CEE 5614 - Analysis of Air Transportation Systems Aircraft Performance Notes 2 Spring 2024



Boeing 737-800

## Differences in Climb Profiles

- Boeing 737-900 climb profiles from DCA to AUS



## Climb Performance

Many airport and airspace simulation models employ simplified algorithms to estimate aircraft climb performance in the terminal area.


## Climb Segments

- Explain regulations that apply to 14 CFR Part 23 and 25 aircraft under One Engine Inoperative (OEI) conditions
- Explanation of climb segments used in aircraft certification


## FAR Part 25 and Part 23 Commuter Category OEL Climb Performance



Recall: 14 CFR Parts 23 and 25 are regulations that apply in the certification of aircraft

Source: Business and Commercial Aviation

## Climb Segment Requirements

| Type | 4-Engine Aircraft | 3-Engine Aircraft | 2-Engine Aircraft |
| :---: | :---: | :---: | :---: |
| Minimum Climb <br> Gradient (14 CFR <br> Part 25.121 | $3.0 \%$ | $2.8 \%$ | $2.4 \%$ |



## Basic Climb Performance Analysis

The basic equations of motion along the climbing flight path and normal to the flight path of an air vehicle are:
$m \frac{d V}{d t}=T-D-m g \sin \gamma$
$m \frac{d \gamma}{d t} V=L-m g \cos \gamma$
where: m is the vehicle mass, $V$ is the airspeed, T and D are the tractive and drag forces, respectively; $\gamma$ is the flight path angle. L is the lift force and $m g \cos \gamma$ is the gravitational component normal to the flight path.

## Climb Performance Model Simplifications

For small $\gamma$ (flight path angle):

$$
\begin{equation*}
\sin \gamma=\frac{T-D}{m g}-\frac{1}{g} \frac{d V}{d t} \tag{27}
\end{equation*}
$$

where: the first term in the RHS accounts for possible changes in the potential state of the vehicle (i.e., climb ability) and the second terms is the acceleration capability of the aircraft while climbing. Further algebraic manipulation yields,

$$
V \sin \gamma=\frac{d h}{d t}=\frac{V[T-D]}{m g}-\frac{V}{g} \frac{d V}{d t}
$$

where: $d h / d t$ is the rate of climb and $V$ is the true airspeed. Note that if one neglects the second term (acceleration factor) assuming small changes in V as the vehicle climbs one can easily estimate the rate of the climb of the vehicle for a prescribed climb schedule.

## Incorporation of a Parabolic Drag Polar Model

Let lift and drag be expressed in the simple parabolic form,
$L=\frac{1}{2} \rho S C_{L} V^{2}$
$D=\frac{1}{2} \rho S C_{D} V^{2}$
where: $C_{L}$ and $C_{D}$ are the lift and drag coefficients (nondimensional), V is the airspeed, S is the wing area (reference area) and $\rho$ is the density of the air surrounding the vehicle.

## Final Derivation of Climb Rate Expression

The functional form of the lift and drag coefficients $\left(C_{L}, C_{D}\right)$ in its simplest form is,

$$
\begin{align*}
C_{D} & =C_{D 0}+C_{D i}=C_{D 0}+\frac{C_{L}^{2}}{\pi A R e}  \tag{30}\\
C_{L} & =\frac{2 m g}{\rho S V^{2}} \tag{31}
\end{align*}
$$

where: $C_{D 0}$ is the zero lift drag coefficient, and the second drag term accounts for drag due to lift generation (i.e., induced drag). Then the rate of climb function becomes,

$$
\begin{equation*}
\frac{d h}{d t}=\frac{V\left[T(\rho, V)-\frac{1}{2} \rho V^{2} S\left\{C_{D 0}(M)+\frac{C_{L}^{2}(M, V)}{\pi A R e}\right\}\right]}{m g} \tag{32}
\end{equation*}
$$

## Mathematical Approximation for Aircraft Thrust and Drag

Thrust and drag are two fundamental variables extracted from wind-tunnel and flight tests.



## Modeling Aircraft Thrust

- Thrust is a function of aircraft speed and altitude
- Basic thermodynamics dictates that thrust is the net result of the speed differential between inlet and outlet of the engine



## Basic Propulsion Forces Modeling Ideas

- Thrust is a function of altitude (or density)
+ A general thrust lapse function can be obtained using real engine data (empirical data)
- Thrust is a function of aircraft speed
+ A more complex function can be obtained using real engine data (empirical data)
+ The thrust losses during takeoff troll are significant as illustrated in the figures below
- Thrust functions are provided by the engine manufacturer in terms of tables (thrust vs altitude and mach number and thrust specific fuel consumption vs altitude and mach number)


## Sample Thrust Variations (PW JT9D Engine)

Observe the large variations of thrust with respect to aircraft altitude


## Modeling Thrust Using a Thrust Lapse Gradient

A simple way to model thrust as a function of altitude is presented below:

$$
\begin{equation*}
T_{h}=T_{0}\left(\frac{\rho_{h}}{\rho_{0}}\right)^{m} \tag{33}
\end{equation*}
$$

where:
$T_{h}$ is the thrust at altitude, $T_{0}$ is the sea level static thrust,
$\rho_{h}$ and $\rho_{0}$ are the density values at altitude and at sea level, respectively
$m$ is an empirical coefficient derived from real data

Takeoff Thrust Variations with Speed


Thrust ratio $=T_{V} / T_{\text {static }}$
Source: Mair and Birdsall (1992)

## Variations of Climb TSFC (PW JT9D Engine)



## Variations of Cruise TSFC (PW JT9D Engine)



## Sample Climb Trajectory Results

Numerical integration of equation (30) for a given flight speed schedule (speed time history) yields the following climb profiles.

Four engine, turbofan-powered aircraft


## Typical Rate of Climb Envelope

Iterative analysis of the rate of climb equation yields the following results across the complete flight envelope.


## Example of Aircraft Climb Performance

The following example gives an idea of the typical procedures in the estimation of the aircraft climbing performance. Assume that a heavy transport aircraft has drag polar of the form,
$C_{D}=C_{D o}+\frac{C_{L}^{2}}{\pi A R e}$
where: $\mathrm{AR}=8.0, \mathrm{e}=0.87$ and $\mathrm{C}_{\mathrm{DO}}$ (the zero lift drag coefficient) varies according to true airspeed (TAS) according to the following table:

| Mach Number | $\mathbf{C}_{\mathbf{D O}}$ (nondimensional) |
| :--- | :--- |
| 0.0 to 0.75 | 0.0180 |
| 0.80 | 0.0192 |


| Mach Number | $\mathbf{C}_{\mathbf{D O}}$ (nondimensional) |
| :--- | :--- |
| 0.85 | 0.023 |
| 0.90 | 0.037 |
| 0.95 | 0.038 |
| 1.00 | 0.040 |

The engine manufacturer supplies you with the following data for the engines of this aircraft:

| True Airspeed (m/s) | Sea Level Thrust (Newtons) |
| :--- | :--- |
| 0 | 250,000 |
| 300 | 150,000 |

For simplicity assume that thrust variations follow a linear behavior between 0 and $300 \mathrm{~m} / \mathrm{s}$. The thrust also decreases with altitude according to the following simple thrust lapse rate equation,
$\mathrm{T}_{\text {altitude }}=\mathrm{T}_{\text {Sea Level }}\left(\rho / \rho_{\mathrm{o}}\right)^{\cdot 90}$
where $\rho$ is the density at altitude h and $\rho_{\mathrm{o}}$ is the sea
 level standard density value ( $1.225 \mathrm{~kg} . / \mathrm{m}^{3}$ ).

The aircraft in question has four engines and has a wing area of $525 \mathrm{~m}^{2}$.
A) Calculate the thrust and drag for this vehicle while climbing from sea level to $10,000 \mathrm{~m}$. under standard atmospheric conditions at a constant indicated airspeed of 280 knots. Simulate the climb performance equation of motion assuming that the takeoff weight is $360,000 \mathrm{~kg}$.
B) Estimate the rate of climb of the vehicle if the fuel consumption is approximately proportional to the thrust as follows,

$$
\mathrm{F}_{\mathrm{c}}=\mathrm{TSFC}(\mathrm{~T})
$$

where TSFC $=2.1 \times 10^{-5}(\mathrm{Kg} /$ second $) /$ Newton
C) Find the time to climb and the fuel consumed to $10,000 \mathrm{~m}$.
D) What is the approximate distance traveled to reach $10,000 \mathrm{~m}$. altitude?

## Solution

- The process to estimate the complete climb profile for the aircraft is best done in a computer. There are numerous computations that need to be repeated for each altitude.
- A suitable algorithm to solve the equations of motion of the aircraft over time is presented in the following pages.


## Computational Algorithm Flowchart



Initial Aircraft States Mass ( $\mathbf{W}_{\mathbf{0}}$ ), Altitude ( $\mathbf{h}_{\mathbf{0}}$ ) and Distance Traveled $\left(\mathbf{S}_{0}\right)$

Given: Speed profile
Typically V as a
function of Altitude (h)

1) Compute Atmospheric values for a given altitude (density, speed of sound, etc.)
2) Compute lift coefficient $\left(\mathrm{C}_{\mathrm{L}}\right)$
$\mathrm{C}_{\mathrm{L}}=\mathrm{f}$ (mass, density, wing area, etc.)
3) Compute the drag coefficient $\left(C_{D}\right)$
$C_{D}=f\left(C_{L}\right.$, Mach, $A R, e$, etc. $)$

From Table

Equation (31)

Equation (30)

## Computational Algorithm (contd.)

4) Compute total drag (D) $\mathrm{D}=\mathbf{f}\left(\mathrm{C}_{\mathrm{D}}, \mathrm{V}, \mathrm{S}\right.$, density $)$

Equation (29)


Equation (33)

Equation (32)
$\Delta T$ is a suitable step size (say 5 seconds)

## Computational Algorithm (contd.)


8) Compute the distance traveled $(d S / d t)$ $\mathrm{dS} / \mathrm{dt}=\mathrm{V} * \Delta T$
9) Update new aircraft altitude ( $h$ ) $\mathbf{h}_{\mathrm{t}}=\mathrm{h}_{\mathrm{t}-1}+\Delta T(d h / d t)$
$\Delta T$ is a suitable step size (say 5 seconds)
10) Update new aircraft mass ( $W$ )

$$
\mathbf{W}_{\mathbf{t}}=\mathbf{W}_{\mathrm{t}-1}+\Delta T(d W / d t)
$$

11) Update new aircraft distance ( $S$ )

$$
\mathrm{S}_{\mathrm{t}}=\mathrm{S}_{\mathrm{t}-1}+\Delta T(\mathrm{dS} / \mathrm{dt})
$$

## Solution Using Numeric Software Packages

- Several engineering packages can perform these computations quickly and easily (Matlab, Mathematica, Mathcad, etc.)
- All of them have differential equation solvers that can be used in this analysis
- The source code to solve this problem is presented in Matlab at the course web site: http://128.173.204.63/ courses/cee5614/syllabus_ce_5614.html
- The process can also be implemented in a standard Spreadsheet application like Excel


## Computational Results



- Note that the aircraft takes about 25 minutes to climb to $10,000 \mathrm{~m}$. and that the rate of climb is near zero at that altitude.
- The time solution for fuel consumption indicates that this aircraft consumes about 20 metric tons in the climb segment as shown in the figure.
- Note that this amount is reasonable considering that a the four engine aircraft carries up to 175 metric tons of fuel.


## Climb Performance Estimation Results



The diagram illustrates the changes to aircraft mass as a function of time ( $d W / d t$ ) for the hypothetical four-engine transport aircraft modeled


## Climb Performance Estimation Results



The diagram illustrates the changes to aircraft altitude as a function of time for the hypothetical four-engine transport aircraft modeled


## Climb Performance Presentation Charts

The previous discussion presented the foundations of the theoretical climb performance. In practice aircraft manufacturers and airlines present climb performance in graphical and tabular format. The figure below presents climb information for a Swedish-made Saab 2000 - a commuter aircraft powered by two turbo-propeller driven engines.

# Sample Climb Estimation Presentation Charts 



ISA $+15^{0} \mathrm{C}$
240 Knots IAS / 0.5 Mach
Anti-Ice Off

source: Saab 2000 aircraft flight manual

# Detailed Example of Aircraft Performance Calculations: Climb Performance 

CEE 5614<br>Analysis of Air Transportation Systems

Dr.Antonio A. Trani Professor

## Example - Aircraft Climb Performance

- Use the the vehicle characteristics for the very large capacity transport aircraft in the Matlab files for CEE 5614 to solve this problem (http://128.173.204.63/courses/cee5614/cee5614_pub/ AirbusA380_class.m)
- Estimate the rate of climb for this aircraft at two distinct points in the climb profile:
- a) 600 meters ( 2,000 feet) and 210 knots - IAS
- b) 8,000 meters ( 26,200 feet) and 290 knots - IAS
- Estimate the thrust produced by the engines under both conditions
- Find the Lift to Drag ratio for both conditions
- Assume the International Standard Atmosphere applies to both aircraft states


## Example - Aircraft Climb Performance Data File

- Very large capacity transport aircraft (http://128.173.204.63/ courses/cee5614/cee5614_pub/AirbusA380_class.m)
\% Aircraft file to support other computational modules
\% Aircraft $=$ Similar to Airbus A380 (heavy transport)
global A e S neng tsfc macht Cdoct mass thrust_table mach_table lapse_rate_factor Vclimb altc g

```
S=858; % % wing area (square m) % % % % OMgs aspect ratio 
e=0.84; % Oswald's efficiency factor
g=9.81;
neng = 4;
    % Number of engines
tsfc =1.6e-4; % thrust specific fuel consumption (N/N/s)
mass = 540000; % mass at operating point (kg)
```

geometric, mass and specific fuel consumption
\% Drag characterictics - CDO function (zero lift drag function)

```
Cdoct =[[llllllllll}0.020 0.020 0.0204 0.022 0.037 0.038 0.040];
```



## drag data

## \% Thrust parameters for Eclipse aircraft (at sea level)

thrust_table $=$ [338000 180000]; \% Thrust limits (sea level in Newtons)
mach_table $=\left[\begin{array}{ll}0.0 & 0.9\end{array}\right]$;
\% mach number limits to bound thrust
engine thrust data
lapse_rate_factor $=0.96$;
\% thrust lapse rate factor

```
% Computes the aircraft profile given altitude (Vcas given) - typical for
% four engine aircraft similar to the Airbus A380 aircraft
Vclimb = [lllllllllllllllll
% knots IAS
Vdescent =[[\begin{array}{lllllllllllllll}{300}&{300}&{300}&{300}&{300}&{300}&{300}&{300}&{300}&{300}&{300}&{300}&{300}&{300}&{300}\end{array}];%%knots IAS
speed profile
data
altc =[[\begin{array}{llllllllllllllll}{0}&{1000}&{2000}&{30004000}&{5000}&{6000}&{7000}&{8000}&{9000}&{10000}&{11000}&{12000}&{13000}&{14000}\end{array}];%\mathrm{ altitude (meters)}
```


