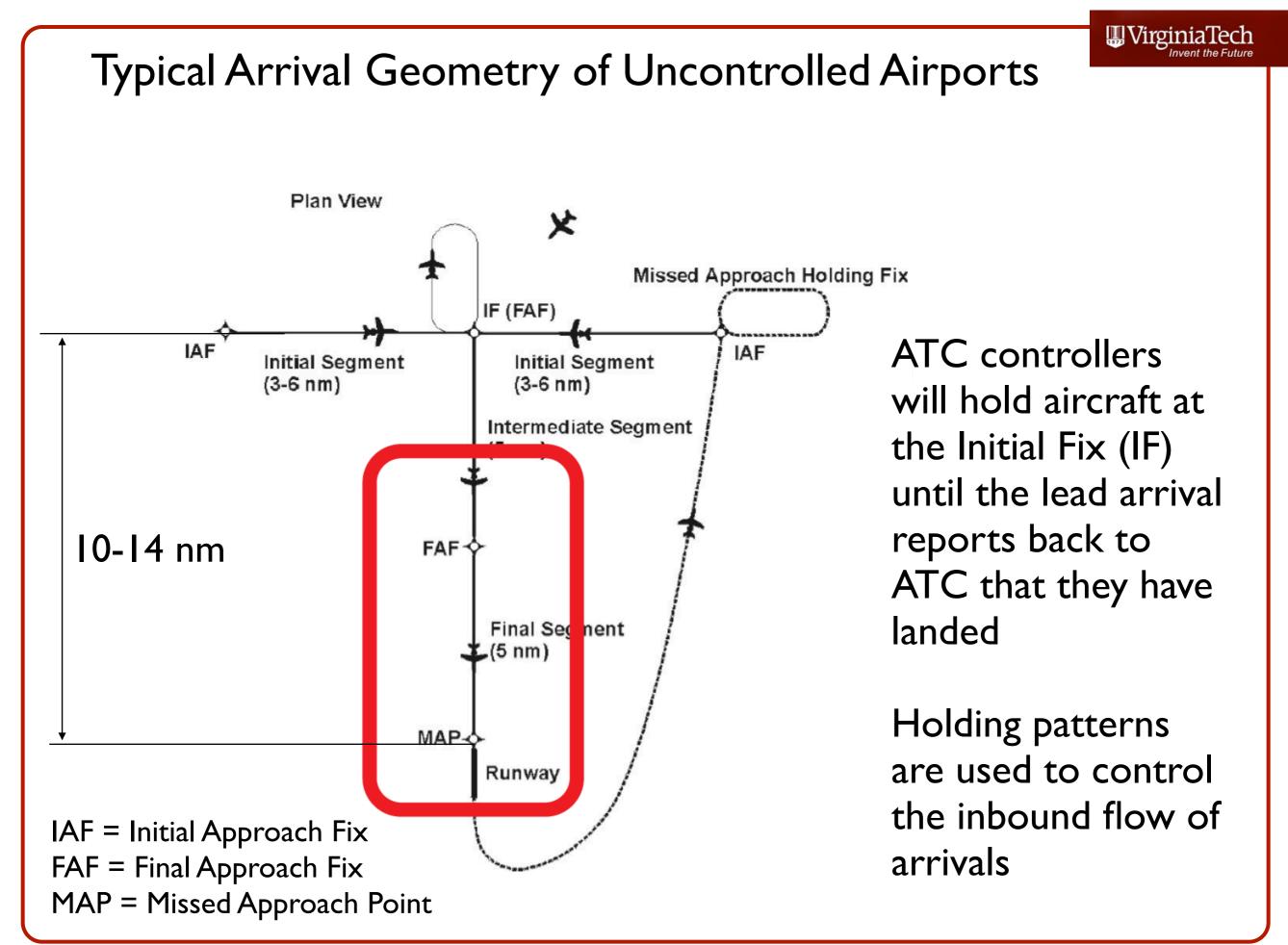

Table 1Capacity Benchmarks for Today's Operations at 31 Airports

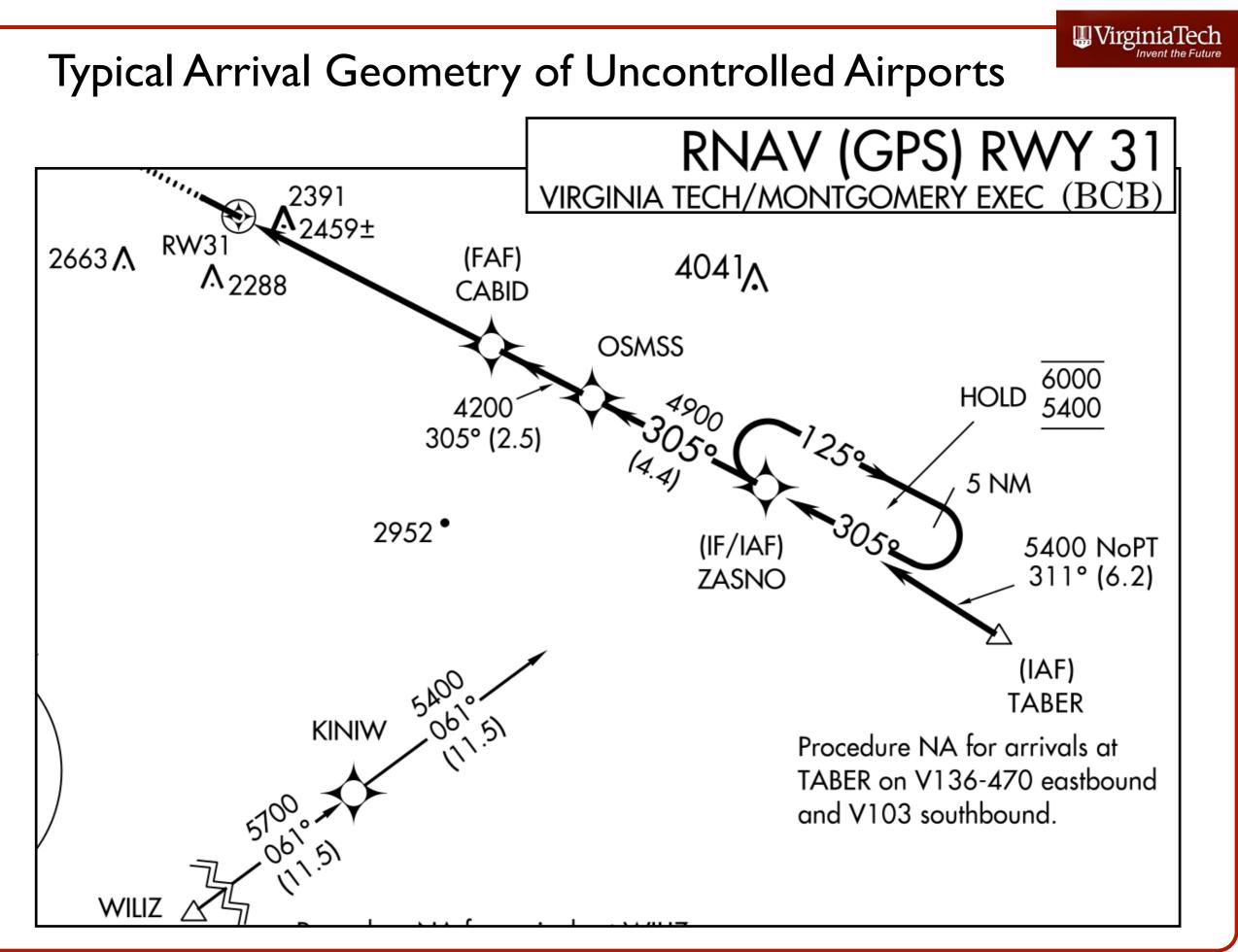

Reduced capacity = IMC conditions

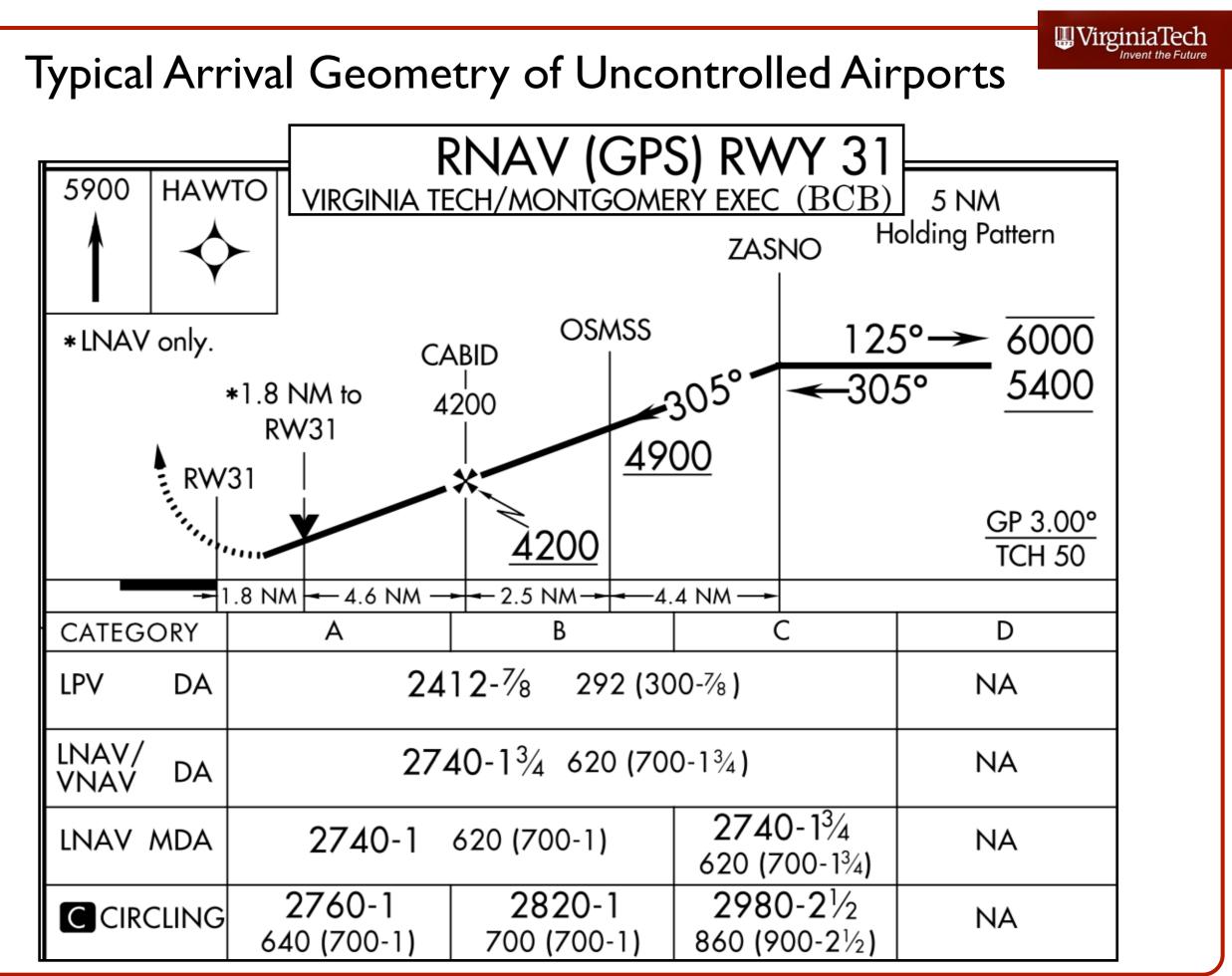




Airport Capacity Model (ACM)




- Model developed by FAA to expedite computations of runway saturation capacity
- Later modified by MITRE to be more user friendly
- Inputs and output of the model are similar to those included in the spreadsheet shown in class
- Provides 7-9 data points to plot the arrival-capacity saturation capacity envelope (Pareto frontier)



Capacity of Non-tower Airports

- Existing airports without a control tower have lower runway capacities
 - In IMC (Instrument Meteorological Conditions) perhaps
 5-9 arrivals per hour
 - In VMC (Visual Meteorological Conditions) around 15-20 arrivals per hour
- These airports require large headways (10-12 minutes) between aircraft because ATC cannot see the aircraft in radar (ATC applies procedural separations)
- Automated Dependance Surveyance (ADS-B) can help provide better situational awareness

Example Problem: BCB Airport
 Example of vectoring and 360 degree turn to establish separation

