Runway and Airport Capacity

Dr. Antonio A. Trani
Professor
Virginia Tech

Spring 2023

Methodologies to Assess Airport Capacity

The capacity of an airport is a complex issue. Several elements of the airport facility have to be examined. Namely: a) Airside and b) Landside components.

Airport and Airspace Components

The following components of NAS need to be examined:
a) Airside

- Airspace
- Runways
- Taxiways
b) Landside
- Gates
- Terminal
- Access road

Methodologies to Study Airport Capacity/ Delay

- Analytic models
- Easier and faster to execute
- Good for preliminary airport/airspace planning (when demand function is uncertain)
- Results are generally less accurate but appropriate
- Simulation-based models
- Require more work to execute
- Good for detailed assessment of existing facilities
- Results are more accurate and microscopic in nature

Methodologies in Use to Study Capacity/ Delay

- Analytic models
- Time-space analysis
- Queueing models (deterministic and stochastic)
- Simulation-based models
- Monte Carlo Simulation
- Continuous simulation models
- Discrete-event simulation models

Time-Space Analysis

- A solid and simple technique to assess runway and airspace capacity if the headway between aircraft is known
- The basic idea is to estimate an expected headway, $E(h)$, and then estimate capacity as the inverse of the expected headway

Capacity $=\frac{1}{E(h)}$
$E(h)$ is expressed in time units (e.g., seconds)

Example of Busy Airport Operations

- Illustrate the sequence of operations at a busy airport (Ronald Reagan Airport)
- Provides some insight on the technical parameters of the analytic model to estimate runway capacity

The Airport Configuration at DCA

Observations at a Busy Period of Time

Time $=30$ seconds
Airbus A320 on takeoff roll on runway 19

Virginia Tech - Air Transportation Systems Laboratory

Observations at a Busy Period of Time

Time= 57 seconds
JetBlue Airbus A320
departure crosses the
threshold of runway I9

Time $=105$ seconds
JetBlue Airbus A320 vacates
runway I9

Observations at a Busy Period of Time

Time= 105 seconds

JetBlue Airbus A320 vacates runway 19

Time= 147 seconds
Boeing 737-800 crosses the threshold of runway 19

Virginia Tech - Air Transportation Systems Laboratory

Observations

- 57 seconds between a departure starting its takeoff roll and the arrival crossing the threshold
- At 145 knots (typical approach speed for an Airbus A320), 57 seconds is equivalent to $\mathbf{2 . 3}$ nautical miles (distance between an arrival and a departure)
- Runway occupancy time is observed to be $\boldsymbol{\sim 4 8}$ seconds
- Time between successive arrivals is $\boldsymbol{\sim} \mathbf{9 0}$ seconds (147-57 seconds) for RECAT D aircraft (i.e., large aircraft in the legacy wake classification)
- At 145 knots (Boeing 737-800), 90 seconds is equivalent to 3.6 nautical miles (time between two arrivals)

Time-Space Analysis Nomenclature

$\delta_{i j}$ is the minimum separation matrix (nm)
$T_{i j}$ is the headway between two successive aircraft (s)
δ is the minimum arrival-departure separation (nm)
$R O T_{i}$ is the runway occupancy time for aircraft i (s)
σ_{0} is the standard deviation of the in-trail delivery error (s)
V_{i} is the speed of aircraft i (lead aircraft) in knots

Time-Space Analysis Nomenclature

V_{j} is the trailing aircraft speed (knots)
γ is the common approach length (nm)
$B_{i j}$ is the buffer times matrix between successive aircraft (s)
q_{v} is the value of the cumulative standard normal at probability of violation p_{v}
p_{v} is the probability of violation of the minimum separation criteria between two aircraft

Possible Outcomes of a Single Runway TimeSpace Diagram

Since aircraft approaching a runway arrive in a random pattern we distinguish between two possible scenarios:

- Opening Case - Instance when the approach speed of lead aircraft is higher than trailing aircraft ($V_{i}>V_{j}$)
- Closing case - Instance when the approach of the lead aircraft is less than that of the trailing aircraft $\left(V_{i} \leq V_{j}\right)$

Opening Case Diagram (Arrivals Only)

Opening Case (Equations)

Error free headway, $T_{i j}=T_{j}-T_{i}$, (no pilot and ATC controller error) assuming control is exercised as the lead aircraft passes the entry gate,

$$
\begin{equation*}
T_{i j}=\frac{\delta_{i j}}{V_{j}}+\gamma\left(\frac{1}{V_{j}}-\frac{1}{V_{i}}\right) \tag{2}
\end{equation*}
$$

Position error buffer time (with pilot and ATC controller error)

$$
\begin{equation*}
B_{i j}=\sigma_{o} q_{v}-\delta_{i j}\left(\frac{1}{V_{j}}-\frac{1}{V_{i}}\right) \text { or zero if } B_{i j}<0 \tag{3}
\end{equation*}
$$

Closing Case Diagram (Arrivals Only)

Closing Case (Equations)

Error free headway, $T_{i j}=T_{j}-T_{i}$ (no pilot and ATC controller error) with the minimum separation enforced when the lead aircraft passes the runway threshold,
$T_{i j}=\frac{\delta_{i j}}{V_{j}}$
Position error buffer time (with pilot and ATC controller error) is,
$B_{i j}=\sigma_{o} q_{v}$

Mixed Operations Diagram

Mixed Operations Notes

- The arriving aircraft leave natural gaps in the time space diagram
- When gaps (G) are sufficiently long, ATC controllers can schedule one or more departures in the gap
- The size of the gaps depends on:
- Runway occupancy time (for lead aircraft)
- Runway occupancy time for departing aircraft
- Minimum departure-departure headway (seconds)
- Minimum arrival-departure separation (δ)

Mixed Operations Notes

- In the U.S. the current minimum separation between arrivals and departures (δ) is 2 nautical miles

Define:

- T_{1} as the time when the lead aircraft completes the landing roll (i.e., exits the runway plane)
- T_{2} as the time when the following arriving aircraft is (δ) from the runway threshold
- The gap (G) is the time difference between T_{2} and T_{1}.

$$
\begin{equation*}
G=T_{2}-T_{1} \tag{6}
\end{equation*}
$$

Mixed Operations (Gap Analysis)

Mathematically,

$$
\begin{equation*}
T_{1}=T_{i}+R O T_{i} \tag{7}
\end{equation*}
$$

and
$T_{2}=T_{j}-\frac{\delta}{V_{j}}$
then
$G=T_{j}-\frac{\delta}{V_{j}}-\left(T_{i}+R O T_{i}\right)$

Mixed Operations (Gap Analysis)

$G=\left(T_{j}-T_{i}\right)-\frac{\delta}{V_{j}}-R O T_{i}$
Note that, $\left(T_{j}-T_{i}\right)$ is the actual headway between the lead and following aircraft $\left(T_{i j}+B_{i j}\right)$. This actual headway includes the buffer times since air traffic control will apply those buffers to each successive arrival pair. Our analysis now concentrates in finding suitable gaps between successive aircraft arrivals leaving.