## Example - Aircraft Climb Performance Controlling the Speed Profile

- Very large capacity transport aircraft (http://128.173.204.63/ courses/cee5614/cee5614_pub/AirbusA380_class.m)
- The aircraft speed is controlled by the last three lines of data in the aircraft data file
- Line 1 (see below) defines the climb speed in knots (indicated airspeed)
- Line 2 defines the descent speed in knots (IAS)
- Line 3 defines the altitudes at which each speed value is selected
- For example: The aircraft below climbs at 210 knots just after takeoff (zero altitude) and reaches 250 knots at 4000 meters
\% Computes the aircraft profile given altitude (Vcas given) - typical for
\% four engine aircraft similar to the Airbus A380 aircraft

Vdescent $=\left[\begin{array}{llllllllllllll}300 & 300 & 300 & 300 & 300 & 300 & 300 & 300 & 300 & 300 & 300 & 300 & 300 & 300 \\ 300\end{array}\right] ; \%$ knots IAS
altc $=\left[\begin{array}{lllllllllllll}0 & 1000 & 2000 & 30004000 & 5000 & 6000 & 7000 & 8000 & 90001000011000120001300014000\end{array}\right]$ \% altitude (meters)


## Example -Very Large Capacity Aircraft

 Data File- An aircraft similar in size and performance as the Airbus A380
- Four turbofan engines each developing $34,400 \mathrm{~kg}(338,000 \mathrm{~N})$ at sea level
- Maximum takeoff mass is $540,000 \mathrm{~kg}$. (1.188 million pounds)


Airbus A380 taxies to the gate at LAX (A.A.Trani)

## Example - Aircraft Climb Performance

 Picture the Situation- Always picture the situation and sketch a free body diagram of the system
- For this analysis we will ignore the second term in the Right Hand Side (RHS) of the differential equation (acceleration term)
- This simulates that the pilot is interested in climbing as fast as possible and thus using all the engine thrust to climb



## Calculation of Performance at two points in the Climb Profile

- The analysis assumes the aircraft is studied as a point mass system. We evaluate the performance at two discrete points
- The analysis can be repeated many times to study time to climb, fuel used, and other metrics


[^0]
## Calculation Procedure

- Step 1: Estimate true airspeed using atmospheric model
- Step 2: Estimate the lift coefficient needed to sustain flight using the basic lift equation
- Step 3: Estimate drag coefficient
- Step 4: Estimate total drag (D)
- Step 5: Estimate the thrust produced by the engines at altitude ( T )
- Step 6: Find the rate of climb (dh/dt)



## Aircraft Climb Performance 2,000 feet and 210 knots IAS

- Using the standard expression to estimate the true mach number of the aircraft at altitude,

$$
M_{\text {true }}=\sqrt{5\left[\left\{\frac{\rho_{0}}{\rho}\left(\left[1+0.2\left(\frac{V_{I A S}}{661.5}\right)^{2}\right]^{3.5}-1\right)+1\right\}^{0.286}-1\right]}
$$

- The true mach number is 0.3267 , the speed of sound at 600 meters is $337.96 \mathrm{~m} / \mathrm{s}$ and the density of air is $1.156 \mathrm{k} / \mathrm{cu} . \mathrm{m}$.
- The true airspeed (TAS) is $110.41 \mathrm{~m} / \mathrm{s}$ or 214.6 knots
- Use the fundamental lift equation to estimate the lift coefficient under the known flight condition

$$
L=m g=\frac{1}{2} \rho V^{2} S C_{l} \longrightarrow C_{l}=\frac{2 m g}{\rho V^{2} S}
$$

## Aircraft Climb Performance 2,000 feet and 210 knots IAS

- The lift coefficient needed to maintain flight is,

$$
C_{l}=\frac{2 m g}{\rho V^{2} S}=\frac{2 *(540,000)(9.81)}{(1.1560)(110.42)^{2}(858)} \frac{(\mathrm{kg})\left(\mathrm{m} / \mathrm{s}^{2}\right)}{\left(\mathrm{kg} / \mathrm{m}^{3}\right)(\mathrm{m} / \mathrm{s})\left(\mathrm{m}^{2}\right)}=0.8761
$$

- The lift coefficient is non-dimensional
- The drag coefficient can be calculated using the standard parabolic drag polar model

$$
C_{d}=C_{d o}+C_{d i}=C_{d o}+\frac{C_{l}^{2}}{\pi A \operatorname{Re}}=0.020+\frac{0.8761^{2}}{\pi(9.0)(0.84)}=0.0523
$$

- Note that the value of $C_{d o}$ is found by interpolation in the table function relating $C_{d o}$ and Mach number ( $C_{d}$ is non-dimensional)


## Aircraft Climb Performance 2,000 feet and 210 knots IAS

- The total drag is,

$$
D=\frac{1}{2} \rho V^{2} S C_{d}=\frac{1}{2}(1.156)(110.42)^{2}(858)(0.0523)=316,340 \mathrm{~N}
$$

- The calculated drag has units of Newtons (verify by yourself)
- The thrust produced by all 4 engines in the very large capacity transport is estimated using the simple linear model

$$
\begin{aligned}
& T_{0, M}=T_{0, M=0}-\lambda M_{\text {true }} \\
& T_{h, M}=T_{0, M}\left(\frac{\rho_{h}}{\rho_{0}}\right)^{m}
\end{aligned}
$$

- The first expression estimates the thrust at sea level (hence subscript 0 ) at any mach number
- The second expression corrects the thrust developed for any altitude (h)


## Definition of Terms to Estimate Engine Thrust

$T_{0, M}=$ Thrust at sea level and at Mach number M (Newtons)
$T_{0, M=0}=$ Thrust at sea level and at Mach $=0$ (zero speed) (Newons)
$\lambda=$ Rate of change of thrust vs. Mach number (lapse rate) (Newton/Mach)
$M_{\text {true }}=$ True mach number (dimensionless)
$T_{h, M}=$ Thrust at altitude h and Mach number M
$\rho_{h}=$ Air density at altitude $\mathrm{h}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\rho_{o}=$ Air density at sea level (zero altitude) $\left(\mathrm{kg} / \mathrm{m}^{3}\right.$ )
$m=$ Thrust lapse rate (dimensionless)

## A Simple Aircraft Model for Engine Thrust

- The following picture provides a graphical presentation of the thrust model



## Aircraft Climb Performance 2,000 feet and 210 knots IAS

- The thrust developed by each engine is a linear function of Mach number. At sea level and Mach 0.3267 the thrust is,

$$
\begin{aligned}
& T_{0, M}=T_{0, M=0}-\lambda M_{\text {true }} \\
& T_{0, M}=338,000-175,560 M_{\text {true }} \\
& T_{0, M}=338,000-175,560(0.3267) \\
& T_{0, M}=280,646 \text { Newtons }
\end{aligned}
$$

- The thrust at altitude $(\mathrm{h})$ is then,

$$
\begin{aligned}
T_{h, M} & =T_{0, M}\left(\frac{\rho_{h}}{\rho_{0}}\right)^{m} \\
T_{h, M} & =280,646\left(\frac{1.156}{1.225}\right)^{0.96} \\
T_{h, M} & =265,450 \text { Newtons }
\end{aligned}
$$

## Aircraft Climb Performance 2,000 feet and 210 knots IAS

- The thrust developed by each engine has been calculated at the prescribed Mach number (0.3267) and climb speed (214.6 knots)
- The aircraft has four engines so the total thrust for the climb condition is,
$T_{\text {total }}=T_{h, M} n$
where
$n$ is the number of engine
$T_{h, M}$ is the thrust at altitude and Mach number
$T_{\text {total }}=265,450(4)=1,061,800$ Newtons
- This is the total thrust developed by four engines at 210 knots and 600 meters above sea level under ISA conditions


## Aircraft Climb Performance 2,000 feet and 210 knots IAS

- The rate of climb of the aircraft can be calculated,

$$
\begin{aligned}
& \frac{d h}{d t}=\frac{\left(T_{\text {total }}-D\right) V}{m g}= \\
& \frac{d h}{d t}=\frac{(1,061,800-316,340) 110.42}{540,000(9.81)} \frac{(N-N)}{\mathrm{kg}\left(\mathrm{~m} / \mathrm{s}^{2}\right)} \\
& \frac{d h}{d t}=15.53 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- This is equivalent to 932.3 meters per minute or 3,058 feet per minute
- This climb rate is typical of transport aircraft at low altitudes
- The process is now repeated for state 2


## Aircraft Climb Performance 8000 m (26,200 feet) and 290 knots IAS

- The true mach number is 0.6512 , the speed of sound is $308.0 \mathrm{~m} /$ s and the density of air is $0.524 \mathrm{k} / \mathrm{cu} . \mathrm{m}$.
- The true airspeed (TAS) is $200.8 \mathrm{~m} / \mathrm{s}$ or 390 knots
- The lift coefficient needed to maintain flight at $200.63 \mathrm{~m} / \mathrm{s}$ is,

$$
C_{l}=\frac{2 m g}{\rho V^{2} S}=\frac{2 *(540,000)(9.81)}{(0.524)(200.8)^{2}(858)} \frac{(\mathrm{kg})\left(\mathrm{m} / \mathrm{s}^{2}\right)}{\left(\mathrm{kg} / \mathrm{m}^{3}\right)(\mathrm{m} / \mathrm{s})\left(\mathrm{m}^{2}\right)}=0.5844
$$

- The drag coefficient at 26,200 feet and 290 knots (IAS) can be calculated using the standard parabolic drag polar model

$$
C_{d}=C_{d o}+C_{d i}=C_{d o}+\frac{C_{l}^{2}}{\pi A \operatorname{Re}}=0.020+\frac{0.5844^{2}}{\pi(9.0)(0.84)}=0.0344
$$

- Note that the value of $\mathrm{C}_{\mathrm{do}}$ at Mach 0.6512 is 0.020


## Aircraft Climb Performance 8000 m (26,200 feet) and 290 knots IAS

- The total drag is,

$$
D=\frac{1}{2} \rho V^{2} S C_{d}=\frac{1}{2}(0.524)(200.8)^{2}(858)(0.0344)=311,800 N
$$

- The thrust produced by all 4 engines in the very large capacity transport is estimated to be:
- The thrust developed by each engine at Mach 0.6512 and 8,000 meters is,
$T_{0, M}=T_{0, M=0}-\lambda M_{\text {true }}$
$T_{0, M}=338,000-175,560 M_{\text {true }}$
$T_{0, M}=338,000-175,560(0.6512)$
$T_{0, M}=235,110$ Newtons
- Now correct the thrust for altitude


## Aircraft Climb Performance 8000 m (26,200 feet) and 290 knots IAS

- The thrust at altitude (h) is then,

$$
\begin{aligned}
T_{h, M} & =T_{0, M}\left(\frac{\rho_{h}}{\rho_{0}}\right)^{m} \\
T_{h, M} & =235,110\left(\frac{0.524}{1.225}\right)^{0.96} \\
T_{h, M} & =104,040 \text { Newtons }
\end{aligned}
$$

- For four engines the total thrust is,

$$
\begin{aligned}
& T_{\text {total }}=T_{h, M} n \\
& T_{\text {total }}=104,040(4)=416,180 \text { Newtons }
\end{aligned}
$$

- Now we can calculate the rate of climb at Mach 0.6512 and 8,000 meters


## Aircraft Climb Performance 8000 m (26,200 feet) and 290 knots IAS

- The rate of climb of the aircraft can be calculated,

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{\left(T_{\text {total }}-D\right) V}{m g}= \\
\frac{d h}{d t} & =\frac{(411,180-316,800)(200.8)}{540,000(9.81)} \frac{(N-N)}{\mathrm{kg}\left(\mathrm{~m} / \mathrm{s}^{2}\right)} \\
\frac{d h}{d t} & =3.96 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- This is equivalent to 237 meters per minute or 779 feet per minute
- The rate of climb has ben reduced to about $\sim 1 / 4$ compared to near sea level conditions


## Aircraft Climb Performance Calculation of Lift-to-Drag Ratio

- The lift-to-drag ratio is calculated as the ratio of $\mathrm{C}_{\mathrm{l}}$ and $\mathrm{C}_{\mathrm{d}}$,
- At h=600 meters and 210 knots (IAS)
$L / D=\frac{C_{l}}{C_{d}}=\frac{0.8761}{0.0523}=16.7$
- At $\mathrm{h}=8,000$ meters and 290 knots
$L / D=\frac{C_{l}}{C_{d}}=\frac{0.5488}{0.0344}=16.9$
- The lift-to-drag ratio is a key parameter in the determination of range of the aircraft


## Rate Of Climb Analysis

- Repeating the steps shown the previous pages we can estimate the rate of climb for the complete climb profile (i.e., at multiple altitude points)



## Observations

- Rate of climb is high at low altitudes (due to high thrust available and lower true airspeeds)
- The rate of climb decreases non-linearly with altitude (lower atmospheric density reduces engine thrust)
- The rate of climb is affected by other environmental and operational variables:
- Aircraft weight
- Temperature
- Climb speed


## Sensitivity Analysis Rate of Climb vs.Weight

- Varying the weight of the aircraft from $540,000 \mathrm{~kg}$ to $450,000 \mathrm{~kg}$ shows the effect on rate of climb



## Sensitivity Analysis

## Rate of Climb vs. Temperature

- Varying the temperature of the atmosphere from ISA to ISA + 30 degrees Celsius



# Implications for Real-world Aviation Operations 

- The performance of the aircraft has profound effects in real-world flight planning applications
- Obstacle accountability analysis
- Obstacle clearance procedures in the terminal area (after takeoff)
- Obstacle clearance in engine out conditions
- Limits on carrying passengers and cargo from a challenging airport
- Time to climb is affected and assigned cruise altitude

A Challenging Airport for Departure Performance

- Eagle County Airport in Colorado (EGE)
- $9000 \times 150$ foot runway
- Obstacles due to terrain on both approach and departure procedures
- Airport elevation is 6,535 feet above mean sea level
- Airport has commercial operations using high-performance twin-engine aircraft (Boeing 757-200)


Boeing 757-200 winglets departing LAX (A.A.Trani)

## Eagle County Airport (EGE)



## Use of Airport Approach and Departure Aeronautical Charts

- To illustrate some challenging airport operational procedures related to aircraft climb performance we use some approach and departure aeronautical charts
- These charts are used by pilots and ATC to plan and fly arrival and departure procedures (flight tracks) to the airport. These are called Standard Terminal Arrival Routes (STAR), Standard Instrument Departures (SID), and Instrument Approach Procedures (IAP)
- You can obtain airport STAR, SID and IAP charts at: http:// flightaware.com/
- More information on how to read these charts can be found:
- http://www.naco.faa.gov/index.asp?xml=naco/online/aero_guide
- http://sunairexpress.com/images/How to_Read_Approach_Plates.pdf


## Departure Procedure from EGE (Runway 25)

Note crossing altitude restriction at MELVL

Climbing left turn heading 215 degrees to avoid natural terrain
to the West of the to avoid natural ter
to the West of the airport

Requires 815 feet $/ \mathrm{nm}$ of climb performance
(EKR1.EKR) 10098
SL-6403 (FAA)
MEEKER ONE DEPARTURE


Airport


source: FAA


## Departure Procedure from EGE Airport (Runway 25)


source: Google Earth (2009)

# Numerical Simulation of the Climb Equations of Motion 

## Using the Unrestricted Climb Profile Matlab Files

## Purpose and Basic Explanations

- Explains how to use the unrestricted climb profile files
- Code simulates an aircraft climb profile up to the maximum altitude possible limited by thrust and atmospheric constraints
- Program calculates numerically, four aircraft state variables in the climb profile (altitude, mass, distance traveled along path and distance along flat earth)

Files are available at: http://|28.| 73.204.63/courses/cee56|4/ matlab files cee5614.html

## Input Files Needed Files

- Explains how to use the unrestricted climb profile files
- Code simulates an aircraft climb profile up to the maximum altitude possible limited by thrust and atmospheric constraints


## Climb Performance Files

- UnrestrictedClimbAnalysis.m
- fclimb 06.m
- densityAltitudeOffISA.m
- drag_03.m
- thrust calculationNoLoss.m
- atmosphere

Plus one of the aircraft files from the list

## Aircraft Files

- Very Light Jet (Eclipse 500 class).
- Large Twin Engine Transport (Boeing 777 class).
- Very Large Capacity Transport (Airbus A380 class).
- Regional Jet Transport (Bombardier CRJ200 class).
- Medium Size Jet Transport (Boeing 737-800 class).
- New Generation, Long-Range Transport (Boeing 787-800 class).

