Airport Planning and Design

Excel Solver

Dr. Antonio A. Trani

Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University

> Blacksburg, Virginia Spring 2012

> > Virginia Tech

Virginia

Demand Function Example

Given data representing demand at an airport (D(t)) we would like to derive the best nonlinear model to fit the data to a model of the form:

$$D(t) = k \cdot a^{b^{t}}$$
 Gompertz Model

$$D(t) = \frac{k}{1 + b \cdot e^{-at}}$$
 Logistic Model

Virginia

Data

Given: data pairs for time and Demand (D(t))

Find: the best nonlinear regression equation that correlates with the data pairs (t, D(t))

Data File: airport2.xls

Virginia IIII Tech

Setup of Solver Procedure

The idea is to minimize the Sum of Square Errors of the data and an assumed regressions equation

- Create a column with values of the assumed regression equation
- Leave parameters of the model as cells in the spreadsheet (Excel will iterate among any number of parameters)
- Minimize the Sum of the Square Errors (SSE) of the data
- You are done!

Virginia

Setup of Solver

۲	00					airport2.xls
\diamond	A	В	C	D	E	F
1	Time	Demand		Calculated De	emand	Square Errors
2	1976	1650000		1341962.45		94887133035
3	1977	2100342		1505196.89		3.54198E+11
4	1978	2159060		1683267.09		2.26379E+11
5	1979	2289354		1876317.68		1.70599E+11
6	1980	2418506		2084203.58		1.11758E+11
7	1981	2340000		2306447.01		1125802946
8	1982	2723424		2542204.86		32840501643
9	1983	2847846		2790251.16		3317133335
10	1984	2929954		3048979.2		14166907795
11	1985	3138216		3316425.93		31758930175
12	1986	3237440		3590320.11		1.24524E+11
13	1987	3436687		3868152.51		1.86162E+11
14	1988	3613075		4147264.33		2.85358E+11
15	1989	3800849		4424947.52		3.89499E+11
16	1990	4078844		4698548.98		3.84034E+11
17	1991	4890000		4965570.49		5710899368
18	1992	4906601		5223756.2		1.00587E+11
19	1993	5270381		5471161.72		40312794576
20	1994	5753800		5706200.95		2265707736
21	1995	5970459		5927669.25		1830963256
22	1996	6560330		6134744.3		1.81123E+11
23	1997	6669229		6326967.69		1.17143E+11
24	1998	7040655		6504211.56		2.87772E+11
25	1999	7291141		6666635.15		3.90007E+11
26	2000	7412591		6814635.89		3.5755E+11
27	2001	7230000		6948799.21		79073886090
28						
29						3.97399E+12
30						
31	Parameters					
32	а	0				
33	Ь	5				
34	k	8000000				
2 5				1		

Solution Set and Original Data

Virginia Tech

Virginia

Linear Programming

- a_{ij} are the coefficients of the functional constraints
- b_i are the amounts of the resources available (RHS)

Virginia

Virginia IIII Tech

LP Example (Construction)

During the construction of an off-shore airport in Japan the main contractor used two types of cargo barges to transport materials from a fill collection site to the artificial island built to accommodate the airport.

The types of cargo vessels have different cargo capacities and crew member requirements as shown in the table:

Vessel Type	Capacity (m- ton)	Crew required	Number available
Fuji	300	3	40
Haneda	500	2	60
	I	I	II

Solution Using Excel Solver

- Solver is a Generalized Reduced Gradient (GRG2) nonlinear optimization code
- Developed by Leon Lasdon (UT Austin) and Allan Waren (Cleveland State University)
- Optimization in Excel uses the Solver add-in.
- Solver allows for one function to be minimized, maximized, or set equal to a specific value.
- Convergence criteria (convergence), integer constraint criteria (tolerance), and are accessible through the OPTIONS button.