Gap Analysis

Assume that we would like to find instances such that the gap is zero. This is the limiting case to schedule one departure between successive arrivals.

$$
\begin{equation*}
0=\left(T_{j}-T_{i}\right)-\frac{\delta}{V_{j}}-R O T_{i} \tag{11}
\end{equation*}
$$

knowing
$0=\left(T_{i j}+B_{i j}\right)-\frac{\delta}{V_{j}}-R O T_{i}$

Gap Analysis

$$
\begin{equation*}
\left(T_{i j}+B_{i j}\right)=\frac{\delta}{V_{j}}+R O T_{i} \tag{13}
\end{equation*}
$$

For n departures in gap k the expected value of $T_{i j}+B_{i j}$ has to be longer than:
$\left(T_{i j}+B_{i j}\right)=\frac{\delta}{V_{j}}+R O T_{i}+(n-1) T D_{k}$
where $T D_{k}$ is the runway occupancy time of departure k. This expression typically applies under VFR conditions because controllers can dispatch aircraft as
soon as the previous departure clears the runway end (provided that the lead aircraft turns quickly away from runway heading).

Under IMC conditions, the runway occupancy time for a departing aircraft $T D_{k}$ is smaller than the minimum headway allowed between departures. This happens because under IMC conditions aircraft are expected to follow a prescribed climb procedure and usually navigate to a departure fix before changing heading.

Let $\varepsilon_{i j}$ be the minimum departure-departure headway applied by air traffic control. Equation (14) can then be modified to estimate the availability of a gap to release n departures.

Gap Analysis

$$
\begin{equation*}
\left(T_{i j}+B_{i j}\right)=\frac{\delta}{V_{j}}+R O T_{i}+(n-1) \varepsilon_{i j} \tag{15}
\end{equation*}
$$

One final term usually added to this equation is a pilot reaction time term to account for a possible delay time (departing aircraft) to initiate the takeoff roll. This time is justified because jet engines used in transport aircraft take a few seconds to "spool up" and generate full thrust. Let τ be the time delay (in seconds) for the departing aircraft.

Gap Analysis

Adding the time delay term Equation (14) becomes,

$$
\begin{equation*}
\left(T_{i j}+B_{i j}\right)=\frac{\delta}{V_{j}}+R O T_{i}+(n-1) \varepsilon_{i j}+\tau \tag{16}
\end{equation*}
$$

Since $\left(T_{i j}+B_{i j}\right)$ is calculated as an expected value in the analysis for arrivals only,

$$
\begin{align*}
& E\left(T_{i j}+B_{i j}\right) \geq E\left(\frac{\delta}{V_{j}}\right)+E\left(R O T_{i}\right)+ \tag{17}\\
& (n-1) E\left(\varepsilon_{i j}\right)+E(\tau)
\end{align*}
$$

Gap Analysis

The use of Equation (17) allows us to estimate whether the natural gaps left by successive arrivals (expressed as the expected value of $\left.\left(T_{i j}+B_{i j}\right)\right)$ is large enough to schedule n departures.

The practical use of Equation (17) is to compare the actual headways between successive arrivals $\left(T_{i j}+B_{i j}\right)$ against the sum of all four terms in the right hand side of Equation (17). We do this for various possible departure scenarios that include n departures (typically $1,2,3, \ldots$ 6 departures).

Invent the Future

Aircraft Separations

- Every aircraft generates wakes behind the wing due to the strong circulation (г) required to generate lift

Wake Vortex Issues

Source: https://www.faa.gov/air_traffic/publications/ atpubs/aim_html/chap7_section_4.html

For heavy aircraft, wakes may last 150-200 seconds behind the generating aircraft

Greatest danger is when aircraft are heavy, clean (no flap configuration and flying slow)

Wake Vortex Issues (2)

Source: https://www.faa.gov/air_traffic/publications/ atpubs/aim_html/chap7_section_4.html

No Wind
Wakes can travel laterally and even bounce on the ground under ideal conditions

Wake Vortex Issues (3)

Wake vortex visualization behind a small regional jet (VFW 6I4)

https://commons.wikimedia.org/wiki/File:Visualisation_of_a_wake_vortex_ATTAS.jpg

Wake Vortex Classifications (History)

- 1970s - FAA develops a legacy wake vortex classification (small, large, heavy)
- 1993 - FAA adds Boeing 757-200 to the legacy classification as a group (at the time ATC handles the Boeing 757-200 like a heavy)

> FAA Orders 757 Turbulence Alert : Aviation: After crash of private jet in Santa Ana, air controllers are told to alert small planes to wake hazard posed by Boeing craft. Past incidents are cited.

- 2012 - FAA implements RECAT (re-categorization Phase I) with 6 or 7 groups
- 2019 - FAA develops a Consolidated Wake Turbulence Classification (CWT) with 9 groups

Wake Modeling using NASA’s APA Model :Arrival Configuration
 (Source:J. Roa,Virginia Tech, 2019)

Learn More About Aircraft Wakes

Evaluation of Fast-Time Wake Vortex Prediction Models

Fred H. Proctor ${ }^{*}$ and David W. Hamilton ${ }^{\dagger}$
NASA Langley Research Center, Hampton, Virginia, 23681

NASA/TM-2016-219353

Current fast-time wake models are reviewed and three basic types are defined. Predictions from several of the fast-time models are compared. Previous statistical evaluations of the APA-Sarpkaya and D2P fast-time models are discussed. Root Mean Square errors between fast-time model predictions and Lidar wake measurements are examined for a 24 hr period at Denver International Airport. Shortcomings in current methodology for evaluating wake errors are also discussed.

NASA AVOSS Fast-Time Models for Aircraft Wake
Prediction: User's Guide (APA3.8 and TDP2.1)

Nash'at N. Ahmad and Randal L. VanValkenburg
Langley Research Center, Hampton, Virginia
Matthew J. Pruis
NorthWest Research Associates, Redmond, Washington

Fanny M. Limon Duparcmeur
Craig Technologies, Hampton, Virginia

Simulation of Runway Operations with Application of Dynamic Wake Separations to Study Runway Limitations

Julio Roa \boxtimes, Antonio Trani, [...], and Navid Mirmohammadsadeghi +1 View all authors and affiliations Volume 2674, Issue $12 \mathrm{https}: / / d o i . o r g / 10.1177 / 0361198120953152$

