Analysis of Air Transportation Systems

Fundamentals of Aircraft Performance (3)

Dr. Antonio A. Trani
Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University

Fall 2010
Blacksburg

Computer Program to Estimate Aircraft Climb Performance

- A computer model to estimate the climb performance of subsonic aircraft
- Assumes a parabolic drag polar
- Assumes a known velocity profile during climb
- A separate program file is created to specify the aircraft performance characteristics

Climb Performance Computer Program

File: Climb_segment_2003.m

\% Program: Climb Performance Analysis Program
\% Calls: FUNCTION fclimb_04
\% aircraft file (e.g., eclipse_class.m or boeing777_class.m)
\% drag_03.m
\% thrust_calculation.m
\%
\% Assumes all engines operate normally
\% Characteristics similar to a SATS Aircraft
\%
\% Programmer: Toni Trani
\% Sep. 16, 2004
\% Sep. 2004 - introduced function ISAM to simplify code|
\% Define global variables (to be shared across other functions and routines)
clear all
global g mass rhos hcruise
\% Enter aircraft file desired
\% eclipse500_class
boeing777_class
h_airport $=0 ; \quad$ \% airport altitude (m)
rhos $=1.225 ; \quad \%$ sea level density $(\mathrm{kg} / \mathrm{m}-\mathrm{m}-\mathrm{m})$
hcruise $=11000 ; \quad \%$ cruise altitude (m)

MAnan init - mana*n. of Initinl wininht /NInwatamol

Function: fclimb_04.m

```
% FUNCTION: fclimb_04
%
% Calculates the rates of change of aircraft state
% variables during climb profile
% programmer: A. Trani
% date: Sept. 17, }200
function yprime = fclimb_04(t,y)
global g tsfc macht Cdoct thrust_table mach_table lapse_rate_factor rhos Vclimb altc hcruise
V = interp1 (altc,Vclimb,y(1)); % speed schedule - speed is calibrated airspeed (CAS
% Computes standard atmosphere values
% Speed of sound in m/s at different cruise altitudes in meters
[mtrue,a,rho,temp] = isam(y(1),V); % calculates the true mach number of the aircraft at e\
vtas = mtrue * a; % true airspeed (m/s)
q=0.5 * rho * vtas^2; % dynamic pressure (N)
phi = 0.0; % bank angle (radians)
% Compute drag and L/D ratio (call drag_new)
[drag,LD,cl,cd]=drag_03(mtrue,rho,a,y(2)/g,macht,Cdoct,phi);
% Estimates the thrust during climb
```


Function: drag_03.m

\% Function to estimate the drag of an aircraft
\% with quadratic (parabolic) drag polar
\% Can be used stand-alone or with various performance programs
function [drag,LD,cl,cd]=drag_03(mach,rho,a,mass,macht,Cdoct,phi)
global A e S g neng tsfc
\% starts computations
rhos = 1.225;
vtas = mach .* a;
$\mathrm{q}=0.5^{*}$ rho .* vtas. ${ }^{\wedge} 2$;
\% Estimates the cruise CL (lift coefficient) at half point of the cruise profile
cl = 2*g*mass ./ (rho .* vtas. ${ }^{\wedge} 2$. * S .* $\cos (\mathrm{phi})$);
\% Estimates drag coefficient
kf = 1/(pi.* A. ${ }^{*}$ e);
cdo $=$ interp1(macht,Cdoct,mach); \% zero lift drag coefficient
cd $=$ cdo +kf * cl.^2;
\% total drag coefficient
\% Estimate the total vehicle drag

Function: thrust_calculation.m

```
% Funtion to estimate the thrust characteristics of a subsonic aircraft
%
% programmer: A. Trani
% Sept. 15, }200
%
function [thrust] = thrust_calculation(ttable,mach_table,lapse_rate,true_mach,density)
global neng rhos
tmach = neng * interp1 (mach_table, ttable, true_mach);
thrust = tmach * (density/rhos)^lapse_rate;
```


Aircraft Data File: boeing777_class.m

global A e S neng tsfc macht Cdoct mass thrust_table mach_table lapse_rate_factor Vclimb altc

```
S = 440; % wing area (square m)
A=8.7; % Wings aspect ratio
e=0.87; % Oswald's efficiency factor
g=9.81
neng = 2; % Number of engines
tsfc = 1.6e-4; % thrust specific fuel consumption (N/N/s)
mass=320000; % mass at operating point (kg)
% Drag characterictics - CDO function (zero lift drag function)
Cdoct =[[lllllllll}0.018 0.018 0.0192 0.023 0.0137 0.038 0.040];
macht =[[\begin{array}{llllll}{0.0}&{0.75}&{0.80}&{0.85}&{0.90}&{0.95}\end{array}]
% Thrust parameters for Eclipse aircraft (at sea level)
thrust_table = [370000 240000]; % Thrust limits (sea level in Newtons)
mach_table = [0.0 0.9]; % mach number limits to bound thrust
lapse_rate_factor = 0.9; % thrust lapse rate factor
% Computes the aircraft profile given altitude (\/cas given) - typical for
% twin engine aircraft similar to the Boeing 777-200 aircraft
```

Vclimb $=\left[\begin{array}{lllllllll}200 & 200 & 230 & 250 & 270 & 300 & 300 & 300 & 300 \\ 300 & 300 & 300 & 300 & 300 & 3001:\end{array}\right.$