Files are available at: http://I 28.| 73.204.63/courses/cee56/4/ matlab files cee5614.html

## File Organization

> UnrestrictedClimbAnalysis.m integrates the basic equations of motion of the aircraft as it climbs without restrictions to the maximum altitude the aircraft can reach. The state variables intgerated over time are: a) altitude, b) mass, c) distance traveled along the path, and d) distance traveled on the earth's surface.

> UnrestrictedClimbAnalysis.m calls fclimb_06.m which contains the rates of change of the state variables over time. The climb analysis also requires and aircraft file with the performance limits of the vehicle modeled.

> All files contained in this section are needed to successfully run UnrestrictedClimbAnalysis.m because drag and thrust computations are needed in the climb performance analysis.

## UnrestrictedClimbAnalysis.m = Main Matlab script

Matlab functions
fclimb06.m (calculates the rates of change of state equations) densityAltitudeOffISA.m (calculates atmospheric conditions) drag03.m (calculates aircraft drag and lift characteristics) thrust_calculationNoLoss.m (calculates engine thrust) atmosphere.m (numerical values of ISA atmosphere)

## Simulate an Aircraft

You specify the aircraft to be simulated in UnrestrictedClimbAnalysis.m

For example,Airbus380_class.m contains information similar to a very large capacity 4-engine aircraft

## UnrestrictedClimbAnalysis.m



## Controlling the Aircraft Climb Speed

- You specify the aircraft climb speed inside the aircraft file (see lines 29 and 31)
- For example, Airbus380_class.m contains information similar to a very large capacity 4-engine aircraft


## Airbus380_class.m

26 \% Computes the aircraft profile given altitude (Vcas given) - typical for
27 \% four engine aircraft similar to the Airbus A380 aircraft
28
29 - Vclimb $=\left[\begin{array}{lllllllllllll}210 & 210 & 220 & 230 & 250 & 260 & 290 & 290 & 290 & 290 & 290 & 300 & 300 \\ 300 & 300\end{array}\right] ;$ knots IAS





## Calculating Equations of Motion

- Program calculates numerically, four aircraft state variables in the climb profile (altitude, mass, distance traveled along path and distance along flat earth)

```
% Define the rate equations (4 rate equations for 4|state variables)
% y(1) - Aircraft altitude (m)
% y(2) - Aircraft weight (N)
% y(3) - Distance traveled along the path (m)
% y(4) - Distance traveled wrt to ground (m)
Function fclimb06.m
yprime(1) = vtas * (thrust - drag) / (y(2))
% Rate of climb (m/s)
yprime(2) = - tsfc * thrust;
% Mass flow rate (N/s)
yprime(3) = vtas ;
\% Distance traveled along the flight path (m)
```

\% Calculation of flight path angle (gamma)
flt_path_angle $=\operatorname{asin}(y p r i m e(1) /$ vtas); $\%$ radians
\% Calculate distance traveled across horizontal distance
yprime $(\mathrm{I})=\mathrm{dh} / \mathrm{dt}$
yprime $(2)=d W / d t$
yprime $(3)=$ dS/dt (along path)
yprime $(4)=d S / d t$ (flat Earth)

```
yprime(4) = vtas * cos(flt_path_angle); % distance traveled along horizontal (meters)
yprime = yprime'; % transposes the array going out
    % MATLAB is very picky about this
    % it likes the array in column format
State variables
```


## Output Produced by the Matlab Code

- Four aircraft state variables in the climb profile (altitude, mass, distance traveled along path and distance along flat earth)
- Plots of state variables vs. time
- Plots of state variables vs. distance flown and altitude



## Cruise Analysis



The forces acting on the air vehicle during cruising flight are shown below. Note that drag generated by the aircraft and the thrust supplied by the engine are equal for steady and level flight. Similarly, the lift and weight are equal.


## Cruise Analysis

Lift and drag can be computed according to the well known aerodynamic equations re-stated below.

$$
\begin{align*}
& L=\frac{1}{2} \rho S C_{L} V^{2}  \tag{15}\\
& D=\frac{1}{2} \rho S C_{D} V^{2}  \tag{16}\\
& C_{D}=C_{D 0}+C_{D i}=C_{D 0}+\frac{C_{L}^{2}}{\pi A R e}  \tag{30}\\
& C_{L}=\frac{2 m g}{\rho S V^{2}} \tag{15B}
\end{align*}
$$

## Cruise Analysis

For typical subsonic aircraft $(\mathrm{M}<0.8)$ the drag rise beyond the so-called critical mach number ( $\mathrm{M}_{\text {crit }}$ ) is quite severe and this produces a well defined maximum speed capability dictated by the rapid rise in the $\mathrm{C}_{\mathrm{D} 0}$ term in Equation 30.

A drag divergence mach number exists for every aircraft. The drag divergence mach number is characterized by a fast rise in drag coefficient due to wave drag and parasite/ friction drag effects at high speed.

## Cruise Range Estimation

- An important consideration in assessing air vehicle performance is the range of the aircraft.
- Range is the maximum distance that an aircraft flies without refueling. Several range alternatives arise operationally for aircraft as will be shown in this section.
- The range represents a trade-off of how far and how much payload (i.e., the amount of passengers, cargo, or a combination of the two) an aircraft carries.


## Range Estimation Methodology



The differential distance (or range), $d R$, traveled at speed $V$ over a small interval of time $d t$ is,
$d R=V d t$
Since the aircraft only looses weight due to fuel expenditure we can define the rate of change of the weight over time as the product of the specific fuel consumption (TSFC) and the tractive force required to move the vehicle at speed V (T),
$\frac{d W}{d t}=-(T S F C) T$
This quantity is negative because the aircraft burns fuel Weight decreases along the flight path

## Range Estimation Methodology



Define the Specific Air Range - SAR - (a measure of the efficiency of the aircraft) as the ratio of the distance flown per unit of fuel consumed,
$\frac{d R}{d W}=\frac{(V)}{(T S F C) T}=S A R$
The typical units of TSFC are lb/hr/lbf (pounds per hour of fuel per pound of force produced) or $\mathrm{kg} / \mathrm{hr} / \mathrm{kgf}$ (kilograms per hour of fuel consumption per kilogram force produced). This parameter varies with altitude and speed.

## Sample Use of TSFC

- The Pratt and Withney PW 4086 engine used in the Boeing 777 has a TSFC value of $0.6 \mathrm{lb} / \mathrm{hr} / \mathrm{lbf}$ as the aircraft flies at mach 0.80 at $11,000 \mathrm{~m}$. above mean sea level.
- If each engine produces $15,000 \mathrm{lb}$ of thrust at that altitude to keep the aircraft flying straight and level then the average hourly fuel consumption would be $(15,000 \mathrm{lb}$ of thrust) $(0.6 \mathrm{lb} / \mathrm{hr} / \mathrm{lbf})=9,000 \mathrm{lb}$ per hour (per engine).
- The solution to the so-called Breguet Range equation derived from SR is obtained if one separate variables and integrates over the weight expenditure of the vehicle from an initial weight, $W_{i}$ to a final weight, $W_{f}$ at the end of the cruising segment.


## Cruise Range Analysis



In practical airline operations the initial and final cruising segment points are called Top of Climb (TOC) and Top of Descent (TOD), respectively.


## Derivation of the Breguet Range Equation

Start with the basic equation of SAR (Equation 36),
$\frac{d R}{d W}=\frac{(V)}{(T S F C) T}=S A R$

Multiplying the right hand side of the previous equation by $L / W$ and rearranging terms,
$\frac{d R}{d W}=\frac{(V)}{\operatorname{TSFC}(\mathrm{T})}\left(\frac{L}{W}\right)=\frac{(V)}{(T S F C) W}\left(\frac{L}{D}\right)$
Separating variables and integrating both sides,
$\int_{0}^{R} d R=\int_{W_{i}}^{W_{j}} \frac{(V)}{(T S F C)}\left(\frac{L}{D}\right)\left(\frac{d W}{W}\right) \quad$ In cruise $\mathrm{T}=\mathrm{D}$
$R=\frac{(V)}{(T S F C)}\left(\frac{L}{D}\right) \ln \left(\frac{W_{i}}{W_{f}}\right)$
where: $R$ is the aircraft range, TSFC is the thrust specific fuel consumption, $V$ is the cruise true airspeed, $L$ is the lift, $D$ is the drag produced while moving at speed $V$, and $W_{i}$ and $W_{f}$ are the initial and final weights of the aircraft at the top of climb and top of descent, respectively.

Note that for constant altitude cruise the term $L / D$ is not constant because as the aircraft depletes its fuel and gets lighter over time. Consequently, the amount of lift needed to keep it flying at the same altitude will vary over time. The derivation of an approximate range equation can, nevertheless treat the term $L / D$ as constant to give a first order approximation of the expected aircraft range.

## Modifications to Breguet-Range Equation



In the range equation (Eq. 39) the term $L / D$ can be alternatively substituted by $C_{L} / C_{D}$. To avoid problems the range expression for very long range aircraft can be subdivided into various cruising segments and then integrated using corresponding values of $C_{L} / C_{D}$ for each segment. One approach to estimate with more precision the range is to integrate numerically the Specific Air Range equation (Eq. 36) considering variations in $C_{L} / C_{D}$ using standard numerical methods.

## Example - Aircraft Range Performance

- Use the the vehicle characteristics for the very large capacity transport aircraft in the Matlab files for CEE 5614 to solve this problem (http://128.173.204.63/ courses/cee5614/cee5614_pub/AirbusA380_class.m)
- Estimate the rate of range for this aircraft for three altitudes and various Mach numbers:
- Mach ranging from 0.74 to 0.86
- Cruise altitudes from 8,000 to 12,000 meters
- Assume the International Standard Atmosphere applies


## Example -Very Large Capacity Aircraft Data File

- Very large capacity transport aircraft (http://128.173.204.63/ courses/cee5614/cee5614_pub/AirbusA380_class.m)
\% Aircraft file to support other computational modules
\% Aircraft = Similar to Airbus A380 (heavy transport)
global A e S neng tsfc macht Cdoct mass thrust_table mach_table lapse_rate_factor Vclimb altc g


```
e=0.84; % Oswald's efficiency factor
g= 9.81;
neng = 4;
    % Number of engines
tsfc = 1.6e-4; % thrust specific fuel consumption (N/N/s)
mass = 540000; % mass at operating point (kg)
```

geometric, mass and specific fuel consumption
\% Drag characterictics - CDO function (zero lift drag function)

| Cdoct $=\left[\begin{array}{lllllll}0.020 & 0.020 & 0.0204 & 0.022 & 0.037 & 0.038 & 0.040\end{array}\right] ; \quad$ drag data |
| :--- |
| macht |$=\left[\begin{array}{lllllll}0.0 & 0.75 & 0.80 & 0.85 & 0.90 & 0.95 & 1.000\end{array}\right] \quad$

## \% Thrust parameters for Eclipse aircraft (at sea level)

thrust_table $=[338000$ 180000 $] ;$ \% Thrust limits (sea level in Newtons)
mach_table $=\left[\begin{array}{ll}0.0 & 0.9\end{array}\right]$;
\% mach number limits to bound thrust
lapse_rate_factor $=0.96$;
\% thrust lapse rate factor

```
% Computes the aircraft profile given altitude (Vcas given) - typical for
% four engine aircraft similar to the Airbus A380 aircraft
Vclimb =[180 200 220 250 270 280 290 300 300 300 300 300 300 300 300]
% knots IAS
```



```
speed profile
data
altc =[ [01000 2000 30004000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000]; % altitude (meters)
```


## Example -Very Large Capacity Aircraft Data File

- An aircraft similar in size and performance as the Airbus A380
- For range analysis assume mass at TOC $=530,000 \mathrm{~kg}$
- Mass at Top of Descent (TOD) $=320,000 \mathrm{~kg}$


Airbus A380 taxies to the gate at LAX (A.A.Trani)

## Computations using the Breguet Range Equation

$$
\begin{aligned}
& R=\frac{V}{T S F C} \frac{L}{D} \ln \left(\frac{W_{i}}{W_{f}}\right) \\
& R=\frac{V}{T S F C} \frac{C_{l}}{C_{d}} \ln \left(\frac{W_{T O C}}{W_{\text {TOD }}}\right)
\end{aligned}
$$

Steps:

1) For a given cruise altitude and desired cruise Mach number calculate the true airspeed ( $V$ )
2) Calculate lift coefficient to maintain steady flight using the midpoint mass between TOC and TOD ( $C_{l}$ )
3) Calculate drag coefficient ( $C_{d}$ )
4) Estimate the range ( $R$ ) assuming constant TSFC

## Range Analysis Parametric Study



## Observations

- The range varies with Mach number
- There is an optimum Mach number for long range cruise ( 0.80 for this aircraft at $12,000 \mathrm{~m}$.)
- The optimal range occurs at different Mach numbers
- High-speed cruise in modern airliners like Boeing 777 and Airbus A380 is around Mach 0.83-0.85
- Maximum operating Mach number for a Boeing 747-400 is 0.92 (Mmo) - speed never used in practice
- Range penalties are associated with high cruise Mach numbers


# CEE 56I4 <br> Analysis of Air Transportation Cruise Analysis Calculations Numerical Integration Example 

- Use the large four-engine transport aircraft performance file provided in the Matlab files for CEE 5614 (http:/l 128.173.204.63/courses/cee5614/ matlab files cee5614.html to answer the following questions
- The aircraft cruises at FL 360 and Mach 0.83 over distance of $4,000 \mathrm{~nm}$. The aircraft has a mass of 500,000 kg at the Top of Climb Point (TOC)
- Calculate the fuel burn in the cruise segment using a numerical integration procedure
- The procedure is to divide the cruise phase into smaller distance intervals
- In each interval we assume the fuel consumption is constant


## Fuel Burn Calculation Formulas

$$
\begin{aligned}
& \frac{d R}{d t}=V \\
& T=D=\frac{1}{2} \rho V^{2} S C_{d} \\
& \frac{d W}{d t}=T S F C(D)=-T S F C\left(\frac{1}{2} \rho V^{2} S C_{d}\right)
\end{aligned}
$$

## Negative sign because

 weight is decreasing with timeThe system of two equations of motion can be solved using Matlab. Note that during the cruise phase, the speed of the aircraft does not change so the equation $d R / d t$ is simple to solve.