Abstract
This paper presents an evaluation of runway operations at Chicago O'Hare International Airport to estimate the impact of proposed wake vortex separation including Recategorization Phase II and III dynamic separations. The evaluation uses a Monte Carlo simulation model that considers arrival and departure operations. The simulation accounts for static and dynamic wake vortex separations, aircraft fleet mix, runway occupancy times, aircraft approach speeds, aircraft wake circulation capacity, environmental conditions, and operational error buffers. Airport data considered for this analysis are based on Airport Surface Detection Equipment Model X records from Chicago O'Hare International Airport from January to November 2016. Dynamic wake separations are tailored to each unique set of conditions by using environmental and aircraft performance parameters as input and allowing aircraft to be exposed to the same wake vortex strength as in Recategorization Phase II (RECAT II). The analysis shows that further reductions beyond RECAT II for aircraft pairs separated by 2 nautical miles or less is not operationally feasible. These wake separations already result in little to no wake dependency. When this is the case, the challenges in wake separation are to meet runway occupancy times and to make sure aircraft separations allow for human operational variations without resulting in aircraft turnarounds or double-aircraft-

Consolidated Wake Turbulence Recategorization Classification (CWT)

- FAA Introduced a consolidated wake re-categorization in 2019
- Consult FAA Order JO 7IIO.I26A

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

ORDER
 JO 7110.126A

Air Traffic Organization Policy

Consolidated Wake Vortex Recategorization Classification

- "FAA Order JO 7 I I 0.659 (RECAT I.5) classified aircraft according to certificated takeoff weight, landing speed, wingspan, and the aircraft's ability to withstand a wake encounter."
- "FAA Order JO 7IIO.I23 (RECAT Phase II), Appendix A and Appendix B, described a pairwise separation matrix developed for the most common ICAO type identifier aircraft. Each aircraft was addressed as both a leader and a follower in each pair."
- "The development of a pairwise separation matrix relied on wake-based data, rather than weight-based data."
- "Separation reductions were achieved with a better understanding of wake behavior and with pairwise separation of aircraft."
- "CWT is based on a nine category system that further refines the grouping of aircraft, provides throughput gains at many of today's constrained airports, and is manageable for all airports throughout the NAS."

Source: FAA Order JO 7IIO.I26A

Consolidated Wake Turbulence (CWT) Re-categorization Classification

Category	Description
A	A388
B	Pairwise Upper Heavy aircraft
C	Pairwise Lower Heavy aircraft
D	Non-Pairwise Heavy aircraft (infrequent operations)
E	Boeing 757 aircraft
F	Upper Large aircraft excluding B757 aircraft
G	Lower Large aircraft
H	Upper Small aircraft with a maximum takeoff weight of more than 15,400 pounds up to 41,000 pounds
I	Lower Small aircraft with a maximum takeoff weight of 15,400 pounds or less

Source: FAA Order JO 7IIO.I26A

Consolidated Wake Vortex Recategorization Classification

Aircraft Types Categorized

$\overline{\mathbf{A}}$ Super	B Upper Heavy	C Lower Heavy	DNon-PairwiseHeavy		$\begin{gathered} \mathbf{E} \\ \text { B757 } \end{gathered}$	FUpper Large		GLower Large		$\begin{gathered} \text { H } \\ \text { Upper } \\ \text { Small } \end{gathered}$	I Lower Small
A388	A332	A306	A124	DC85	B752	A318	C130	AT43	E170	ASTR	BE10
	A333	A30B	A339	DC86	B753	A319	C30J	AT72	E45X	B190	BE20
	A343	A310	A342	DC87		A320	CVLT	CL60	E75L	BE40	BE58
	A345	B762	A3ST	E3CF		A321	DC93	CRJ1	E75S	B350	BE99
	A346	B763	A400	E3TF		B712	DC95	CRJ2	F16	C560	C208
	A359	B764	A50	E6		B721	DH8D	CRJ7	F18H	C56X	C210
	B742	C17	AN22	E767		B722	E190	CRJ9	F18S	C680	C25A
	B744	DC10	B1	IL62		B732	GL5T	CRJX	F900	C750	C25B
	B748	K35R	B2	IL76		B733	GLEX	DC91	FA7X	CL30	C402
	B772	MD11	B52	IL86		B734	GLF5	DH8A	GLF2	E120	C441
	B773		B703	IL96		B735	GLF6	DH8B	GLF3	F2TH	C525
	B77L		B741	K35E		B736	MD82	DH8C	GLF4	FA50	C550
	B77W		B743	KE3		B737	MD83	E135	SB20	GALX	P180
	B788		B74D	L101		B738	MD87	E145	SF34	H25B	PAY2
	B789		B74R	MYA4		B739	MD88			LJ31	PA31
	C5		B74S	R135			MD90			LJ35	PC12
	C5M		B78X	T144						LJ45	SR22
			BLCF	T160						LJ55	SW3
			BSCA	TU95						LJ60	
			C135	VMT						SH36	
			C141							SW4	

Source: FAA Order JO 7IIO.126A

Wake Vortex Classification (CWT Categories)

Wake Vortex Classification (CWT Categories)

Consolidated Wake Vortex Separations - Directly Behind

WAKE TURBULENCE APPLICATION
Source: FAA Order JO 7IIO.I26A
g. Separate aircraft by the minima specified in TBL 5-5-1 in accordance with the following:

1. When operating within 2,500 feet and less than 1,000 feet below the flight path of the leading aircraft over the surface of the earth of a Category A, B, C, or D aircraft.
2. When operating within 2,500 feet and less than 500 feet below the flight path of the leading aircraft over the surface of the earth of a Category E aircraft.
3. When departing parallel runways separated by less than 2,500 feet, the 2,500 feet requirement in subparagraph 2 is not required when a Category I aircraft departs the parallel runway behind a Category E aircraft. Issue a wake turbulence cautionary advisory and instructions that will establish lateral separation in accordance with subparagraph 2. Do not issue instructions that will allow the Category I aircraft to pass behind the Category E aircraft.

Wake Turbulence Separation for Directly Behind

		Follower								
		A	B	C	D	E	F	G	H	1
$\begin{aligned} & \stackrel{\circ}{0} \\ & \text { © } \end{aligned}$	A		4.5 NM	6 NM	6 NM	7 NM	7 NM	7 NM	7 NM	8 NM
	B		3 NM	4 NM	4 NM	5 NM				
	C					3.5 NM	3.5 NM	3.5 NM	5 NM	5 NM
	D		3 NM	4 NM	4 NM	5 NM				
	E									4 NM
	F			Empty Cells:Apply Minimum Radar Separation 3 nm default						
	G									
	H			2.5 nm	runwa	that me	50 se			
	1			Runway	cupar	Time cri				

Typical Wake Vortex Behavior

- Boeing 737-800 class (RECAT F in new consolidated wake turbulence class)
- Wake descends up to 500 feet in $60-90$ seconds
- Time for wake vortex to dissipate $\sim 60-90$ seconds
- Boeing 777-300 class (RECAT B)
- Wake descends up to 800 feet in 100 -I50 seconds
- Time for wake vortex to dissipate $\sim 120-150$ seconds
- Airbus A380 class (RECAT A)
- Wake descends up to 1000 feet in 150-240 seconds
- Time for wake vortex to dissipate ~ 180-240 seconds Invent the Future