Example of Aircraft Climb Performance

The following example gives an idea of the typical procedures in the estimation of the aircraft climbing performance. Assume that a heavy transport aircraft has drag polar of the form,
$C_{D}=C_{D o}+\frac{C_{L}^{2}}{\pi A R e}$
where: $\mathrm{AR}=8.7$, $\mathrm{e}=0.87$ and C_{DO} (the zero lift drag coefficient) varies according to true airspeed (TAS) according to the following table:

Mach Number	$\mathbf{C}_{\mathbf{D O}}$ (nondimensional)
0.0 to 0.75	0.0180
0.80	0.0192

Mach Number	$\mathbf{C}_{\mathbf{D O}}$ (nondimensional)
0.85	0.023
0.90	0.037
0.95	0.038
1.00	0.040

The engine manufacturer supplies you with the following data for the engines of this aircraft:

True Mach Number	Sea Level Thrust (Newtons)
0	370,000
0.90	240,000

For simplicity assume that thrust variations follow a linear behavior between 0 and 0.90 mach. The thrust also decreases with altitude according to the following simple thrust lapse rate equation,
$\mathrm{T}_{\text {altitude }}=\mathrm{T}_{\text {Sea Level }}\left(\rho / \rho_{\mathrm{o}}\right)^{\cdot 90}$
where ρ is the density at altitude h and ρ_{o} is the sea
 level standard density value ($1.225 \mathrm{~kg} . / \mathrm{m}^{3}$).

The aircraft in question has four engines and has a wing area of $440 \mathrm{~m}^{2}$.
A) Calculate the thrust and drag for this vehicle while climbing from sea level to $10,000 \mathrm{~m}$. under standard atmospheric conditions with a speed profile shown below. Simulate the climb performance equation of motion assuming that the takeoff weight is $320,000 \mathrm{~kg}$.

Vclimb $=\left[\begin{array}{lll}200 & 200 & 230 \\ 250 & 270 & 300 \\ 300 & 300 & 300 \\ 300\end{array}\right.$ 300300300300 300]; \% speed in knots (IAS)
altc $=\left[\begin{array}{lll}0 & 1000 & 200030004000500060007000\end{array}\right.$ $800090001000011000120001300014000]$; \% altitude for IAS in meters

The fuel consumption is approximately proportional to the thrust as follows,
$\mathrm{F}_{\mathrm{c}}=\operatorname{TSFC}(\mathrm{T})$
where: $\mathrm{tsfc}=1.6 \mathrm{e}-4$ is the thrust specific fuel consumption ($\mathrm{N} / \mathrm{N} / \mathrm{s}$)
B) Find the time to climb and the fuel consumed to 10,000 m.
C) What is the approximate horizontal distance traveled to reach $10,000 \mathrm{~m}$. altitude?

Solution

- Set the initial conditions in the main program (climb_segment_2003.m) as follows:
global g mass rhos hcruise
\% Enter aircraft file desired
boeing777_class
$\mathrm{h} _$airport $=0 ; \quad \%$ airport altitude (m)
rhos $=1.225 ; \quad \%$ sea level density $(\mathrm{kg} / \mathrm{m}-\mathrm{m}-\mathrm{m})$
hcruise $=10000 ; \quad \%$ cruise altitude (m)
Mass_init = mass*g; \% Initial weight (Newtons)
- The aircraft file called boeing777_class.m is used
- The climb profile is shown in the next pages

Climb Profile Solution

Analysis (Distance vs. Altitude Profile)

- The aircraft climb rate is high at low altitudes because the thrust developed by the engines is high compared with the drag forces
- As the vehicle climbs higher, engine thrust developed is reduced and so does climb rate
- The aircraft covers 250 kilometers to climb to 10,000 meters ($33,000 \mathrm{ft}$.).
- The ODE solver takes a few more iterations near the Top of Climb (TOC) to solve the differential equations of motion because the rates of change of the state variables change more drastically (specially in the neighborhood of the TOC when the aircraft levels off)

Climb Profile Comparison (DTW Changes)

Analysis (Changes in Desired Takeoff Weight)

- A heavier aircraft (DTW $=320,000 \mathrm{~kg})$ climbs slower than a lighter aircraft (DTW $=280,000 \mathrm{~kg}$)
- The difference in climb distance is significant (175 km for DTW=280,000 versus 250 km when DTW=320,000 kg)
- The initial cruise altitude for a lighter aircraft is higher than that for a heavier aircraft (not shown in the diagram but can be easily demonstrated using the same program)

Climb Time Profile

Analysis (Climb Time Profile)

- The aircraft takes 1,000 seconds (17 minutes) to climb to 10,000 meters
- A lighter aircraft reaches the TOC faster (using time as the metric) than a heavier aircraft

Aircraft Climb Profile (Rate of Climb)

Analysis (Rate of Climb)

- The rate of climb diminishes with altitude gains
- At higher altitudes the thrust produced by the engine is greatly reduced
- The hysteresis observed near the TOC point is due to the small overshoot in altitude
- The true airspeed during climb (in knots) is observed to increase with altitude. Note that by the time the aircraft reaches TOC the speed is near 440 knots
- The aircraft weight changes substantially during climb (from 3,200,000 N at takeoff to near $3,070,000 \mathrm{~N}$ at TOC)

Aircraft Climb Profile (Speed)

Aircraft Climb Profile (Aircraft Weight)

Aircraft Climb Profile (Thrust and Drag)

Analysis (Thrust and Drag)

- The thrust decrease substantially with altitude
- The total drag remains near constant compared with thrust
- At the TOC point, the aircraft has little climb capability because thrust and drag curves are close (little capability to climb)