Virginia

Excel Solver

- Excel can solve simultaneous linear equations using matrix functions
- Excel can solve one nonlinear equation using Goal Seek or Solver
- Excel does not have direct capabilities of solving n multiple nonlinear equations in n unknowns, but sometimes the problem can be rearranged as a minimization function

Virginia

lèch

Osaka Bay Problem in Excel

Optimization Problem for Osaka Bay

Objective Function		$\mathbf{O}1$
300 x1 + 500 x2	36000	Objective function Stuff to be solved
Constraint Equations		
3 x1 + 2 x2 <= 180	a 180 <=	180
x1 <= 40	20 <=	40
$x^2 <= 60$	60 <=	60
$x_1 \ge 0$ $x_2 \ge 0$	20 >= 60 >=	0
(2 >= 0	60 >=	

Virgi<u>nia</u>

Optimization Problem for Decision Variables	⁻ Osaka Bay	Decision variables (what your control)
x1 x2	20 60	Number of Ships Type 1 Number of Ships Type 2
Objective Function		
300 x1 + 500 x2	36000	
Constraint Equations	Formula	
3 x1 + 2 x2 <= 180 x1 <= 40	180 <= 20 <=	180 40
x2 <= 60 x1 >= 0	60 <= 20 >=	60
$x^{2} >= 0$	60 >=	0

Osaka Bay Problem in Excel

Optimization Problem for Osaka Bay

x1 x2	20 60	Number of Ships Type 1 Number of Ships Type 2
Objective Function 300 x1 + 500 x2	36000	Constraint equations (limits to the problem
Constraint Equations	Formula	
3 x1 + 2 x2 <= 180	180 <=	180
x1 <= 40	20 <=	40
x2 <= 60	60 <=	60
x1 >= 0	20 >=	0
$x^{2} >= 0$	60 >=	0

Virgi<u>nia</u>

			🗋 osaka_b	ay2.xls					
B or Osaka Bay	С	D	E	F	G	Н		J	К
20 60		Number of Shi Number of Shi	os Type 1 os Type 2						
					Solve	er Paramete	ers		·
36000			Set Targe	t Cell: SBS	10			Solv	e
Formula 180 20 60 60	<= <= >= >=	180 40 60 0 0	Equal To: By Cha SB\$5: Subject S\$514 S\$515 S\$516 S\$516 S\$516	Max nging Cells: \$B\$6 to the Constr \$= \$D\$14 \$<= \$D\$15 \$<= \$D\$15 \$<= \$D\$16 7>= \$D\$17	○ Min ○ Va	ulue of: 0	Guess Add Change	Clos Option Reset Help	e Is) All
			30310	5 >= 30316		(Delete		l

Solver Panel in Excel	Solver	Panel	in	Excel
-----------------------	--------	-------	----	-------

et Target Cell: \$8\$10 🛓		Solve
gual To: 💿 Max 🔘 Min 🔘 Value of:	0	Close
. By Changing Cells:		Options
\$B\$5:\$B\$6	Guess	Reset All
Subject to the Constraints:		Hala
\$B\$14 = \$D\$14	Add	нер
\$B\$15 <= \$D\$15 \$B\$16 <= \$D\$16		
\$B\$17 >= \$D\$17	Change	
\$8\$18 >= \$D\$18	Delete	

Virginia

Solver Parameters Objective function					
Set Target Cell: SBS10 (a)	of: 0	Close			
By Changing Cells: \$B\$5:\$B\$6 Subject to the Constraints:	Guess	Options Reset All			
\$B\$14 = \$D\$14 \$B\$15 <= \$D\$15 \$B\$16 <= \$D\$16 \$B\$17 >= \$D\$17 \$B\$18 >= \$D\$18	Add Change Delete	Help			

Solve	r Parameters	ation to execu
Set Target Cell: SB\$10 (a)	lue of: 0	Solve Close
By Changing Cells:	Guess	Options Reset All
\$B\$14 = \$D\$14 \$B\$15 <= \$D\$15 \$B\$16 <= \$D\$16 \$B\$17 >= \$D\$17 \$B\$18 >= \$D\$18	Add Change Delete	Help

Solve	r Parameters	sion variable
Set Target Cell: SB\$10 (a)	lue of: 0	Close
By Changing Cells:	Guess	Options Reset All
\$B\$14 = \$D\$14 \$B\$15 <= \$D\$15 \$B\$16 <= \$D\$16 \$B\$17 >= \$D\$17 \$B\$18 >= \$D\$18	Add Change Delete	Help