Consolidated Wake Vortex Separations - On Approach

h. $O N A P P R O A C H$. In addition to subparagraph g , separate an aircraft on approach behind another aircraft to the same runway by ensuring the separation minima in TBL 5-5-2 will exist at the time the preceding aircraft is over the landing threshold.
NOTE-
Consider parallel runways less than 2,500 feet apart as a single runway because of the possible effects of wake turbulence.
Wake Turbulence Separation for On Approach

		Follower								
		A	B	C	D	E	F	G	H	I
	A		4.5 NM	6 NM	6 NM	7 NM	7 NM	7 NM	7 NM	8 NM
	B		3 NM	4 NM	4 NM	5 NM	5 NM	5 NM	5 NM	6 NM
	C					3.5 NM	3.5 NM	3.5 NM	5 NM	6 NM
	D		3 NM	4 NM	4 NM	5 NM	5 NM	5 NM	6 NM	6 NM
	E									4 NM
	F									4 NM
	G									
	H				y Ce	Apply M	num R	Separ		
	I				defa					

Source: FAA Order JO 7IIO.I26A
2.5 nm for runways that meet a 50 second

Runway Occupancy Time criteria

Implications of Aircraft Wake Classes

- In-trail separations are driven by wake class groups
- Runway capacity today is usually limited by in-trail separations
- For mixed operations, runway occupancy times are also be important

Aircraft Categories Used in Airport Runway Analysis

- Today, the FAA employs 5 aircraft groups to establish aircraft separations inside the terminal area:
- Small, Large, B757, Heavy and Superheavy
- The class Small + is seldom used for actual separations
- Today, ICAO (international body that regulates aviation activities outside the US) has 4 aircraft groups
- Light, Medium, Heavy and Superheavy (A380)
- Many air navigation service providers may have deviations from these groups or classes (i.e., NAT UK recognizes 6 groups)

VMC Separations

- Under visual meteorological conditions, pilots are expected to be responsible for separations
- Data collected at airfields in the United States indicates that VMC separations are 10% below those observed under IMC conditions
- Therefore:
- Runways have more capacity under VMC conditions for the same fleet mix
- Higher runway utilization is possible under VMC conditions
- Runway occupancy times and VMC airspace separations are closer in magnitude

Air Traffic Control (ATC) DepartureDeparture In-Trail Separations

Typical In-trail Separations (in seconds) for Departing Aircraft on the same Runway. Includes Buffers Applied by ATC.

Lead	Trailing Aircraft				
Aircraft	Superheavy	Heavy	$B 757$	Large	Small
Superheavy	120	120	120	120	120
Heavy	120	120	120	120	120
B757	120	120	120	120	120
Large	60	60	60	60	60
Small	60	60	60	60	60

Separations are in seconds

Example 1: Single Runway Problem

- West Coast single runway airport (like San Diego)
- Three aircraft CWT groups operating at the airport

Aircraft CWT Group	F	E	B
ROT (s)	51	54	65
Percent Mix (\%)	82	10	8
Vapproach (knots)	132	137	151

Problem Description

- West Coast single runway airport
- Three aircraft groups operate at the airport

Technical Parameters (inputs)	Values
Departure-Arrival Separation (nm)	2
Common Approach Length (nm)	12
Standard deviation of Position Delivery Error (s)	20
Probability of Violation - P_{v}	5
Cumulative Normal at (at 5\% violation)	1.65
Buffer for departure-departure (seconds)	10

Data Sources to Obtain ROT and Approach Speeds Data
 Landing Events Database (version I.3.7)

You can download the landing events database at:
https://atsl.cee.vt.edu/products/runway-exit-design-interactive-model--redim-I.html
$\sqrt{7}$ VIRGINIA TECH.

Landing Events Database

Virginia Tech - Air Transportation Systems Lab

Dr. Antonio Trani (Team Leader)
Nicolas Hinze (Team Co-Leader)
Navid Mirmohammadsadeghi

Mani Bhargava Reddy Bollempalli Mihir Rimjha
Arman Izadi

Download Landing Events Database

- Landing Events Database 1.3.7 - Windows Installer
- User Manual

Detailed Documentation for REDIM 4

- Aircraft Database
- Exit Clusters (Plots)
- Distribution (Means):
- Point Of Curvature (PC) Speeds: Aircraft - AAC
- PC To Runway Edge Decelerations: Aircraft - AAC
- Runway Edge to Holdbar Decelerations: Aircraft - AAC
- Motivation Factor Sensitivity:
- 90 deg Exit (Radius: 150ft):
- 5,000ft Runway

Landing Events Database (version I.3.7)

- ROT values can be obtained by airport, aircraft, and runway
- Raw data for Anchorage (ANC) International Airport

Consolidated Wake Vortex Separations - On Approach

h. $O N A P P R O A C H$. In addition to subparagraph g , separate an aircraft on approach behind another aircraft to the same runway by ensuring the separation minima in TBL 5-5-2 will exist at the time the preceding aircraft is over the landing threshold.
NOTE-
Consider parallel runways less than 2,500 feet apart as a single runway because of the possible effects of wake turbulence.
Wake Turbulence Separation for On Approach

		Follower								
		A	B	C	D	E	F	G	H	I
	A		4.5 NM	6 NM	6 NM	7 NM	7 NM	7 NM	7 NM	8 NM
	B		3 NM	4 NM	4 NM	5 NM	5 NM	5 NM	5 NM	6 NM
	C					3.5 NM	3.5 NM	3.5 NM	5 NM	6 NM
	D		3 NM	4 NM	4 NM	5 NM	5 NM	5 NM	6 NM	6 NM
	E									4 NM
	F									4 NM
	G									
	H				ty Ce	Apply M	num R	Separ		
	I				defa					

Source: FAA Order JO 7IIO.I26A
2.5 nm for runways that meet a 50 second

Runway Occupancy Time criteria

Minimum Arrival-Arrival Separation Matrix $\delta_{i j}$

	Trailing Aircraft (Header Columns)		
Lead Aircraft (column 1)	F	E	B
F	3	3	3
E	3	3	3
B	5	5	3

- The minimum radar separation criteria is 3 nm because the runway has runway occupancy times above 50 seconds.

Aircraft CWT Group	F	E	B
ROT (s)	51	54	65

Probability of an Arrival Following Another Arrival Matrix ($P_{i j}$)

	Trailing Aircraft (Header Columns)		
Lead Aircraft (column 1)	F	E	B
F	0.672	0.082	0.066
E	0.082	0.010	0.008
B	0.066	0.008	0.006

The probability matrix implies random arrivals.
Note: Check that the summation of $P_{i j}$ is always one.