The equation for $\mathrm{dW} / \mathrm{dt}$ can be solved numerically in two ways:
I) Numerical integration with respect to time
2) Numerical integration over distance as parameter (inverse of SAR)

## Fuel Burn Calculation Formulas

Numerical integration over time

$$
\begin{aligned}
& \frac{d W}{d t}=-\operatorname{TSFC}(T)=-\operatorname{TSFC}(D)=-\operatorname{TSFC}\left(\frac{1}{2} \rho V^{2} S C_{d}\right) \\
& W_{t+\Delta t}=W_{t}+\frac{d W}{d t} \Delta t=W_{t}-\operatorname{TSFC}\left(\frac{1}{2} \rho V^{2} S C_{d}\right) \Delta t
\end{aligned}
$$

where:
$\frac{d W}{d t}=$ rate of change of aircraft weight per unit of time (i.e., $\mathrm{N} / \mathrm{s}$ )
$\Delta t=$ is a suitable time step size for the numerical integration
TSFC $=$ Thrust specific fuel consumption ( $\mathrm{N} / \mathrm{s} / \mathrm{N}$ )
$D=$ total drag (N)
$T=$ thrust required to overcome drag (N)

## Fuel Burn Calculation Formulas

Numerical integration over distance as parameter

$$
\begin{aligned}
& \frac{d R}{d t}=V \\
& d R=V d t \\
& \frac{d W}{d t}=\operatorname{TSFC}(D)=-T S F C\left(\frac{1}{2} \rho V^{2} S C_{d}\right) \\
& \frac{d W}{d R}=\frac{1}{\operatorname{SAR}}=\frac{-T S F C(D)}{V}=\frac{-T \operatorname{TSFC}(T)}{V}
\end{aligned}
$$

where:
$\frac{d W}{d R}=$ rate of change of aircraft weight for a given distance (i.e., $\mathrm{N} / \mathrm{nm}$ or $\mathrm{N} / \mathrm{m}$ )
The procedure to solve the differential equation numerically is illustrated in the following pages

## Numerical Solution of dW/dR

$$
\begin{aligned}
& \frac{d W}{d t}=\operatorname{TSFC}(D)=-T S F C\left(\frac{1}{2} \rho V^{2} S C_{d}\right) \\
& \frac{d W}{d R}=\frac{1}{S A R}=\frac{-T S F C(D)}{V}=\frac{-T S F C(T)}{V} \\
& \text { where: } \\
& \frac{d W}{d R}=\text { rate of change of aircraft weight for a given distance (i.e., } N / n m \text { or } N / m \text { ) }
\end{aligned}
$$

The solution requires an evaluation of Drag and Speed at discrete points along the track as illustrated in the following page.TSFC is either known from engine data or estimated using a polynomial approximation.

The aircraft cruises at Mach 0.83 at 36,000 feet. Assuming ISA conditions, the speed of sound (a) at 10,976 meters is $295 \mathrm{~m} / \mathrm{s}$. The true airspeed is:

$$
V_{t a s}=295.1 \mathrm{~m} / \mathrm{s}(0.83)=244.93 \mathrm{~m} / \mathrm{s}
$$



## Fuel Burn at TOC Point

$$
m_{T O C}=500,000 \mathrm{~kg}
$$

The drag at cruise at the Top of Climb point (point 0 in the diagram) would be:
$V_{t a s}=244.93 \mathrm{~m} / \mathrm{s}$
$C_{l}=\frac{2 m g}{\rho V^{2} S}=\frac{2 *(500,000)(9.81)}{(0.365)(244.94)^{2}(858)} \frac{(\mathrm{kg})\left(\mathrm{m} / \mathrm{s}^{2}\right)}{\left(\mathrm{kg} / \mathrm{m}^{3}\right)(\mathrm{m} / \mathrm{s})\left(\mathrm{m}^{2}\right)}=0.5217$
$\mathrm{C}_{l}=0.5217(\mathrm{dim})$
$\mathrm{C}_{d}=C_{d o}+C_{d i}=C_{d o}+\frac{C_{l}^{2}}{\pi A R(e)}=0.0211+\frac{0.5217^{2}}{\pi(9.0)(0.84)}=0.033(\mathrm{dim})$
$D=\frac{1}{2} \rho V^{2} S C_{d}=\frac{1}{2}(0.365)(244.94)^{2}(858)(0.0330)=310,070 \mathrm{~N}$

## Fuel Burn at TOC Point

The fuel consumption at the TOC point is then,

$$
\begin{aligned}
\frac{d W}{d t} & =-T S F C(D)=-T S F C(T)=-(1.6 e-4 \mathrm{~N} / \mathrm{N} / \mathrm{s}) *(310,070 \mathrm{~N}) \\
\frac{d W}{d t} & =-49.61 \mathrm{~N} / \mathrm{s}=-5.06 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

The aircraft takes $3,780.2$ seconds to travel 500 nm of the first interval of the $4,000 \mathrm{~nm}$ cruise phase.

In the process the aircraft burns $19,118 \mathrm{~kg}$ of fuel at $5.06 \mathrm{~kg} / \mathrm{s}$

At point (I), the aircraft mass is: $480,892 \mathrm{~kg}$

## Next Iteration (Segment I-2)

- The process is repeated for all the remaining intervals. Here we show calculations for segment I-2.

$$
\begin{aligned}
& m_{1}=480,892 \mathrm{~kg} \\
& V_{t a s}=244.94 \mathrm{~m} / \mathrm{s} \\
& C_{l}=\frac{2 m g}{\rho V^{2} S}=\frac{2 *(480,892)(9.81)}{(0.365)(244.94)^{2}(858)} \frac{(\mathrm{kg})\left(\mathrm{m} / \mathrm{s}^{2}\right)}{\left(\mathrm{kg} / \mathrm{m}^{3}\right)(\mathrm{m} / \mathrm{s})\left(\mathrm{m}^{2}\right)}=0.502 \\
& \mathrm{C}_{l}=0.504(\mathrm{dim}) \\
& \mathrm{C}_{d}=C_{d o}+C_{d i}=C_{d o}+\frac{C_{l}^{2}}{\pi A R(e)}=0.0211+\frac{0.502^{2}}{\pi(9.0)(0.84)}=0.0321(\mathrm{dim}) \\
& D=\frac{1}{2} \rho V^{2} S C_{d}=\frac{1}{2}(0.365)(244.94)^{2}(858)(0.0321)=301,986 \mathrm{~N}
\end{aligned}
$$

## Fuel Burn at Point (I) in Cruise

The fuel consumption at point 2 is then,

$$
\begin{aligned}
\frac{d W}{d t} & =-T S F C(D)=-T S F C(T)=-(1.6 e-4 \mathrm{~N} / \mathrm{N} / \mathrm{s}) *(301,986 \mathrm{~N}) \\
\frac{d W}{d t} & =-48.32 \mathrm{~N} / \mathrm{s}=-4.93 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

The aircraft takes $3,780.7$ seconds to travel 500 nm of the second interval of the $4,000 \mathrm{~nm}$ cruise phase.

In the process the aircraft burns $18,618.6 \mathrm{~kg}$ of fuel at $4.93 \mathrm{~kg} / \mathrm{s}$

At point (2), the aircraft mass is: $462,273.3 \mathrm{~kg}$

## Complete the Numerical Analysis

The numerical procedure is repeated until the aircraft reaches the Top of Descent (TOD) - point (8)

$$
\begin{aligned}
& f c_{\text {cruise }}=140,611 \mathrm{~kg} \\
& m_{T O D}=359,389 \mathrm{~kg}
\end{aligned}
$$

TOC
Top of Climb


The numerical procedure is now repeated using 100 intervals across the $4,000 \mathrm{~nm}$ segment to illustrate the improvement in the fuel burn calculation

$$
\begin{aligned}
& f c_{\text {cruise }}=139,248 \mathrm{~kg} \\
& m_{\text {TOD }}=360,752 \mathrm{~kg}
\end{aligned}
$$

TOC
Top of Climb


## Comparison of Numerical Analyses

We compare the numerical procedure for various segments. The number of segments improves the accuracy of the solution (shown in the table below).

| Number of Distance <br> Segments | Cruise Fuel (kg) | Mass at TOD <br> $(\mathrm{kg})$ |
| :---: | :---: | :---: |
| 1 | 152,935 | 347,065 |
| 8 | $140,61 \mathrm{l}$ | 359,389 |
| 100 | 139,248 | 360,762 |
| 500 | 139,154 | 360,850 |
| 5000 | 139,134 | 360,866 |

## Conclusion

- The number of numerical steps improves the solution
- Beyond 500 steps, the solution cannot be improved significantly
- 500 distance steps in this problem is equivalent to calculating fuel burn every 8 nm (one minute at jet speeds)
- The method outlined can be employed in aviation simulation applications with good results


## Presentation of Cruise Information



ISA $+15^{0} \mathrm{C}$
950 Propeller RPM
Anti-Ice Off


source: Saab 2000 aircraft flight manual

## Descent Flight Operations



- Usually, transport aircraft descent at a rate of $900 \mathrm{~m} / \mathrm{min}$. (3,000 ft./min.) during the early stages of the descent segment.
- Below 3,000 m. (10,000 ft.) aircraft enter a dense terminal area and are usually required to maneuver around other air vehicles to establish coordinated arrival flows to runways
- In the U.S is customary to limit the indicated airspeed to 250 knots or lower below 3,000 m to avoid accidents in the rare event of a bird strike.


## Descent Profile Operations

- Below $3,000 \mathrm{~m}$. the descent rate typically decreases to $500 \mathrm{~m} / \mathrm{min}$. (1,500 ft. $/ \mathrm{min}$.) or less and the descent profile might follow a series of "steps" at designated altitudes in the final stages of flight.
- Aircraft manufacturers report typical fuel consumption vs. distance traveled curves similar to those shown in the figure below.

Manufacturers also include distance vs. altitude curves for the descent phase of aircraft operations.

## Descent Profile Operations

Decent operations can be studied using the same principles used to model climb operations

The vehicle is now placed into a shallow dive with engines running at lo power

The flight path angle is negative and since thrust is limited, the vehicle glides at a specific speed starting from the Top of Descent Point (TOD) into the terminal area

The analysis of the descent flight is presented in detail with an example in the following pages.

## Presentation of Descent Profile Information

Sample fuel descent charts for Fokker F-100 aircraft.


Adapted from Fokker 100 aircraft flight manual

# Aircraft Performance Calculations: Descent Analysis 

# CEE 5614 <br> Analysis of Air Transportation Systems 

Dr.Antonio A. Trani Professor

## Aircraft Descent Performance

- The top of descent point typically starts 80-120 miles away from the destination airport (depending upon the cruise altitude assigned)
- A descent on commercial transport aircraft is initiated by setting the engine thrust to a very low power condition (i.e.,idle thrust)
- The analysis done for climb is now reversed
- Once in the airport terminal area, thrust adjustments are necessary to compensate for altitude holds or flap configuration changes as needed


## Sample Descent Profile (LAX Data)

- Shown are sample descent profiles for Boeing 767-300 flying into LAX International airport
- Clearly, not all aircraft fly the same descent profiles



## Arrival Flight Profiles into the LAX Airport Terminal Area



## Aircraft Descent Performance Analysis

- The pilot reduces thrust to near idle conditions
- If we let the reduced thrust be $T_{d}$, then the analysis done for the climb procedure applies to the descent
- The most economical descent would be a continuous descent flown at idle conditions until a point where flaps and landing gear are deployed. At such point adjustments in thrust are required to maintain a safe rate of descent in the final approach



## Example - Aircraft Descent Performance Controlling the Speed Profile

- Very large capacity transport aircraft (http://128.173.204.63) courses/cee5614/cee5614_pub/AirbusA380_class.m)
- The aircraft descent speed is controlled by the last two lines of data in the aircraft data file
- Vdescent is the vector of descent speed for altitudes (altc)
- altc is a vector of altitudes to complete the table function of speed vs altitude
- For example: The aircraft below descends at 300 knots indicated at the top of descent. However below 3000 meters, the aircraft slows down to 250 knots or below.
\% Computes the aircraft profile given altitude (Vcas given) - typical for
\% four engine aircraft similar to the Airbus A380 aircraft

```
Vclimb = [210 210 220 230 250 260 290 290 290 290 290 300 300 300 300]; % knots IAS
Vdescent =[[\begin{array}{lllllllllllll}{180}&{200}&{250}&{250}&{270}&{300}&{300}&{300}&{300}&{300}&{300}&{300}&{300}\\{300}&{300}&{300}\end{array}];%\mathrm{ knots IAS}
altc =[[\begin{array}{llllllllllllllll}{0}&{1000}&{2000}&{30004000}&{5000}&{6000}&{7000}&{8000}&{9000}&{10000}&{11000}&{12000}&{13000}&{14000}\end{array}];%\mathrm{ altitude (r}
```


## Example -Very Large Capacity Aircraft

 Data File- An aircraft similar in size and performance as the Airbus A380
- Four turbofan engines each developing $34,400 \mathrm{~kg}(338,000 \mathrm{~N})$ at sea level. Assume idle thrust produces $\mathbf{1 / 1 0}$ of the full continuous thrust
- Top of Descent (TOD) mass is $400,000 \mathrm{~kg}$.