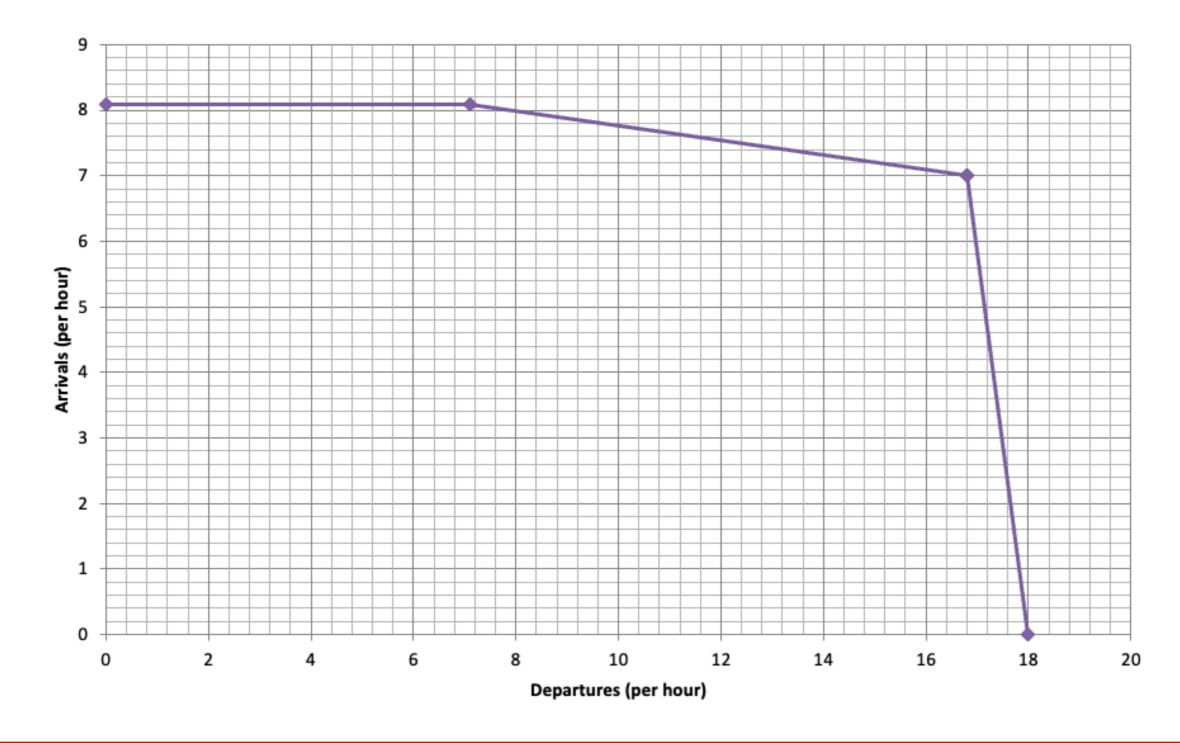
- Virginia Tech Airport
- Two aircraft CWT groups operating at the airport

Aircraft CWT Group	Н	
ROT (s)	50	52
Percent Mix (%)	80	20
Vapproach (knots)	110	125

- Virginia Tech Airport
- IMC Conditions

Using the Analyical Model for Runway Capacity								
Programmer: A. Trani (August 2019)								
Amendments:	1							
Technical Parameters (inputs)				Parameter	Values			
Dep-Arrival Separation (nm)				δ	10			
Common Approach	γ	12						
Standard deviation	σ	16						
Probability of Violation				Pv	5			
Cumulative Normal at Pv				qv	1.65			
	1	Н	С	В	A			
ROT (s)	50	50	62	64	0			
Percent Mix (%)	80.00	20.00	0.00	0.00	0.00			
Vapproach (knots)	110.0	125.0	143.0	151.0	160.0			

IMC Conditions


Minimum Separation		
		Trailing Aircraft
Lead (column 1)	I	Н
Н	12	12
	12	12
	-	

Distance to Initial Fix

Departure-Departure Separation Matrix (seconds)				
		Trailing Aircraft (
Lead (column 1)	I	Н		
I	200	200		
Н	200	200		

Time to climb out of BCB and aircraft to be in radar contact

• IMC Conditions runway capacity

Summary of Results

- The saturation capacity of an airport with HVO (ADS-B) technology depends on the safety buffers allowed and the delivery accuracy of pilots/AMM system
- The variation in technical parameters such as γ and δ affects the results of saturation capacity
- The estimation of departures with 100% arrival priority in our analysis seems consistent with analyses done by TSAA in 2003 (Milsaps, 2003)
- The results compare well with those obtained using the FAA Airport Capacity Model
- The availability of a parallel taxiway has a large influence in the mixed mode saturation capacities

Recapitulation

- The saturation capacity of an airport depends on the runway configuration used
- The saturation capacity during VMC conditions is higher than during IMC conditions (due to shorter separation minima)
- The variation in technical parameters such as γ and δ affects the results of saturation capacity
- The estimation of departures with 100% arrival priority in our analysis seems very conservative
- The time-space analysis does not provide with delay results (use deterministic queueing theory or FAA AC 150/5060 to estimate delay)