Calculation of Error-Free Time Between

 Arrivals ($T_{i j}$)- Consider a class E aircraft followed by another class E
- Use the closing case equations
$T_{i j}=\frac{\delta_{i j}}{V_{j}} \quad$ and $\quad B_{i j}=\sigma_{0} q_{v}$
$T_{E E}=\frac{\delta_{E E}}{V_{E}}=\frac{3}{137}=0.0219$ hours or 79 seconds
$B_{E E}=(20) 1.65=33$ seconds
Note: Probability of violation is 5% and $q_{v}=1.65$

Calculation of Error-Free Time Between

Arrivals ($T_{i j}$)

- Consider a class B (Upper Heavy) aircraft followed by a class F aircraft
- Use the opening case equations
$T_{i j}=\frac{\delta_{i j}}{V_{j}}+\gamma\left(\frac{1}{V_{j}}-\frac{1}{V_{i}}\right) \quad$ and $\quad B_{i j}=\sigma_{0} q_{v}-\delta_{i j}\left(\frac{1}{V_{j}}-\frac{1}{V_{i}}\right)$
$T_{B F}=178$ seconds
$B_{B F}=16$ seconds

Note: Probability of violation is 5% and $q_{v}=1.65$

Error-Free (No Buffers) Time Between Arrivals Matrix ($T_{i j}$)

	Trailing Aircraft (Header Columns)		
Lead Aircraft (column 1)	F	E	B
F	82	79	72
E	94	79	72
B	178	161	72

- Use the opening and closing equations described in class.
- Cells in orange are opening cases.White cells are closing cases (including cases with equal approach speeds).

Buffer Matrix $\left(B_{i j}\right)$

	Trailing Aircraft (Header Columns)		
Lead Aircraft (column 1)	F	E	B
F	33	33	33
E	30	33	33
B	16	21	33

Buffers are estimated using the opening and closing equations described in class.

Closing or equal speeds
$B_{i j}=\sigma_{0} q_{v}$

Opening case

$$
B_{i j}=\sigma_{0} q_{v}-\delta_{i j}\left(\frac{1}{V_{j}}-\frac{1}{V_{i}}\right)
$$

Error-Free Plus Buffer Matrix $\left(T_{i j}+B_{i j}\right)$

	Trailing Aircraft (Header Columns)		
Lead Aircraft (column 1)	F	E	B
F	114.8	111.8	104.5
E	123.8	111.8	104.5
B	193.4	181.4	104.5

The $T_{i j}+B_{i j}$ matrix represents real-separations that are expected at the airport and include safety buffers.
$E\left(T_{i j}+B_{i j}\right)=\sum\left(P_{i j}^{*}\left(T_{i j}+B_{i j}\right)\right)=120.14$ Seconds

Arrivals Only Capacity is the Inverse of $\left(T_{i j}+B_{i j}\right)$

$$
\begin{aligned}
& \text { Runway } \\
& E\left(T_{i j}+B_{i j}\right)=\sum_{1}\left(P_{i j} *\left(T_{i j}+B_{i j}\right)\right)=120.14 \text { Seconds } \\
& C_{\text {arrivals }}=\frac{1}{\sum P_{i j} *\left(T_{i j}+B_{i j}\right)}=29.96 \quad \text { Arrivals } / \mathrm{hr}
\end{aligned}
$$

Departure-Departure Separation Information on FAA JO $7110.65 Z$ (ATC Handbook)

Example language in FAA JO $7110.65 Z$

i. Separate aircraft when operating on a runway with a displaced landing threshold if projected flight paths will cross when either a departure follows an arrival or an arrival follows a departure by the following minima:

1. Heavy, large, or small behind super -3 minutes.
2. Heavy, large, or small behind heavy - 2 minutes.
3. Small behind B757-2 minutes.
j. Separate an aircraft behind another aircraft that has departed or made a low/missed approach when utilizing opposite direction takeoffs or landings on the same or parallel runways separated by less than 2,500 feet by the following minima:
4. Heavy, large, or small behind super - 4 minutes.
5. Heavy, large, or small behind heavy - 3 minutes

> Language still references Super-Heavy, Heavy, Large, B757, and Small (see aircraft classifications handout)

Departure-Departure Separation Matrix Values in Seconds (no buffers)

	Trailing Aircraft (Header Columns)		
Lead Aircraft (column 1)	F	E	B
F	60	60	60
E	60	60	60
B	120	120	120

The FAA ATC Handbook (JO 7 I I0.65Z) contains the air traffic control separations applied in the United States
https://www.faa.gov/air_traffic/publications/atpubs/atc_html/

Expected Inter-Departure Times

Let $\epsilon_{i j}$ be the departure-departure separation between successive departures (in seconds)

The expected value between successive departures is:

$$
\begin{aligned}
& E\left(\epsilon_{i j}\right)=\sum P_{i j}^{*} \epsilon_{i j} \quad E\left(\epsilon_{i j}\right)=64.8 \text { Seconds } \\
& E\left(\epsilon_{i j}\right)=P_{F F} * \epsilon_{F F}+P_{F E} * \epsilon_{F E}+P_{F B} * \epsilon_{F B}+P_{E F} * \epsilon_{E F}+P_{E E} * \epsilon_{E E}+\ldots
\end{aligned}
$$

	Trailing Aircraft (Header Columns)				Trailing Aircraft (Header Columns)		
Lead Aircraft (column 1)	F	E	B	Lead Aircraft (column 1)	F	E	B
F	0.672	0.082	0.066	F	60	60	60
E	0.082	0.010	0.008	E	60	60	60
B	0.066	0.008	0.006	B	120	120	120

Departure ATC-Pilot Buffers

- ATC-Pilot communications and engine thrust spool-up time add a buffer τ (in seconds) to $\epsilon_{i j}$
- τ is the result of two contributing factors:
- ATC-pilot communications time lags
- Aircraft engine thrust spool-up time
- In this analysis we use a deterministic value for τ is 10 seconds

	Trailing Aircraft (Header Columns)		
Lead Aircraft (column 1)	F	E	B
F	70	70	70
E	70	70	70
B	130	130	130

Let $E\left(\epsilon_{i j}+\tau\right)$ be the expected departure-departure separation between successive departures (in seconds)
$E\left(\epsilon_{i j}+\tau\right)=\sum P_{i j} *\left(\epsilon_{i j}+\tau\right)$
$E\left(\epsilon_{i j}+\tau\right)=79.84$ Seconds
$C_{\text {departures }}=\frac{1}{E\left(\epsilon_{i j}+\tau\right)}=45.1 \quad$ Departures $/ \mathrm{hr}$

Gap Analysis

Goal: To find instances where Gaps exist allowing one departure between two successive arrivals
$\left.E\left(T_{i j}+B_{i j}\right)>E\left(\frac{\delta}{V}\right)+E\left(R O T_{i}\right)+(n-1) E\left(\epsilon_{i j}\right)+E(\tau)\right)$
Time between aircraft i arrival

Gap for $(n-1)$ departures

 And aircraft jWe evaluate the right hand side of the equation parametrically with multiple values of n