Airbus A380 taxies to the gate at LAX (A.A.Trani)

## Descent Analysis Calculation Procedure

- Step 1: Estimate true airspeed using the atmospheric model
- Step 2: Estimate the lift coefficient needed to sustain flight using the basic lift equation
- Step 3: Estimate drag coefficient
- Step 4: Estimate total drag (D)
- Step 5: Estimate the reduced thrust produced by the engines at altitude ( $\mathrm{T}_{\mathrm{d}}$ )
- Step 6: Find the rate of descent (dh/dt)



## Sample Calculations for Two Aircraft States



## Aircraft Descent Performance 33,000 feet ( $10,061 \mathrm{~m}$ ) and 300 knots IAS

- Using the standard expression to estimate the true mach number of the aircraft at altitude,

$$
M_{\text {true }}=\sqrt{5\left[\left\{\frac{\rho_{0}}{\rho}\left(\left[1+0.2\left(\frac{V_{I A S}}{661.5}\right)^{2}\right]^{3.5}-1\right)+1\right\}^{0.286}-1\right]}
$$

- The true mach number is 0.751 , the speed of sound at 10,061 meters is $299.2 \mathrm{~m} / \mathrm{s}$ and the density of air is $0.41 \mathrm{~kg} / \mathrm{cu}$. m.
- The true airspeed (TAS) is $224.65 \mathrm{~m} / \mathrm{s}$ or 437 knots
- Use the fundamental lift equation to estimate the lift coefficient under the known flight condition

$$
L=m g=\frac{1}{2} \rho V^{2} S C_{l} \longrightarrow C_{l}=\frac{2 m g}{\rho V^{2} S}
$$

## Aircraft Descent Performance 33,000 feet and 300 knots IAS

- The lift coefficient needed to maintain steady descent is,

$$
C_{l}=\frac{2 m g}{\rho V^{2} S}=\frac{2 *(400,000)(9.81)}{(0.41)(224.65)^{2}(858)} \frac{(\mathrm{kg})\left(\mathrm{m} / \mathrm{s}^{2}\right)}{\left(\mathrm{kg} / \mathrm{m}^{3}\right)(\mathrm{m} / \mathrm{s})\left(\mathrm{m}^{2}\right)}=0.4421
$$

- The lift coefficient is non-dimensional
- The drag coefficient can be calculated using the standard parabolic drag polar model

$$
C_{d}=C_{d o}+C_{d i}=C_{d o}+\frac{C_{l}^{2}}{\pi A \operatorname{Re}}=0.020+\frac{0.4421^{2}}{\pi(9.0)(0.84)}=0.0282
$$

- Note that the value of $C_{d o}$ is found by interpolation in the table function relating $C_{d o}$ and Mach number ( $C_{d}$ is non-dimensional)


## Aircraft Climb Performance 33,000 feet and 300 knots IAS

- The total drag is,

$$
D=\frac{1}{2} \rho V^{2} S C_{d}=\frac{1}{2}(0.410)(224.65)^{2}(858)(0.0282)=255,660 \mathrm{~N}
$$

- The residual thrust developed is assumed to be $1 / 10$ of the thrust produced at altitude for the given Mach number and altitude
- The calculation of thrust is done in the same way as before. However, the solution is multiplied by $1 / 10$ (assumed idle residual thrust) as shown in the next page

Aircraft Descent Performance 35,000 feet and 300 knots IAS
$T_{0, M}=T_{0, M=0}-\lambda M_{\text {true }}$
$T_{0, M}=338,000-175,560 M_{\text {true }}$
$T_{0, M}=338,000-175,560(0.751)$
$T_{0, M}=206,150$ Newtons
$T_{h, M}=T_{0, M}\left(\frac{\rho_{h}}{\rho_{0}}\right)^{m}$
$T_{h, M}=206,150\left(\frac{0.410}{1.225}\right)^{0.96}$
$T_{h, M}=72,087$ Newtons
But thrust is just $1 / 10$ of that produced by the engine, therefore,
$\mathrm{T}_{\text {produced }}=\frac{1}{10} T_{h, M}=7,209$ Newtons
For four engines,
$\mathrm{T}_{\text {total }}=n T_{\text {produced }}=(4)(7,209)=28,835$ Newtons

## Aircraft Descent Performance 33,000 feet and 300 knots IAS

- The rate of descent of the aircraft can be calculated,

$$
\begin{aligned}
& \frac{d h}{d t}=\frac{\left(T_{d}-D\right) V}{m g}= \\
& \frac{d h}{d t}=\frac{(28,835-255,660)(224.65)}{400,000(9.81)} \frac{(N-N)}{\mathrm{kg}\left(\mathrm{~m} / \mathrm{s}^{2}\right)} \\
& \frac{d h}{d t}=-12.98 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- This is equivalent to 779 meters per minute or 2,556 feet per minute
- This descent rate is typical of transport aircraft at the TOD point
- The process is now repeated for state 2


## Aircraft Descent Performance 5,000 feet and 240 knots IAS

- The true mach number is 0.390 , the speed of sound is $334.3 \mathrm{~m} / \mathrm{s}$ and the density of air is $1.056 \mathrm{~kg} / \mathrm{cu} . \mathrm{m}$.
- The true airspeed (TAS) is $130.4 \mathrm{~m} / \mathrm{s}$ or 253.4 knots
- The lift coefficient needed to maintain flight at $130.4 \mathrm{~m} / \mathrm{s}$ is,

$$
C_{l}=\frac{2 m g}{\rho V^{2} S}=\frac{2 *(400,000)(9.81)}{(1.056)(130.4)^{2}(858)} \frac{(\mathrm{kg})\left(\mathrm{m} / \mathrm{s}^{2}\right)}{\left(\mathrm{kg} / \mathrm{m}^{3}\right)(\mathrm{m} / \mathrm{s})\left(\mathrm{m}^{2}\right)}=0.5094
$$

- The drag coefficient at 5,000 feet and 240 knots (IAS) can be calculated using the standard parabolic drag polar model

$$
C_{d}=C_{d o}+C_{d i}=C_{d o}+\frac{C_{l}^{2}}{\pi A \operatorname{Re}}=0.020+\frac{0.5094^{2}}{\pi(9.0)(0.84)}=0.0309
$$

- Note that the value of $\mathrm{C}_{\text {do }}$ at Mach 0.390 is 0.020


## Aircraft Descent Performance 5,000 feet and 240 knots IAS

- The total drag is,

$$
D=\frac{1}{2} \rho V^{2} S C_{d}=\frac{1}{2}(1.056)(130.4)^{2}(858)(0.0309)=238,230 N
$$

- The rest of the process can be easily computed
- Repeating the same steps outlined here we can derive a rate of descent equation for various altitudes
- The analysis presented in the following pages includes variations in aircraft weight as the the aircraft descents from teh Top of Descent (TOD) point to the airport elevation


## Rate Of Descent Analysis



## Descent Profile for Very Large Capacity Aircraft



## Descent Profile for Very Large Capacity Aircraft



## Observations

- Rate of descent is controlled by the speed profile and the assumed residual thrust
- Typical rates of descent vary from $2600 \mathrm{ft} / \mathrm{min}$ (at TOD) to 700 feet per minute (at lower altitudes)
- The final approach phase is not well represented in this analysis because flaps and landing gear are usually deployed below 3,000 feet and change the character of the drag coefficient (i.e., higher drag coefficient)
- The aircraft mass changes by $1,526 \mathrm{~kg}$ in the descent. This a relatively small amount of fuel for a vehicle that could carry $182,000 \mathrm{~kg}$ of fuel at takeoff
- The aircraft performs a continuous descent from TOD to the airport elevation and travels 112 nautical miles


## Implications for Real-world Aviation Operations

- The performance of the aircraft has profound effects in real-world flight planning applications
- Obstacle accountability analysis
- Obstacle clearance procedures in the terminal area (before landing)
- Current terminal operations do not support continuous descent approaches but for a few, isolated flights
- Continuous descent profiles are expected to save fuel and time once NextGen technologies are implemented


## Use of Matlab Code

- The previous analysis has been done using the UnrestrictedDescentAnalysis.m program
- This main file integrates numerically the equations of motion of the aircraft
- Four state variables:
- Altitude $(\mathrm{y}(1))$
- Aircraft weight (y(2))
- Distance traveled along path (y(3))
- Distance traveled along the plane of the earth (y(4))
- The initial conditions of the states are specified in the file under line 54
- $y N=\left[h \_T O D\right.$ Mass_init 00$]$; Vector of initial values of state variables


## UnrestrictedDescentAnalysis.m

- Main program to execute the descent analysis
- Employs Matlab Ordinary Differential Equation solver (ODE15s)
- Function Calls:
- fdescent_06.m - function that contains the equations of motion of the aircraft in the descent phase
- densityAltitudeoffISA.m - function to estimate the atmospheric conditions for both ISA and non-ISA conditions
- drag03.m - function to estimate the aircraft drag at any altitude (h) and Mach number (M)
- thrust_calculation.m - fundtion to estimate the thrust produced by the engine for any Mach number and altitude (h) condition


## UnrestrictedDescentAnalysis.m

- Inputs to the Program
- Aircraft file to be used in analysis (line 36)

| 33 | \% Enter aircraft file desired - reads a file with aircraft characteristics |  |
| :--- | :--- | :--- |
| 34 | \% eclipse500New_class |  |
| 35 | \% regionalletDescent |  |
| $36-$ | AirbusA380_class | \% aircraft file used |

- Speed profile. Descent speed profile specified as a table function in the aircraft file (lines 30 and 31 in aircraft file)

- Initial aircraft states (lines 38-41 in main program)
- altitude, mass, distance traveled along path and distance traveled along a flat earth

| $38-$ | h_TOD $=10000 ;$ | \% initial altitude $(\mathrm{m})-$ at Top of Descent Point |
| :--- | :--- | :--- |
| $39-$ | mass_TOD $=400000 ;$ | \% mass at TOD point $(\mathrm{kg})$ |
| $40-$ | rhos $=1.225 ;$ | \% sea level density $(\mathrm{kg} / \mathrm{m}-\mathrm{m}-\mathrm{m})$ |
| $41-$ | deltaTemp $=0 ;$ | \% ISA + deltaTemp conditions for analysis (de |

## UnrestrictedDescentAnalysis.m

- Outputs of the Program
- Results of the four aircraft state variables in the climb profile (altitude, mass, distance traveled along path and distance along flat earth)
- Plots of state variables vs. time
- Plot of state variables vs. distance




## Basic Turning Performance



- An important consideration in air transportation systems analysis (i.e., terminal areas operations and climb out procedures)
- Turning and climbing are the two most common maneuvers executed in the terminal area while an aircraft transitions from enroute airspace to the terminal and airport areas.


## Basic Turning Performance Diagram


mg

## Turning Performance Analysis

- The basic forces acting on a turning aircraft that executes a steady level turn. It must realized that in many instances aircraft are instructed (or commanded by the pilot) to turn while climbing and descending. The equations of motion can be modified to include these three dimensional effects.

Balance of forces along the vertical axis (z-axis in aeronautical terms) yields,
$L \cos \phi=m g$

## Turning Performance Basics



Similarly, balancing forces perpendicular to the turning motion,
$L \sin \phi=\frac{m V^{2}}{R}$
Note that along the flight path (x axis of the aircraft) thrust and drag are the same if the aircraft is in unaccelerated flight.
$T=D=\frac{1}{2} \rho V^{2} S C_{D}$
Using the previous equations we can derive the radius of the turn, $R$ for a given bank angle ( $\phi$ ) and airspeed ( $V$ ), and the resulting turn rate ( $\Gamma$ ).

## Turning Radius and Rate of Turn Analysis

$R=\frac{V^{2}}{g \tan \phi}$
and,
$\Gamma=\frac{V}{R}=\frac{g \tan \phi}{V}$

In many instances you will find that pilots and engineers define the so-called load factor, $n$, as follows:
$n=\frac{L}{m g}=\frac{1}{\cos \phi}$
This parameter tells us how large the lift vector has to be to overcome the weight of the aircraft while turning.

## Turning Performance

Note that as the bank angle ( $\phi$ ) increases so does $L$ to maintain a coordinated, level turn.

Substituting $n$ into equations 43 and 44 yields,
$R=\frac{V^{2}}{g \sqrt{n^{2}-1}}$

In practical airspace operations commercial aircraft seldom bank more than 30 degrees to keep passengers in comfort (this implies a load factor of 1.16 or less).

## Standard Turn

- It is also interesting to note that from the ATC perspective a standard turning maneuver is usually assumed in the design of terminal area flight paths using a three-degree per second turn rate.
- This implies that in a standard turn the aircraft takes one minute to complete a $180^{\circ}$ maneuver.


## Example of Terminal Area Maneuvering

Suppose a Saab 2000 commuter aircraft approaches an airport and executes a VOR non-precision approach to Columbus, Georgia runway 12. This approach requires a flight outbound from the VORTAC and execute a procedure turn $\left(225^{0}\right)$ before landing (see Figure).

If the pilot maneuvers the aircraft down to 150 knots (indicated airspeed) while executing the procedure turn. Find the bank angle, the load factor imposed on cargo and passengers, the turning time $\left(t_{i}\right)$ and the radius of turn in the maneuver.

## Approach Plate to Columbus, Georgia



Virginia Tech - Air Transportation Systems Laboratory

## Solution

- Solving for the load factor in Equation 35 and substituting the corresponding values for $g, V$ and $\Gamma$ yields a bank angle of 9.35 degrees and a load factor of 1.0315.
- The resulting turn radius of the maneuver is 5,305 meters ( 2.86 nm ). Note that the approach plate calls for the aircraft to stay within 10 nautical miles of the Columbus VOR (called initial approach fix).
- Note also that this aircraft is expected to complete the procedure turn while at $2,400 \mathrm{ft}$. above mean sea level (the airport is at 407 ft . MSL) and then descend to 2,000 ft . MSL at the VORTAC (see insert in left hand corner of
the approach plate) and then continue towards the
 airport.


## Solution (cont.)

- The aircraft continues Missed Approach Point (MAP) altitude of 980 ft . MSL (the Saab 2000 is classified as a TERP B aircraft for ATC procedures).
- According to the approach chart this aircraft would take more than 2 minutes if flown at 180 knots from the Final Approach Fix (FAF) to the MAP. A more reasonable speed in final would be 120 knots for this aircraft.
- In the computation of turning radii true airspeeds should always be used. This is because the design of ATC procedures always looks at the topographical obstructions surrounding the airport facility to avoid collisions with terrain.


## Final Note on Turning Performance Example



- The implication of using true airspeed is that TAS increases dramatically with altitude resulting in very large turning radii at moderate and high altitudes.
- For example an aircraft flying at an altitude of 5.0 km and 250 knots IAS - 300 knots true airspeed - would require a turning radius of 5.0 nautical miles while executing a standard turn.


## Aircraft Flight Envelope Characteristics

- Once the analysis of climb, cruise and descent trajectories has been made we are in the position to draw the typical boundaries that restrict the operation of an aircraft in flight.
- The following figure illustrates a typical flight envelope for a turbofan-powered, subsonic aircraft.


## Aircraft Envelope Analysis



## Typical subsonic aircraft envelope



## Low Speed Aircraft Envelope Boundary



- Low speed boundary indicating that the aircraft wing can only produce enough lift for a given speed at various altitudes.
- Stalling speed (in terms of true airspeed) increases with altitude



## Service Ceiling Aircraft Envelope Boundary



- Is the maximum altitude that the aircraft attains while climbing at a very small climb rate (typically $100 \mathrm{ft} . / \mathrm{min}$. according to FAR Part 25 regulations). Modern transport aircraft such as the Boeing 757-200 and the Boeing 777 have been certified to fly up to $13,720 \mathrm{~m}(45,000 \mathrm{ft}$.) at moderate to light weights.



## Maximum Speed Aircraft Envelope Boundary



- The aircraft reaches a region of flight where the drag produced increases sharply (i.e., drag divergence Mach number boundary) and thus the aircraft engines are incapable of producing enough thrust to accelerate the aircraft to faster speeds.



## Dynamic Pressure Aircraft Envelope Boundary

- The design of all aircraft structures carries an assumption about the maximum loads that can be tolerated in flight. For our hypothetical aircraft a maximum dynamic pressure limit of $25,490 \mathrm{~kg} / \mathrm{m}^{2}$ has been used.