Gap Analysis: $E\left(\frac{\delta}{V}\right)$ Term

Example evaluation:

$$
\begin{aligned}
& \left.E\left(\frac{\delta}{V}\right)+E\left(R O T_{i}\right)+(n-1) E\left(\epsilon_{i j}\right)+E(\tau)\right) \\
& E\left(\frac{\delta}{V}\right)=P_{E} \frac{\delta}{V_{E}}+P_{F} \frac{\delta}{V_{F}}+P_{B} \frac{\delta}{V_{B}} \\
& E\left(\frac{\delta}{V}\right)=0.82 \frac{2}{132}+0.10 \frac{2}{137}+0.08 \frac{2}{151} \\
& E\left(\frac{\delta}{V}\right)=53.8 \quad \text { Seconds }
\end{aligned}
$$

Gap Analysis: $E\left(R O T_{i}\right)$ Term

Example evaluation:

$$
\begin{aligned}
& \left.E\left(\frac{\delta}{V}\right)+E\left(R O T_{i}\right)+(n-1) E\left(\epsilon_{i j}\right)+E(\tau)\right) \\
& E\left(R O T_{i}\right)=P_{F} * R O T_{E}+P_{E} * R O T_{F}+P_{B} * R O T_{B} \\
& E\left(R O T_{i}\right)=0.82 * 51+0.10 * 54+0.08 * 65
\end{aligned}
$$

$E\left(R O T_{i}\right)=52.4$ Seconds

Gap Analysis: $E\left(\epsilon_{i j}+\tau\right)$ Term

Example evaluation:

$$
\left.E\left(\frac{\delta}{V}\right)+E\left(R O T_{i}\right)+(n-1) E\left(\epsilon_{i j}\right)+E(\tau)\right)
$$

For one departure per gap:

$$
(n-1) E\left(\epsilon_{i j}+\tau\right)=(0) E\left(\epsilon_{i j}+\tau\right)=0
$$

For two departures per gap:
$(n-1) E\left(\epsilon_{i j}+\tau\right)=E\left(\epsilon_{i j}+\tau\right)=79.8$ Seconds

Gap Analysis: $E(\tau)$) Term

Example evaluation:

$$
\left.E\left(\frac{\delta}{V}\right)+E\left(R O T_{i}\right)+(n-1) E\left(\epsilon_{i j}\right)+E(\tau)\right)
$$

We assume the ATC-pilot and engine spool term is a constant at 10 seconds

Gap Analysis: Collecting Terms

The table below shows a summary of the minimum gap to release n departures between two successive arrivals

Example:
To release one departure between successive arrivals, the gap should be
> 116.2 seconds

Departures (n)	Gap for n departures
1	116.2
2	181.0
3	245.8
4	310.6
5	375.4

Compare $\left(T_{i j}+B_{i j}\right)$ with Minimum Departure Requirements
$\left.E\left(T_{i j}+B_{i j}\right)>E\left(\frac{\delta}{V}\right)+E\left(R O T_{i}\right)+(n-1) E\left(\epsilon_{i j}\right)+E(\tau)\right)$
-The analysis compares the right hand side and the left hand side to evaluate instances where arrival gaps is large enough to allow n departures

	Trailing Aircraft (Header Columns)		
Lead Aircraft (column 1)	F	E	B
F	114.8	111.8	104.5
E	123.8	111.8	104.5
B	193.4	181.4	104.5

Departures (n)	Gap for n departures
1	116.2
2	181.0
3	245.8
4	310.6
5	375.4

Departures for Each Arrival Gap

$$
\left.E\left(T_{i j}+B_{i j}\right)>E\left(\frac{\delta}{V}\right)+E\left(R O T_{i}\right)+(n-1) E\left(\epsilon_{i j}\right)+E(\tau)\right)
$$

- The analysis compares the right hand side and the left hand side to evaluate instances where arrival gaps is large enough to allow n departures

	Trailing Aircraft (Header Columns)		
Lead Aircraft (column 1)	F	E	B
F	0	0	0
E	1	0	0
B	2	2	0

Expected Departures per Arrival Gap

-The analysis estimates the number of expected departures per hour per arrival gap

$$
E\left(D_{i j}\right)=T G\left(P_{i j}\right)\left(D G_{i j}\right)
$$

$E\left(D_{i j}\right)$ is the expected number of departure per gap when aircraft i follows aircraft j
$T G$ is the number of total gaps in one hour
$P_{i j}$ is the probability that aircraft i follows aircraft j
$D G_{i j}$ is the departures per gap when aircraft i follows aircraft j

Departures for Each Arrival Gap

-The table summarizes the expected number of departures per arrival gap in one hour

	Trailing Aircraft (Header Columns)		
Lead Aircraft (column 1)	F	E	B
F	0.00	0.00	0.00
E	2.38	0.00	0.00
B	3.80	0.46	0.00

- The total number of departures is 6.64 per hour while keeping the number of arrivals at 29.9 per hour

Collect Numbers and Create an Arrival-

 Departure (Pareto) Diagram

Calculating Other Points in the ArrivalDeparture (Pareto) Diagram

Adjust the minimum arrival-arrival separation matrix by a multiplier factor and recalculate the departure operations

Adjusted Separation Matrix

FAA/MITRE Arrival Delivery Accuracy Updates

Recent work at the MITRE Corporation provides updated information about ATC arrival separation buffers and their standard deviation (σ_{0})

The work also provides separations under visual conditions (called Equivalent Visual Minima)

IMC Observed Spacing
Separation Standard (3.0)
IMC Buffer (0.8)

MITRE $\left\lvert\, \begin{aligned} & \text { Center for fodvanced } \\ & \text { Avition Sostem }\end{aligned}\right.$	MTR220403 MITRE TECHNICAL REPORT Interarrival Separation Buffers and Equivalent Visual Minima for Airport Capacity Modeling
For Limited Release	
The views, opinions and/or findings contained in this report are those of The MITRE Corporation	Author(s):
and should not be construed as an onficical govemment positon policy ordecision unless	Chris Roberts
designated by other documentation.	Willie Weiss
©2022 The MITREE Corporation. All right reserved.	Erin Catlett
McLean, VA	
	September 2022

NAS-Wide ATC Arrival Buffers

- 5.3 million landings studied
- NAS-wide buffers are 29 seconds in IMC and 21 seconds in VMC
- Violation rates are 2.9% in VMC and 0.4% in IMC

Table 5-1. NAS-Wide Buffer Duration and Delivery Accuracy

Measure	VMC	IMC
Observation Count	$5,070,478$	303,826
Buffer Duration - Excess Inter-Arrival Time (seconds)	21.0	28.8
Buffer Duration - Excess Inter-Arrival Distance (NM)	0.8	1.1
Delivery Accuracy - Excess Inter-Arrival Time Std Dev (secondss)	13.8	13.1
Observed Violation Rate	$2.9 \%^{*}$	0.4%

* = In VMC, violating IFR separation is not necessarily a safety concern because appropriate visual separation can still be provided.