## Bird Strike Aircraft Envelope Boundary



- Common sense and certification of flight deck windshields dictated a natural boundary below $10,000 \mathrm{ft}$. Traditionally this boundary has been set at 250 knots.



## Fuel and Block Time Diagrams

The complete understanding of a flight trajectory allows us to estimate block time and block fuel for an entire trip.

- Block time is defines as the time it takes an aircraft to complete its trip from gate to gate. This may include taxiing times and departure delay times that are common today in NAS operations.
- The figure illustrates a typical presentation of block fuel and block times for the Saab 2000 commuter aircraft. In this figure we identify three operating speed regimes: 1) high speed (HS), 2) typical cruise (TC) and 3) long-range (LR).


## Sample Fuel and Block Time Diagram



Virginia Tech - Air Transportation Systems Laboratory

## Interpretation Fuel and Block Time Diagrams

- It is evident from this diagram that a clear trade-off exists between block speed and block fuel.
- For example, if the airline operator wants to fly this aircraft between two cities 800 nm apart it could use a long range speed profile taking 175 minutes and consuming $4,100 \mathrm{lb}$. of fuel.
- The same operator could use a high-speed profile using $5,250 \mathrm{lb}$. of fuel and taking 145 minutes for the same trip.
- One question that perhaps we should ask ourselves is whether or not a 30 minute block time savings is significant or not and at what operating cost.


## Interpretation of Fuel and Block Time Diagram

- Saving $1,150 \mathrm{lb}$. of fuel could be significant considering that an aircraft of this type makes three to four trips per day. This could easily translate into several hundreds of thousand pounds of fuel saved in a year
- It is interesting to note that few airlines operate their aircraft at the most economical speed regime (i.e., long range) because in long trips the resulting block times could be quite high thus reducing the number total trips that a single aircraft completes in one day
- The operational cost is directly linked to the productivity of the aircraft in terms of the number of seat-miles offered. Therefore, faster block times could make a difference in the profit of the operator.


## Sample Flight Performance Models

- BADA - Eurocontrol
+ Trajectory and fuel burn
- OPGEN - FAA and CSSI
+ Optimal trajectory and fuel burn
- ASAC - NAS and LMI
+ Optimal trajectory and fuel burn
- VPI Neural Network Fuel Burn and FTM Model
+ Fuel burn and flight trajectory (using BADA data)
- Most airspace and airport simulators have their own fuel burn models (Old SIMMOD fuel consumption model and TAAM fuel consumption table functions)


## The BADA Performance Model

-Developed by Eurocontrol Experimental Centre (ECC) to model various Air Traffic Management (ATM)

- 3 I3 aircraft modeled directly
- Approximated aircraft drag

User Manual

Base of Aircraft Data (BADA)
Revision 3.16
EIH Technical/Scientific Report No. 22/05/12-45 polars are included in the model

- Current version 3.16
- BADA 4 has more detail but is restricted to a few aircraft


## BADA Data Organization



| BADA |
| :--- |
| Model |


|  |  |  |
| :---: | :---: | :---: |
| Operations Performance File (OPF) | Airline Procedures File (APF) | Performance Table File (PTF) |
| 1) Aero coefficients <br> 2) Mass coefficients <br> 3) Flight envelope restrictions <br> 4) Engine thrust | Recommended speed procedures: climb, cruise and descent | Typical speed procedures for climb, cruise and descent at ISA conditions |

## Airbus A320 OPF File

## Aircraft mass Values



## Sample BADA 3.0 APF File



ССССССССССССССССССССССССССССССССССССССССССССС 1767 $\qquad$ .APF CCCCCCCCCCCCCCCCCCCCCCCCCCC CC

AIRLINES PROCEDURES FILE

| File Name | Current Revision | Last Modification |  |
| :--- | :---: | :---: | :--- |
|  | revision | date | revision |
| B767__.APF | 3.0 | $98 / 03 / 12$ | 2.4 .1 .2 |
|  |  | $96 / 09 / 05$ |  |

BADA Revision:
Rev 3.0
LO= 90.00 to ---.-- / AV= ---.-- to ---.-- / HI= ---.-- to 181.40
CC
CC=====================================================================================2 CC COM CO Company name ------climb------- --cruise-- -----descent------

 CD *** ** Default Company

| CD | 300ER | PW4060 | LO | 290 | 290 | 78 | 310 | 310 | 80 | 78 | 290 | 290 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CD | 300 ER | PW4060 | AV | 290 | 290 | 78 | 310 | 310 | 80 | 78 | 290 | 290 | 0 |
| CD | 300 ER | PW4060 | HI | 290 | 290 | 78 | 310 | 310 | 80 | 78 | 290 | 290 | 0 |

CC//////////////////////////////// THE END /////////////////////////////////

## Airbus A320 PTF File

| BADA PERFORMANCE FILE |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC/Type: A320__ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Source OPF | File: |  |  | Apr 08 Mar 3 | $019$ |  |  |
| Speeds: |  | AS(LO/HI) |  | Mach | Mass Levels [kg] |  |  | Temperature: ISA |  |  |  |  |
| climb |  | 0/310 |  | 0.78 | low - 46800 |  |  |  |  |  |  |  |
| descent - 250/300 |  |  | 0. |  | nominal - | 64000 |  | 41000 |  |  |  |  |
|  |  |  | 0.79 |  | high - 7700 |  |  |  |  |  |  |  |
| FL | CRUISE |  |  |  |  |  | CLIMB |  |  | DESCENT |  |  |
|  | $\begin{aligned} & \text { TAS } \\ & \text { [kts] } \end{aligned}$ | $\begin{gathered} \text { fuel } \\ {[\mathrm{kg} / \mathrm{min}]} \end{gathered}$ |  |  | $\begin{aligned} & \text { TAS } \\ & \text { [kts.s] } \end{aligned}$ | lo | ROCD |  | fuel | TAS[kts] | ROCD fuel |  |
|  |  |  |  |  | [fpm] |  |  | [kg/min] | [fpm] |  | [kg/min] |
|  |  | 10 | nom | hi |  |  | nom | hi | nom |  | nom | nom |
| 0 |  |  |  |  |  | 151 | 2687 | 2164 | 1860 | 113.5 | 137 | 707 | 44.7 |
| 5 |  |  |  |  | 152 | 2672 | 2147 | 1842 | 112.5 | 138 | 723 | 44.3 |
| 10 |  |  |  |  | 153 | 2656 | 2130 | 1825 | 111.4 | 144 | 788 | 44.0 |
| 15 |  |  |  |  | 159 | 2765 | 2210 | 1891 | 110.5 | 155 | 770 | 17.4 |
| 20 |  |  |  |  | 160 | 2748 | 2193 | 1873 | 109.5 | 187 | 824 | 17.4 |
| 30 | 230 | 26.9 | 32.7 | 38.3 | 184 | 3166 | 2501 | 2130 | 108.1 | 230 | 935 | 8.7 |
| 40 | 233 | 26.9 | 32.7 | 38.3 | 218 | 3671 | 2857 | 2418 | 107.1 | 233 | 956 | 8.6 |
| 60 | 272 | 31.5 | 36.1 | 40.6 | 272 | 4186 | 3078 | 2512 | 104.5 | 272 | 1266 | 8.4 |
| 80 | 280 | 31.5 | 36.2 | 40.6 | 280 | 4027 | 2946 | 2392 | 100.4 | 280 | 1316 | 8.2 |
| 100 | 289 | 31.5 | 36.2 | 40.7 | 357 | 3667 | 2710 | 2223 | 98.4 | 345 | 2072 | 8.0 |
| 120 | 297 | 31.5 | 36.2 | 40.7 | 367 | 3441 | 2527 | 2060 | 94.3 | 356 | 2131 | 7.8 |
| 140 | 378 | 44.2 | 47.4 | 50.5 | 378 | 3209 | 2340 | 1892 | 90.2 | 366 | 2190 | 7.6 |
| 160 | 389 | 44.1 | 47.3 | 50.4 | 389 | 2972 | 2148 | 1719 | 86.2 | 377 | 2248 | 7.4 |
| 180 | 401 | 44.0 | 47.3 | 50.4 | 401 | 2728 | 1951 | 1543 | 82.2 | 388 | 2306 | 7.2 |
| 200 | 413 | 43.9 | 47.2 | 50.3 | 413 | 2480 | 1750 | 1362 | 78.3 | 400 | 2363 | 7.0 |
| 220 | 425 | 43.7 | 47.0 | 50.2 | 425 | 2227 | 1545 | 1178 | 74.4 | 412 | $2418 \quad 6.8$ |  |

## Airbus A320 PTF File

BADA PERFORMANCE FILE
May 062019
AC/Type: A320__


Example:
True airspeed in Cruise at FL 370 Is 447 knots (Mach 0.78)

Fuel burn is 36.8 $\mathrm{kg} / \mathrm{min}$ At 64,000 kgs (nominal mass)

| FL | CRUISE |  |  |  | CLIMB |  |  |  |  | DESCENT |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TAS |  | fuel |  | TAS |  | ROCD |  | fuel | TAS | ROCD | fuel |
|  | [kts] |  | [kg/min] |  | [kts] |  | [fpm] |  | [kg/min] | [kts] | [fpm] | [ $\mathrm{kg} / \mathrm{min}$ ] |
|  |  | 10 | nom | hi |  | 10 | nom | hi | nom |  | nom | nom |

$\left.\begin{array}{|l|llll|lllll|lll}220 & 425 & 43.7 & 47.0 & 50.2 & 425 & 2227 & 1545 & 1178 & 74.4 & 412 & 2418 & 6.8 \\ 240 & 438 & 43.6 & 46.9 & 50.2 & 438 & 1969 & 1337 & 991 & 70.5 & 425 & 2472 & 6.7 \\ 260 & 452 & 43.4 & 46.8 & 50.1 & 452 & 1708 & 1125 & 801 & 66.7 & 438 & 2524 & 6.5 \\ 280 & 464 & 42.8 & 46.3 & 49.7 & 464 & 2055 & 1300 & 870 & 62.9 & 452 & 2574 & 6.3 \\ 290 & 462 & 41.3 & 44.9 & 48.4 & 462 & 1998 & 1242 & 808 & 60.8 & 459 & 2598 & 6.2 \\ 310 & 458 & 38.4 & 42.4 & 46.2 & 458 & 1865 & 1108 & 667 & 56.8 & 464 & 3438 & 6.0 \\ 330 & 454 & 35.8 & 40.2 & 44.4 & 454 & 1940 & 1005 & 505 & 52.8 & 459 & 3241 & 5.8 \\ 350 & 450 & 33.5 & 38.3 & 42.9 & 450 & 1738 & 820 & 322 & 48.9 & 455 & 3077 & 5.6 \\ 370 & 447 & 31.5 & 36.8 & 41.9 & 447 & 1395 & 567 & 109 & 45.0 & 453 & 2711 & 5.4 \\ 390 & 447 & 29.8 & 35.6 & 41.2 & 447 & 1173 & 359 & 0 & 41.3 & 453 & 2643 & 5.2 \\ 410 & 447 & 28.3 & 34.7 & 40.9 & 447 & 926 & 128 & 0 & 37.6 & 453 & 2603 & 5.0 \\ ===================================================================================\end{array}\right]$

## The BADA Performance Model

BADA uses a total energy model to derive aircraft performance.
$m g \frac{d h}{d t}+m V \frac{d V}{d t}=V[T-D]$
where:
$\frac{d h}{d t}$ is the rate of climb $(\mathrm{m} / \mathrm{s})$
$\frac{d V}{d t}$ is the acceleration along the flight path $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$h$ is the aircraft altitude (m)
$m$ is the aircraft mass (kg)
$V$ is the aircraft true airspeed $(\mathrm{m} / \mathrm{s})$
$g$ is the gravitational acceleration $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$
$T$ is the aircraft thrust $(\mathrm{N})$ and
$D$ is the aircraft drag ( N )

## Computation of Aircraft Cruise Performance Parameters

Drag Coefficient:
$C_{D}=C_{D O-C R}+C_{D 2-C R} C_{L}^{2}$
where: $C_{D}$ is the total aircraft drag coefficient (dim)
$C_{D O-C R}$ is the zero lift drag coefficient in the cruise configuration (dim)
$C_{D 2-C R}$ is a lift-dependent coefficient (dim)
$C_{L}$ is the aircraft lift coefficient (dim)

## Estimation of Aircraft Lift Coefficient

The estimation of the aircraft drag coefficient requires knowledge of $C_{L}$. This non-dimensional coefficient is calculated assuming small flight path angles,
$C_{L}=\frac{2 m g}{\rho S V^{2} \cos (\phi)}$
where: $s$ is the aircraft wing reference area $\left(\mathrm{m}^{2}\right)$
$\rho$ is the air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$m$ is the aircraft mass ( kg )
$\cos (\phi)$ is the cosine of the bank angle (dim) and all other parameters as previously defined.

The total aircraft drag is then,

$D=\frac{1}{2} \rho V^{2} S C_{D}$
where:
$D$ is the total aircraft drag ( N )
$s$ is the aircraft wing reference area $\left(\mathrm{m}^{2}\right)$

## BADA 3.0 Fuel Consumption

The aircraft thrust specific fuel consumption $(\eta)$ is estimated as follows:

$$
\begin{equation*}
\eta=C_{f 1}\left(1+V / C_{f 2}\right) \tag{51}
\end{equation*}
$$

where:
$\eta$ is the aircraft thrust specific fuel consumption (kg/min./ kN )
$V$ is the aircraft true airspeed (knots)
$C_{f 1}$ and $C_{\curvearrowleft 2}$ are model coefficients

## BADA 3.0 Fuel Consumption

$f_{\text {nom }}=\eta T$
where:
$f_{\text {nom }}$ is the nominal aircraft fuel consumption ( $\mathrm{kg} / \mathrm{min}$.)
The Specific Air Range (SAR) a measure of aircraft fuel efficiency is,
$S A R=\frac{\Delta d}{\Delta f}$
where: $\Delta d$ is the change in position over time $t$ and $\Delta f$ is the fuel consumed traveling distance $\Delta d$.

## BADA 3.0 Results (Fuel Consumption)



Airbus A300-600


BADA 3.0 Results (Specific Air Range - SAR)


Airbus A300-600


## BADA 3.0 Results (Specific Air Range)




## Interpretation of SAR - Specific Air Range



- SAR represents a measure of aircraft efficiency
- the higher the SAR parameter, the more fuel efficient the aircraft is
- For example: in the figure of page 20, the A300 has a maximum SAR value near 0.06 . This implies that the aircraft covers 0.06 nautical miles per kg of fuel used.
- The aircraft is more fuel efficient when flying higher (at $12,500 \mathrm{~m}$. instead of $9,500 \mathrm{~m}$.).


## Potential Implementation Scheme

- Virginia Tech flight trajectory and fuel consumption implementation



## Sample Implementation (VT Flight Trajectory Model)



## BADA Model Calculations

## BADA Model General Notes

- BADA model consists of:
- Aircraft performance specification contained in a text file YYYY__.OPF (YYYY is the aircraft name)
- Example: B744__.OPF is the operational procedure file for the Boeing 747-400 aircraft
- OPF file contains aircraft model coefficients
- BADA also provides "rules" on how to fly the aircraft - Derived from airline data gathered in Europe
- BADA provides "canned" solutions about the performance of each aircraft modeled


## BADA File Structure



## Sample BADA OPF File



Source: Eurocontrol BADA Model

## Sample BADA APF File

```
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC B748__.APF CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC/
CC
CC
CC
CC File_name: B748
```

$\qquad$

``` .APF
CC
CC Creation_date: Jan 30 2012
CC
CC Modification_date: Jan 30 2012
```



```
l
LO= 191.05 to --..-- / AV= ---.-- to ---.-- / HI= ---.-- to 442.25
CC
CC===========================================================================================/
```



```
CC version engines ma cas cas mc xxxx xx cas cas mc mc cas cas xxxx xx xxx xxx xxx opf__//
CC===:======:=======::==::===:===:==:====:==::===:===:==::==:===:===:====:==::==:===:===::=====:/
```



```
CC===:=======:=======::==: :===:===:==:====:==: :===:===:==::==:===:===:====:==::===:===:===::======:/
CC///////////////////////////////////////////THE END/////////////////////////////////////////////
```


## Sample PTF File (ISA Conditions)



## Sample PTF File (ISA Conditions)



## Provides

"ready-to-use"
point performance solutions for each aircraft

## Example: Boeing 747-8

| 310 320 | 493 | 154.2 | 184.8 | 207.8 | 505 | 2624 | 1245 |  |  | $505$ $500$ | $3504$ | $26.1$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 350 | 484 |  |  | 198.9 | 496 | 2413 | 756 | 157 | 234.7 | 496 | 3227 | 23.6 |
| 370 | 482 | 126.7 | 167.0 | 197.3 | 493 | 1879 | 431 | 0 | 214.6 | 493 | 2841 | 22.4 |
| 390 | 482 | 120.1 | 164.5 | 197.8 | 493 | 1562 | 158 | 0 | 195.1 | 493 | 3290 | 21.1 |
| 410 | 482 | 114.6 | 163.4 | 200.2 | 493 | 1216 | 0 | 0 | 175.7 | 493 | 3247 | 19.9 |
| 421 | 482 | 112.0 | 163.5 | 202.2 | 493 | 1014 | 0 | 0 | 165.1 | 493 | 3236 | 19.2 |

## Sample PTF File (ISA Conditions)

## Boeing 747-8

flying at 484 knots (TAS)

## TAS = true airspeed



## Sample PTD File (ISA Conditions)



## ISA Atmospheric Conditions


source:Airbus

## ISA vs off-ISA Conditions

- BADA 3.13 includes 4 off-ISA conditions or performance variations in the PTD files . ISA-10 deg. C
- ISA- 20 deg. C
- ISA + 10 deg. C
- ISA + 20 deg. $C$


Source: BADA 3.13 model for Boeing 787-8 Dreamliner

## Aircraft Performance is Sensitivity to Temperature Conditions



Source: BADA 3.13 model for Boeing 787-8 Dreamliner (Medium Mass)

## Aircraft Performance Difference Across BADA Versions



Source: BADA 3.13 model for Boeing 787-8 Dreamliner (Medium Mass)

## BADA Model Equations

BADA uses a total energy model to derive aircraft performance.
$m g \frac{d h}{d t}+m V \frac{d V}{d t}=V[T-D]$

$\frac{d h}{d t}$ is the rate of climb ( $\mathrm{m} / \mathrm{s}$ )
$\frac{d V}{d t}$ is the acceleration along the flight path $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$h$ is the aircraft altitude (m)

## BADA Model Equations (2)

$m$ is the aircraft mass ( kg )
$V$ is the aircraft true airspeed $(\mathrm{m} / \mathrm{s})$
$g$ is the gravitational acceleration $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$
$T$ is the aircraft thrust $(\mathrm{N})$ and
$D$ is the aircraft drag ( N )

## BADA Model Equations

- Standard aerodynamic coefficients and equations used to estimate lift and drag coefficients

$$
C_{l}=\frac{2 m g}{\rho V^{2} S \cos (\phi)}
$$

Same as the model explained in CEE 5614 class
where
$C_{l}=$ is the lift coefficient
$V=$ is the true airspeed
$S=$ is the wing reference area
$\phi=$ is the bank angle (for turning flight)
$m g=$ is the aircraft weight
$\rho=$ density of air

## BADA Model Equations (cont.)

- Standard form of aerodynamic drag coefficients (parabolic drag polar)

$C d=$ total drag coefficient
$C_{D O, k}=$ zero drag coefficient for flight condition k
$C_{D 2, k}=$ lift dependent coefficient for flight condition k for landing configuration BADA assumes
$C_{d}=C_{D O, L D G}+C_{D O, \Delta D G}+C_{D 2, L D G} C_{l}^{2}$
where
$C_{D O, \Delta L D G}=$ zero drag coefficient increment due to landing gear


## BADA Model Equations (cont.)

- The flight condition k takes 5 different forms for each aircraft wing flap configuration (i.e., landing gear down, approach, initial climb, takeoff or cruise)
- Standard calculation of aerodynamic drag in the BADA model

$$
\begin{aligned}
& D=\frac{1}{2} \rho S V^{2} C_{d} \\
& \text { where }
\end{aligned}
$$

## Universal definition of drag and same relationship explained in CEE 5614 class

$C_{d}=$ total drag coefficient
$D=$ total drag for a given true airspeed (V)
Others as defined before

## Recall BADA Aerodynamic Coefficients



## BADA Model Fuel Consumption

The aircraft thrust specific fuel consumption ( $\eta$ ) is estimated as follows:

$$
\eta=C_{f 1}\left(1+V / C_{f 2}\right)
$$

where:
$\eta$ is the aircraft thrust specific fuel consumption ( $\mathrm{kg} / \mathrm{min}$./ kN )
$V$ is the aircraft true airspeed (knots)
$C_{\wedge}$ and $C_{\curvearrowleft}$ are model coefficients

## BADA Model Fuel Consumption

$f_{\text {nom }}=\eta T$
where:
$f_{\text {nom }}$ is the nominal aircraft fuel consumption (kg/min.)
The Specific Air Range (SAR) a measure of aircraft fuel efficiency is,
$S A R=\frac{\Delta d}{\Delta f}$
SAR units are: nm/kg
where: $\Delta d$ is the change in position over time $t$ and $\Delta f$ is the fuel consumed traveling distance $\Delta d$.

# Comparison of BADA and Real Radar Profiles for Boeing 767-300 Aircraft 



## Sample BADA Coefficients

- Aircraft aerodynamic parameters are found in the operational performance file (OPF)



## Sample Calculation : Boeing 767-300 Holding at 18,000 feet

- Boeing 767-300
- PW 4042 engines
- 154.590 metric tons of mass
- 401 knots (true airspeed) or 206.29 $\mathrm{m} / \mathrm{s}$
- Hold for 2.4 minutes
 at 18,000 feet


## Calculations

- At 18,000 feet (assume ISA conditions and no turning - straight and level flight)
$\rho=0.698 \mathrm{~kg} / \mathrm{m}^{3}$
$a=318.5 \mathrm{~m} / \mathrm{s}$
$S=283.33 \mathrm{~m}^{2} \longleftarrow$ Boeing 767-300 per BADA data
$V=206.3 \mathrm{~m} / \mathrm{s} \quad \underset{\text { Assume }}{ } \begin{gathered}\text { Nominal Mass }\end{gathered}$
$C_{l}=\frac{2 m g}{\rho V^{2} S \cos (\phi)}=\frac{2(154,590) 9.81}{(0.698)(206.3)^{2}(283.22) \cos (0)}$
$C_{l}=0.3605$
$C_{d}=C_{D O, C R}+C_{D 2, C R} C_{l}^{2}$

$C_{d}=0.02111+0.04212(0.3605)^{2}$
$C_{d}=0.0266$

CC Configuration characteristics CC n Phase Name Vstall(KCAS) CD 1 CR CLEAN $\begin{array}{llll}\text { CD } & 2 & \text { IC } & \text { F1 } \\ \text { CD } & 3 & \text { TO } & \text { F15 }\end{array}$ CD 4 AP F20
.16700E+03 $.13800 \mathrm{E}+03$ $.12400 \mathrm{E}+03$ $.12200 \mathrm{E}+03$ $.11800 \mathrm{E}+03$
$\qquad$

## Calculations (Continuation)

- The aircraft drag is the estimated to be:

$$
\begin{aligned}
& D=\frac{1}{2} \rho S V^{2} C_{d}=0.5(0.698)(206.3)^{2}(283.22)(0.0266) \\
& D=111,900 \text { Newtons }
\end{aligned}
$$

- The aircraft fuel burn under the holding condition is,

$$
\begin{aligned}
& F_{c r}=\eta T_{H R} C_{f c r} \\
& F_{c r}=\text { fuel flow }(\mathrm{kg} / \mathrm{min}) \\
& \eta=\text { thrust specific fuel consumption }(\mathrm{kg} /(\min * \mathrm{kN})) \\
& T_{H R}=\text { thrust developed by the engines }(\mathrm{kN}) \\
& C_{f c r}=\text { cruise fuel flow factor }
\end{aligned}
$$

## Calculations (Continuation)

- Per BADA model, the aircraft fuel burn is defined as,
$F_{c r}=\eta T_{H R} C_{\text {for }}$
$F_{c r}=$ fuel flow ( $\mathrm{kg} / \mathrm{min}$ )
$\eta=$ thrust specific fuel consumption(kg/(min*kN)) - TSFC
$T_{H R}=$ total thrust (kN)
$C_{\text {for }}=$ cruise fuel flow factor (dim)
The calculation of TSFC is,

$$
\begin{aligned}
& \eta=C_{f 1}\left(1+\frac{V}{C_{f 2}}\right) \\
& F_{c r}=T_{\text {HR }} C_{f c r} C_{f 1}\left(1+\frac{V}{C_{f 2}}\right)
\end{aligned}
$$



## Calculations (Continuation)

$\eta=C_{f 1}\left(1+\frac{V}{C_{f 2}}\right)$
where:
$C_{f 1}=$ first thrust specific fuel consumption parameter (kg/(min*kN))
$C_{f 2}=$ second thrust specific fuel consumption parameter
$V=$ true airspeed (knots)

> Boeing 767-300 per BADA data

$$
\begin{aligned}
& \eta=C_{f 1}\left(1+\frac{V}{C_{f 2}}\right) \\
& C_{f 1}=0.7422 \\
& C_{f 2}=2060.5 \\
& \eta=0.7422\left(1+\frac{400}{2060.5}\right)=0.8863
\end{aligned}
$$

## Calculations (Continuation)

$F_{c r}=\eta T_{H R} C_{f c r}$
$F_{c r}=\eta D C_{f e r}$ use Drag since $\mathrm{T}=\mathrm{D}$ holding altitude
$F_{c r}=(0.8863)(111,900 / 1000)(0.90)$
$F_{c r}=89.2 \mathrm{~kg} /$ minute
Boeing 767-300 per BADA data

- The value of fuel consumption assumes the thrust or drag to be in kiloNewtons (hence the division by 1000)
- The fuel burn for a 2.4 minute hold at 18,000 feet is estimated to be 200.25 kg above the usual unrestricted descent profile (i.e., continuous descent)
- 639 kg of $\mathrm{CO}_{2}$ added to each descent profile


## Sanity Check Against Published BADA Data in PTF Files <br> \author{ Apr 102012 

}
## |bada performance file

AC/Type: B763_

|  |  | Source OPF File: <br> Source APF file: |
| :--- | :--- | :--- |
| Speeds: CAS(LO/HI) | Mach | Mass Levels [kg] |
| climb $-250 / 310$ | 0.80 | low -108013 |
| cruise $-250 / 310$ | 0.80 | nominal -154590 |
| descent $-250 / 310$ | 0.80 | high -186880 |



## General Trends and Differences with Models Presented in Class

- BADA model uses a parabolic drag polar (i.e., variation of drag coefficient is quadratic with lift coefficient)
- The BADA model assumes the zero lift draft coefficient ( $\mathrm{C}_{\mathrm{do}}$ ) is a constant
- The assumption in CEE 5614 is that ( $\mathrm{C}_{\mathrm{do}}$ ) is a function of Mach number and nonlinear in the high-speed regime
- The last assumption is typical in most aerodynamic textbooks and supporter by wind tunnel and flight testing


## BADA Model vs. Other Aero Models

 (included the one presented in CEE 5614)

## BADA Climb Profile Calculations

- Fundamental equation

$$
\frac{\mathrm{dh}}{\mathrm{dt}}=\frac{(\mathrm{Thr}-\mathrm{D}) \cdot \mathrm{V}_{\mathrm{TAS}}}{\mathrm{mg}_{0}}\left[1+\left(\frac{\mathrm{V}_{\text {TAS }}}{\mathrm{g}_{0}}\right)\left(\frac{\mathrm{d} \mathrm{~V}_{\mathrm{TAS}}}{\mathrm{dh}}\right)\right]^{-1}
$$

Energy Share Factor (ESF)
$\mathrm{f}\{\mathrm{M}\}=\left[1+\left(\frac{\mathrm{V}_{\text {TAS }}}{\mathrm{g}_{0}}\right) \cdot\left(\frac{\mathrm{d} \mathrm{V}_{\text {TAS }}}{\mathrm{dh}}\right)\right]^{-1}$

## WirginiaTech <br> Invent the Future

## Different Aircraft Behaviors for Different

 Altitude ConditionsLow mass CLIMBS
$==============$

| FL[-] | $\mathrm{T}[\mathrm{K}]$ | $\mathrm{p}[\mathrm{Pa}]$ | $\mathrm{rho}[\mathrm{kg} / \mathrm{m} 3]$ | $\mathrm{a}[\mathrm{m} / \mathrm{s}]$ | TAS[kt] | $\mathrm{CAS}[\mathrm{kt}]$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 288 | 101325 | 1.225 | 340 | 138.54 | 138.54 |
| 5 | 287 | 99508 | 1.207 | 340 | 139.55 | 138.54 |
| 10 | 286 | 97717 | 1.190 | 339 | 140.56 | 138.54 |
| 15 | 285 | 95952 | 1.172 | 339 | 146.70 | 143.54 |
| 20 | 284 | 94213 | 1.155 | 338 | 147.77 | 143.54 |
| 30 | 282 | 90812 | 1.121 | 337 | 170.81 | 163.54 |
| 40 | 280 | 87511 | 1.088 | 336 | 205.04 | 193.54 |
| 60 | 276 | 81200 | 1.024 | 333 | 272.30 | 250.00 |
| 80 | 272 | 75262 | 0.963 | 331 | 280.34 | 250.00 |
| 100 | 268 | 69682 | 0.905 | 328 | 345.37 | 300.00 |

## BADA Flight Envelope

- BADA prescribes how the aircraft "flies" across the flight envelope
- Speed profiles are defined for each aircraft