Source: Roberts, Weiss, and Catlett, 2022. Interarrival Separation Buffers and Equivalent Visual Minima for Airport Capacity Modeling

ATC Arrival-Arrival Buffers Vary by Airport

Table 5-2. Airport-Specific Buffer Duration and Delivery Accuracy

	Buffer Duration (seconds)		Delivery Accuracy (seconds)		Observation Count	
Airport	VMC	IMC	VMC	IMC	VMC	IMC
ATL	16.9	32.4	11.9	12.7	843,473	99,786
CLT	16.5	22.6	10.5	10.5	289,195	32,370
DEN	30.1	37.8	14.2	17.0	486,003	408
DFW	23.0	35.8	14.8	14.8	581,340	26,740
DTW	23.5	-	13.1	-	196,519	-
IAH	27.4	36.2	16.2	17.4	345,988	32,425
JFK	18.4	-	15.7	-	81,096	-
LAX	30.9	34.1	18.9	15.8	617,093	37,463
MCO	39.2	40.1	20.4	20.3	288,570	5,956
MEM	33.0	-	17.7	-	35,926	-
MSP	28.6	-	18.0	-	72,524	-
ORD	17.8	23.9	10.7	11.4	563,690	65,468
PHX	29.3	-	18.8	-	235,789	-
SEA	20.8	-	14.9	-	319,660	-
SLC	20.6	39.3	15.5	16.4	113,612	3,210
NAS-wide	21.0	28.8	13.8	13.1	$5,070,478$	303,826

Source: Roberts, Weiss, and Catlett, 2022. Interarrival Separation Buffers and Equivalent Visual Minima for Airport Capacity Modeling

NAS-Wide Equivalent Visual Minima (EVM)

Table 5-3. NAS-wide Equivalent Visual Minima (EVM)

Required IFR Separation in NM	Legacy EVM in NM	Updated EVM in NM	2018-2020 VMC Operations Count
8	N/A	8	66
7	N/A	6.5	7,432
6	4.5	4.5	4,329
5	3.6	4.5	174,826
4.5	N/A	4.2	1,205
4	2.7	3.2	72,213
3.5	N/A	3.1	60,610
3	1.9	2.6	684,383
2.5	1.9	2.2	$4,065,414$

Source: Roberts,Weiss, and Catlett, 2022. Interarrival Separation Buffers and Equivalent Visual Minima for Airport Capacity Modeling

Airport-Specific Equivalent Visual Minima (EVM)

Table 5-4. Airport-Specific Equivalent Visual Minima

		Airport-Specific Equivalent Visual Minima (EVM) in NM								
Required IMC Separation	NAS Wide	ATL	CLT	DEN	DFW	IAH	LAX	MCO	ORD	SLC
2.5	2.2	1.9	2.2	1.4	2.1	2.1	2.3	2.1	2.3	1.9
3	2.6	2.4	2.7	2.4	2.5	2.8	2.4	2.9	2.8	2.1
3.5	3.1	2.6	2.9	3.1	3.1	3.1	3.2	2.6	3.4	2.6
4	3.2	3.0	3.1	3.6	3.1	3.7	3.2	2.6	3.8	3.1
4.5	4.2	3.9	3.9	4.1	4.0	4.2	4.3	4.5	4.3	3.6
5	4.5	4.1	3.9	4.6	4.7	4.6	4.3	4.5	5.0	4.1
6	4.5	4.4	5.7	5.0	4.9	5.4	4.3	4.6	5.8	5.1
7	6.5	5.2	6.7	5.4	6.5	6.7	6.8	7.0	6.8	6.1
8	8	8	8	8	8	8	8	8	8	8

Italicized entries denote not enough data for direct calculation - airport-level average of excess IMC spacing was required to calculate EVM.

Source: Roberts, Weiss, and Catlett, 2022. Interarrival Separation Buffers and Equivalent Visual Minima for Airport Capacity Modeling

Review of Runway Capacity Excel Program

- The Excel template provided in class attempts to illustrate how the time-space diagram technique can be "programmed" in a standard spreadsheet
- You can extend the analysis provided in the basic template to more complex airport configurations
- The program, as it stands now, can only estimate the saturation capacity of a single runway. The program provides a simple graphical representation of the arrival -departure saturation diagram (sometimes called capacity Pareto frontier in the literature)
- The following pages illustrate the use of the program using the values of the previous runway example.

Excel Template Flowchart

Excel Template Flowchart (continuation)

Excel Template Flowchart (continuation)

(11)

Departure capacity with arrival priority
$\mathbf{C}_{\text {dep-arr-priority }}$
(12)

Draw the arrival-departure diagram using points:
$\mathrm{C}_{\text {arr }}$
$\mathrm{C}_{\text {dep }}$
$\mathrm{C}_{\text {dep-arr-priority }}$

End

Computer Program Screen 1

Computer Program (Screen 2)

42	Buffer Matrix						
43				Trailing			$\mathrm{e} 4$
44		Smal		Large	Heavy	Expected Valu	
45	Small		33.00	33.00	33.00	B (Tij)	
46	Large		0.00	33.00	33.00	26.07	
47	Heavy		0.00	24.43	33.00		
48							

Computer Program (Screen 3)

Computer Program (Screen 4)

Computer Program (Screen 5)

Arrival - Departure Diagram

Estimating Runway Saturation Capacity for Complex Airport Configurations

- The methodology explained in the previous handout addresses a simple Time-Space diagram technique to estimate the runway saturation capacity
- The time-space approach can also be used to estimate the saturation capacity of more complex runway configurations where interactions occur between runways
- Example problems taken from the FAA Airport Capacity benchmark document will be used to illustrate the points made

Methodology

- Understand the runway use according to ATC operations
- Select a primary runway as the basis for your analysis
- Estimate the saturation capacity characteristics of the primary runway using the known time-space method
- Examine gaps in the runway operations at the primary runway. These gaps might exist naturally (i.e., large arrival-arrival separations) or might be forced by ATC controllers by imposing large in-trail separations allowing operations at other runways
- If runway operations are independent you can estimate arrival and departure saturation capacities for each runway independently
- If the operations on runways are dependent estimate the runway occupancy times (both for arrivals and departures) very carefully and establish a logical order f operations on the runways.

Example 2 - Charlotte-Douglas Intl. Airport

Operational Conditions

1) Runways $18 \mathrm{R} / 36 \mathrm{~L}$ and $18 \mathrm{~L} / 36 \mathrm{R}$ are used in mixed operations mode
2) Runway $5 / 23$ is inactive
3) Parallel runway separation $>4,3000 \mathrm{ft}$.
4) ASR-9 airport surveillance radar
(scan time 4.8 seconds)
5) Aircraft mix
a) Heavy - 20\%
b) Large - 30\%
c) Small-50\%
6) Approach speeds
a) Heavy - 150 knots
b) Large - 140 knots
c) Small - 110 knots
7) Runway occupancy times
a) Heavy - 57 s.
b) Large - 52 s .
c) Small - 49 s .
8) Common approach length -7 nm
9) In-trail delivery error standard deviation -18 s.
10) Large hub separation criteria (2.5/4/5/6 nm)
11) IMC weather conditions

Departures

Arrivals

Some Intermediate Results

Results of CLT Analysis

Single runway analysis - mixed operations

Results of CLT Analysis

Two-parallel runway analysis - mixed operations

Capacity Benchmark Results

The FAA capacity benchmarks offer an assessment of the estimated capacity by the FAA

Table 1
Capacity Benchmarks for Today's Operations at 31 Airports

Airport		Optimum	Reduced
ATL	Atlanta Hartsfield International	$185-200$	$167-174$
BOS	Boston Logan International	$118-126$	$78-88$
BWI	Baltimore-Washington International	$111-120$	$72-75$
CLT	Charlotte/Douglas International	$130-140$	$108-116$
CVG	Cincinnati-Northern Kentucky	$123-125$	$121-125$
DCA	Washington Reagan National	$76-80$	$62-66$

Reduced capacity $=$ IMC conditions

FAA Benchmark Results vs. Our Analysis

Example 3 - Charlotte-Douglas Intl. Airport

Operational Conditions

1) Runway $18 \mathrm{R} / 36 \mathrm{~L}$ for departures

Runway 18L/36R for arrivals
2) Runway $5 / 23$ is inactive
3) Parallel runway separation $>4,3000 \mathrm{ft}$.
4) ASR-9 airport surveillance radar
(scan time 4.8 seconds)
5) Aircraft mix
a) Heavy - 20\%
b) Large - 30\%
c) Small-50\%
6) Approach speeds
a) Heavy - 150 knots
b) Large - 140 knots
c) Small - 110 knots
7) Runway occupancy times
a) Heavy - 57 s .
b) Large - 52 s .
c) Small - 49 s .
8) Common approach length -7 nm
9) In-trail delivery error standard deviation - $\mathbf{1 8}$ s.
10) Large hub separation criteria ($2.5 / 4 / 5 / 6 \mathrm{~nm}$)
11) IMC weather conditions

Results of CLT Analysis

Two-parallel runway analysis - segregated operations

Example 4 - Charlotte-Douglas Intl. Airport

Operational Conditions

1) Runways $18 \mathrm{R} / 36 \mathrm{~L}$ and $18 \mathrm{~L} / 36 \mathrm{R}$ are used in mixed operations mode
2) Runway $5 / 23$ is inactive
3) Parallel runway separation $>4,3000 \mathrm{ft}$.
4) ASR-9 airport surveillance radar
(scan time 4.8 seconds)
5) Aircraft mix
a) Heavy - 20\%
b) Large - 30\%
c) Small-50\%
6) Approach speeds
a) Heavy - 150 knots
b) Large - 140 knots
c) Small - 110 knots
7) Runway occupancy times
a) Heavy - 57 s .
b) Large - 52 s .
c) Small - 49 s .
8) Common approach length -7 nm
9) In-traildelivery error standarddeviation -18 s .
10) Large hub separation criteria ($2 / 3 / 4 / 5 \mathrm{~nm}$)
$11) V M C$ weather conditions

Departures

Results for CLT VMC Scenario

Single runway analysis - mixed operations

Results of CLT VMC Analysis

Two-parallel runway analysis - mixed operations

Airport Capacity Model (ACM)

- Model developed by FAA to expedite computations of runway saturation capacity
- Later modified by MITRE to be more user friendly
- Inputs and output of the model are similar to those included in the spreadsheet shown in class
- Provides 7-9 data points to plot the arrival-capacity saturation capacity envelope (Pareto frontier)

Sample Enhanced ACM Results

Windows Desktop
AIRFRAME [Ver. 2.0] COPYRIGHT 1991

Capacity of Non-tower Airports

- Existing airports without a control tower have lower runway capacities
- In IMC (Instrument Meteorological Conditions) perhaps 5-9 arrivals per hour
- In VMC (Visual Meteorological Conditions) around I5-20 arrivals per hour
- These airports require large headways (10-I2 minutes) between aircraft because ATC cannot see the aircraft in radar (ATC applies procedural separations)
- Automated Dependance Surveyance (ADS-B) can help provide better situational awareness

Typical Arrival Geometry of Uncontrolled Airports

Typical Arrival Geometry of Uncontrolled Airports

Typical Arrival Geometry of Uncontrolled Airports

Example Problem: BCB Airport

- Example of vectoring and 360 degree turn to establish separation

Example Problem: BCB Airport

- Virginia Tech Airport
- Two aircraft CWT groups operating at the airport

Aircraft CWT Group	H	I
ROT (s)	50	52
Percent Mix (\%)	80	20
Vapproach (knots)	110	125

Example Problem: BCB Airport

- Virginia Tech Airport
- IMC Conditions

Using the Analyical Model for Runway Capacity					
Programmer: A. Trani (August 2019)					
Amendments:	1				
Technical Parameters (inputs)				Parameter	Values
Dep-Arrival Separation (nm)				δ	10
Common Approach Length (nm)				γ	12
Standard deviation of Position Delivery Error (s)				σ	16
Probability of Violation				Pv	5
Cumulative Normal at Pv				qv	1.65
	I H	H	C	B	A
ROT (s)	50	50	62	64	0
Percent Mix (\%)	80.00	20.00	0.00	0.00	0.00
Vapproach (knots)	110.0	125.0	143.0	151.0	160.0

Example Problem: BCB Airport

- IMC Conditions

Minimum Separation Matrix (nm)		
Lead (column 1)	I	H
H	12	12
I	12	12

Distance to Initial Fix

Departure-Departure Separation Matrix (seconds)		
Trailing Aircraft (
Lead (column 1)	I	H
I	200	200
H	200	200

Time to climb out of BCB and aircraft to be in radar contact

Invent the Future

Example Problem: BCB Airport

- IMC Conditions runway capacity

Summary of Results

- The saturation capacity of an airport with HVO (ADS-B) technology depends on the safety buffers allowed and the delivery accuracy of pilots/AMM system
- The variation in technical parameters such as γ and δ affects the results of saturation capacity
- The estimation of departures with 100% arrival priority in our analysis seems consistent with analyses done by TSAA in 2003 (Milsaps, 2003)
- The results compare well with those obtained using the FAA Airport Capacity Model
- The availability of a parallel taxiway has a large influence in the mixed mode saturation capacities

Recapitulation

- The saturation capacity of an airport depends on the runway configuration used
- The saturation capacity during VMC conditions is higher than during IMC conditions (due to shorter separation minima)
- The variation in technical parameters such as γ and δ affects the results of saturation capacity
- The estimation of departures with 100% arrival priority in our analysis seems very conservative
- The time-space analysis does not provide with delay results (use deterministic queueing theory or FAA AC 150/5060 to estimate delay)