The maximum speed and altitude for an aircraft are expressed in terms of the following six parameters:

| $\mathrm{V}_{\text {мо }}$ | - | maximum operating speed (CAS) [kt] |
| :---: | :---: | :---: |
| $\mathrm{M}_{\text {мо }}$ | - | maximum operational Mach number |
| $\mathrm{h}_{\text {M }}$ | - | maximum operating altitude [ft] above standard MSL |
| $\mathrm{h}_{\text {max }}$ | - | maximum altitude $[\mathrm{ft}]$ above standard MSL at MTOW under ISA conditions (allowing about $300 \mathrm{ft} / \mathrm{min}$ of residual rate of climb) |
| $\mathrm{G}_{\mathrm{w}}$ | - | mass gradient on $\mathrm{h}_{\text {max }}[\mathrm{ft} / \mathrm{kg}$ ] |
| $\mathrm{G}_{\mathrm{t}}$ | - | temperature gradient on $\mathrm{h}_{\text {max }}[\mathrm{ft} / \mathrm{K}]$ |

[^1]
## BADA Flight Envelope (Climb)

The following parameters are defined for each aircraft type to characterise the climb phase:
$\mathrm{V}_{\mathrm{cl}, 1} \quad-\quad$ standard climb CAS [knots] between 1,500/6,000 and 10,000 ft
$\mathrm{V}_{\mathrm{cl}, 2} \quad$ - $\quad$ standard climb CAS [knots] between $10,000 \mathrm{ft}$ and Mach transition altitude
$\mathrm{M}_{\mathrm{cl}} \quad$ - $\quad$ standard climb Mach number above Mach transition altitude

- For jet aircraft the following CAS schedule is assumed, based on the parameters mentioned above and the take-off stall speed:
from 0 to $1,499 \mathrm{ft}$
from 1,500 to $2,999 \mathrm{ft}$
from 3,000 to 3,999 ft
from 4,000 to $4,999 \mathrm{ft}$
from 5,000 to $5,999 \mathrm{ft}$
from 6,000 to 9,999 ft
from $10,000 \mathrm{ft}$ to Mach transition altitude
above Mach transition altitude

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{V} \text { min }} \cdot\left(\mathrm{V}_{\text {stall }}\right)_{\text {TO }}+\mathrm{Vd}_{\mathrm{CL}, 1} \\
& \mathrm{C}_{\mathrm{V} \text { min }} \cdot\left(\mathrm{V}_{\text {stall }}\right)_{\text {To }}+\mathrm{Vd}_{\mathrm{cL}, 2} \\
& \mathrm{C}_{\mathrm{V} \text { min }} \cdot\left(\mathrm{V}_{\text {stall }}\right)_{\mathrm{TO}}+\mathrm{Vd}_{\mathrm{CL}, 3} \\
& \mathrm{C}_{\mathrm{V} \text { min }} \cdot\left(\mathrm{V}_{\text {stall }}\right)_{\text {TO }}+\mathrm{Vd}_{\mathrm{cL}, 4} \\
& \mathrm{C}_{\mathrm{Vmin}} \cdot\left(\mathrm{~V}_{\text {stall }}\right)_{\mathrm{TO}}+\mathrm{Vd}_{\mathrm{cL}, 5} \\
& \min \left(\mathrm{~V}_{\mathrm{cl}, 1}, 250 \mathrm{kt}\right) \\
& V_{\mathrm{cl}, 2} \\
& \mathrm{M}_{\mathrm{cl}}
\end{aligned}
$$

Project BADA - EEC Technical/Scientific Report No. 15/04/02-43

## BADA Flight Envelope (Descent)

The following parameters are defined for each aircraft type to characterise the descent phase:
$V_{\text {des, } 1}$ - standard descent CAS [knots] between 3,000/6,000 and 10,000 ft
$V_{\text {des,2 }}$ - standard descent CAS [knots] between $10,000 \mathrm{ft}$ and Mach transition altitude
$\mathrm{M}_{\text {des }} \quad$ - $\quad$ standard descent Mach number above Mach transition altitude

- For jet and turboprop aircraft the following CAS schedule is assumed, based on the above parameters and the landing stall speed:

$$
\begin{align*}
& \text { from } 0 \text { to } 999 \mathrm{ft}  \tag{4.3-1}\\
& \text { from } 1,000 \text { to } 1,499 \mathrm{ft}  \tag{4.3-2}\\
& \text { from } 1,500 \text { to } 1,999 \mathrm{ft}  \tag{4.3-3}\\
& \text { from } 2,000 \text { to } 2,999 \mathrm{ft}  \tag{4.3-4}\\
& \text { from } 3,000 \text { to } 5,999 \mathrm{ft} \\
& \text { from 6,000 to 9,999 ft } \\
& \text { from } 10,000 \mathrm{ft} \text { to Mach transition altitude } \\
& \text { above Mach transition altitude } \\
& \mathrm{C}_{\mathrm{V} \text { min }} \cdot\left(\mathrm{V}_{\text {stall }}\right)_{\mathrm{LD}}+\mathrm{Vd}_{\mathrm{DES}, 2}
\end{align*}
$$

Project BADA - EEC Technical/Scientific Report No. 15/04/02-43

## BADA Operations Performance

| Model Category | Symbols | Units | Description |
| :---: | :---: | :---: | :---: |
| Aircraft type <br> (3 values) | $\mathbf{n}_{\text {eng }}$ engine type wake category | dimensionless <br> string <br> string | number of engines <br> either Jet, Turboprop or Piston either J, H, M or L |
| Mass <br> (4 values) | $\mathrm{m}_{\text {ref }}$ <br> $\mathrm{m}_{\text {min }}$ <br> $\mathbf{m}_{\text {max }}$ <br> $\mathrm{m}_{\text {pyld }}$ | tonnes <br> tonnes <br> tonnes <br> tonnes | reference mass minimum mass maximum mass maximum payload mass |
| Flight envelope (6 values) | $\mathrm{V}_{\text {мо }}$ <br> $\mathrm{M}_{\text {MO }}$ <br> $h_{\text {MO }}$ <br> $h_{\text {max }}$ <br> $\mathbf{G}_{\mathrm{w}}$ <br> $\mathbf{G}_{\mathrm{t}}$ | knots (CAS) <br> dimensionless <br> feet <br> feet <br> feet/kg <br> feet/K | maximum operating speed maximum operating Mach number maximum operating altitude max. altitude at MTOW and ISA weight gradient on max. altitude temperature gradient on max. altitude |

## BADA Operations Performance

| Aerodynamics | S | $\mathrm{m}^{2}$ | reference wing surface area |
| :---: | :---: | :---: | :---: |
| (16 values for jet | $\mathrm{C}_{\mathrm{DO}, \mathrm{CR}}$ | dimensionless | parasitic drag coefficient (cruise) |
| aircraft, only 14 | $\mathrm{C}_{\mathrm{D} 2, \mathrm{CR}}$ | dimensionless | induced drag coefficient (cruise) |
| values for others) | $\mathrm{C}_{\mathrm{DO}, \mathrm{AP}}$ | dimensionless | parasitic drag coefficient (approach) |
|  | $\mathrm{C}_{\mathrm{D} 2, \mathrm{AP}}$ | dimensionless | induced drag coefficient (approach) |
|  | $\mathrm{C}_{\text {DO,LD }}$ | dimensionless | parasitic drag coefficient (landing) |
|  | $\mathrm{C}_{\text {D2,LD }}$ | dimensionless | induced drag coefficient (landing) |
|  | $\mathrm{C}_{\text {DO, } \mathrm{LLDG}}$ | dimensionless | parasite drag coef. (landing gear) |
|  | $\left(\mathrm{V}_{\text {stall }}\right)_{\text {i }}$ | knots (CAS) | stall speed [TO, IC, CR, AP, LD] |
|  | $\mathrm{C}_{\text {Lbo ( } \mathrm{M}=0 \text { ) }}$ | dimensionless | Buffet onset lift coef. (jet only) |
|  | K | dimensionless | Buffeting gradient (jet only) |

## Boeing 777-200 Fuel Flow Profiles ( 35,000 feet, ISA Conditions) Fuel Fow (kg/min)



## Boeing 777-200 SAR Profiles <br> (37,000 feet, ISA Conditions)



## How Good is the BADA Model?

- 3\% accurate for most flight conditions
- Weak in the very high-speed regime (due to fixed value of $\mathrm{C}_{\mathrm{D}}$ ) - BADA 4 fixes that issue
- Goodness should be judged in terms of broad model coverage (hundreds of aircraft modeled)
- Most FAA and Eurocontrol studies use the BADA model


## Eurocontrol Provides Accuracy Tables for Each Aircraft

## Airbus A320

Project BADA - EEC Technical/Scientific Report No. 15/04/02-46

| $\begin{gathered} \text { TRJ } \\ \text { ID } \\ \hline \end{gathered}$ | TRJ <br> Type | $\begin{gathered} \text { CAS } \\ <\text { FL100 } \end{gathered}$ | $\begin{aligned} & \text { CAS } \\ & >\text { FL100 } \end{aligned}$ | M | Aircraft mass | Delta ISA | Comment | RMS <br> [ft/min] | MEAN <br> [ft/min] | STD <br> [ft/min] | MAX <br> [ $\mathrm{ft} / \mathrm{min}$ ] | RMS $[\mathrm{kg} / \mathrm{min}]$ | MEAN <br> [kg/min] | $\begin{gathered} \text { STD } \\ {[\mathrm{kg} / \mathrm{min}]} \end{gathered}$ | MAX <br> [kg/min] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | CMB | 250 | 250 | 0.6 | 47400 | 0 |  | 95.46238 | -19.50276 | 93.44897 | -267.16163 | 1.82251 | -0.97692 | 1.53856 | -3.9835 |
| 2 | CMB | 250 | 250 | 0.6 | 65900 | 0 |  | 53.85403 | 0.42777 | 53.85233 | -106.7547 | 1.32019 | -0.68519 | 1.12846 | -2.68895 |
| 3 | CMB | 250 | 250 | 0.6 | 77000 | 0 |  | 51.5305 | -5.19022 | 51.26845 | -98.46809 | 1.21749 | -0.7473 | 0.96116 | -2.87238 |
| 4 | CMB | 340 | 340 | 0.8 | 47400 | 0 |  | 112.77173 | -36.66326 | 106.64553 | -351.67168 | 1.9895 | -0.62706 | 1.88809 | -8.16375 |
| 5 | CMB | 340 | 340 | 0.8 | 65900 | 0 |  | 76.44849 | -6.29307 | 76.18904 | -234.42772 | 1.46273 | -0.39887 | 1.4073 | 2.74534 |
| 6 | CMB | 340 | 340 | 0.8 | 77000 | 0 |  | 65.60937 | -5.15927 | 65.4062 | -167.07799 | 1.41206 | -0.50975 | 1.31684 | -2.45286 |
| 7 | CMB | 310 | 310 | 0.78 | 47400 | 0 |  | 65.67395 | 12.70318 | 64.43366 | 167.88802 | 1.65015 | -0.37061 | 1.608 | 3.83497 |
| 8 | CMB | 310 | 310 | 0.78 | 65900 | 0 |  | 50.25753 | 27.47948 | 42.07966 | 108.42289 | 1.6033 | -0.39591 | 1.55365 | 5.26354 |
| 9 | CMB | 310 | 310 | 0.78 | 77000 | 0 |  | 36.8917 | 18.69244 | 31.8055 | -78.95411 | 1.31089 | -0.4663 | 1.22515 | -2.71884 |
| 10 | CMB | 310 | 310 | 0.78 | 47400 | 10 |  | 63.46123 | -0.35359 | 63.46025 | 154.54491 | 1.8501 | 1.2859 | 1.33016 | 4.5214 |
| 11 | CMB | 310 | 310 | 0.78 | 65900 | 10 |  | 45.58419 | 18.47384 | 41.67296 | -113.29937 | 1.81013 | 1.17683 | 1.37537 | 3.5012 |
| 12 | CMB | 310 | 310 | 0.78 | 77000 | 10 |  | 33.56252 | 11.00403 | 31.70732 | -86.13185 | 1.70065 | 1.22063 | 1.18418 | 3.61904 |
| 13 | CMB | 310 | 310 | 0.78 | 65900 | 20 |  | 37.59368 | 1.03798 | 37.57935 | 99.28708 | 2.1887 | 1.8089 | 1.2322 | 4.7528 |
| 14 | DES | 310 | 310 | 0.78 | 47400 | 0 |  | 75.48633 | -4.50696 | 75.35166 | 175.76834 | 1.83428 | 0.08875 | 1.83213 | 6.99055 |
| 15 | DES | 310 | 310 | 0.78 | 65900 | 0 |  | 33.53863 | 14.34174 | 30.31756 | 80.42327 | 1.41548 | -0.00908 | 1.41546 | 3.2487 |
| 16 | DES | 310 | 310 | 0.78 | 77000 | 0 |  | 39.952 | 8.22195 | 39.09683 | -84.69529 | 1.49947 | -0.08423 | 1.4971 | 5.48679 |
| 17 | CRZ | 1 | 1 | 0.78 | 64000 | 0 |  |  |  |  |  | 0.46342 | 0.02711 | 0.46262 | 1.39843 |

## Comparing of BADA vs. Radar Data

- BADA profiles are based on European flight data
- Note some of the deviations shown compared to US radar data (PDARS)



## BADA Descent Profiles

- BADA profiles are based on European flight data
- Note some of the deviations shown compared to US radar data (PDARS)



## Reality Check with Boeing Data

- Example:
- $3,000 \mathrm{~nm}$ trip across the Atlantic
- 269 passengers + baggage
- OEW $=85,235 \mathrm{~kg}$
- $\operatorname{OEW}+\mathrm{PYL}=113,500 \mathrm{~kg}$
- $148,800 \mathrm{~kg}$ takeoff mass
- Fuel mass $=35,300 \mathrm{~kg}$ (includes 1.25 hrs meserve)
- 7.2 hour trip +1.25 hr . reserve
- Reserve $=5,200 \quad$ The difference between Boeing planning document and
- Trip fuel $=\mathbf{3 0}, \mathbf{7}$ the regression model is $1.3 \%$
- Regression model $=\mathbf{3 0 , 3 0 0} \mathbf{~ k g}$

B767-300ER Payload-Range

source: Boeing 767-300ER Docs.

## Reality Check with Boeing Data

- Example:
- $5,000 \mathrm{~nm}$ trip across the Atlantic
- 420 passengers + baggage
- $\mathrm{OEW}+\mathrm{PYL}=220,000 \mathrm{~kg}$
- $335,000 \mathrm{~kg}$ takeoff mass
- Fuel mass $=110,000 \mathrm{~kg}$ (in hr holding at 1500 feet )
- 11.2 hour trip + reserve fuel
- Reserve $=16,000 \mathrm{~kg}$

B747-400 Payload-Range

source: Boeing 747-400 Docs.

The difference between Boeing planning document and the regression model is I.2\%


[^0]:    Aircraft state at time $\mathrm{t}_{1}$
    $h=2,000$ feet
    $\mathrm{V}=210$ knots (IAS)

[^1]:    Project BADA - EEC Technical/Scientific Report No. 15/04/02-43