Sc	Cons	traint equation
Set Target Cell: \$8\$10		Solve
Equal To: 💿 Max 🔘 Min 📿	Value of: 0	Close
By Changing Cells:		Options
\$B\$5:\$B\$6	Guess	Reset All
Subject to the Constraints: \$B\$14 = \$D\$14 \$B\$15 <= \$D\$15 \$B\$16 <= \$D\$16 \$B\$17 >= \$D\$17 \$B\$18 >= \$D\$18	Add Change Delete	Help

Max Time:	100	seconds		Load I	Model
Iterations:	100			Save M	Aodel
Precision:	1e-06	%	1		
Tolerance:	5				
Convergence:	0.0001	L			
🗌 Assume Li	inear Mo	del 🗌	Use Autor	natic Scaling	
🗌 Assume N	lon-Nega	ative 🗌	Show Itera	tion Results	
Estimates		Deriva	tives	Search	
Tanger	nt	• For	ward	Newto	n
O Quadra	atic	O Cer	ntral	O Conju	gate

Excel Solver Limits Report

• Provides information about the limits of decision variables

	0	00	N	S	15			101	aka_ba	y2.x1s
	0	A B	C	D	E	F	G	H I	J	K
1	1	Microsoft	Excel 10.1 Limits	Report		20 C			1 - Ci - Li	
2	2	Workshee	et: [Workbook 1]Sl	neet1						
	3	Report Cr	eated: 3/10/2003	5:04:26	AM					
	4	1.12	57 AV							
	5	1								
5 1	6		Target							
14	7	Cell	Name	Value						
3	8	\$B\$10	300 ×1 + 500 ×2	36000						
	9	1-1								
0	10									
1	11	1.1	Adjustable	1	1	Louier	Tamat	linner	Tarnet	
2	12	Cell	Name	Value		Limit	Result	Limit	Result	
3	13	\$B\$5	×1	20		0	30000	20	36000	
4	14	\$B\$6	×2	60	1.	33227E-15	6000	60	36000	
5	15		10100		-					
6	16									
7	17									
and the second se		-								

Virgi<u>nia</u>

Excel Solver Sensitivity Report

• Provides information about shadow prices of decision variables

A B					aka_Dayz.x
	C	D	E	F	G
Microsoft	Excel 10.1 Sensitivity Report				
Workshee	t: [osaka_bay2.xls]Sheet1				
Report Cri	eated: 3/10/2003 5:47:49 AM	I			
Adjustable	: Cells				
		Final	Reduced		
Cell	Name	Value	Gradient		
\$B\$5	×1	20	0		
\$B\$6	×2	60	0		
Co <u>nstraint</u>	5				
		Final	Lagrange		
Cell	Name	Value	Multiplier		
\$B\$18	×2 >= 0 Formula	60	0		
\$B\$15	×1 <= 40 Formula	20	0		
\$B\$16	×2 <= 60 Formula	60	300		
\$B\$17	×1 >= 0 Formula	20	0		
\$B\$14	3 ×1 + 2 ×2 <= 180 Formula	180	100		
	Adjustable Cell \$B\$5 \$B\$6 Constraint Cell \$B\$18 \$B\$15 \$B\$16 \$B\$17 \$B\$14	Report Created: 3/10/2003 5:47:49 Am Adjustable Cells Name \$B\$5 ×1 \$B\$6 ×2 Constraints Name \$B\$18 ×2 >= 0 Formula \$B\$15 ×1 <= 40 Formula	Final Final Cell Name Value \$B\$5 ×1 20 \$B\$6 ×2 60 Constraints Final Cell Name Value \$B\$18 ×2 60 Constraints Final Cell Name Value \$B\$18 ×2 >= 0 Formula 60 \$B\$15 ×1<<= 40 Formula	Report Created: 3/10/2003 5:47:49 AM Adjustable Cells Final Reduced Cell Name Value Gradient \$B\$5 ×1 20 0 \$B\$6 ×2 60 0 Constraints Final Lagrange Cell Name Value Multiplier \$B\$18 ×2 >= 0 Formula 60 0 \$B\$15 ×1 <= 40 Formula 20 0 \$B\$16 ×2 <= 60 Formula	Final Reduced Cell Name Value Gradient $\frac{\$B\$5}{15}$ $\times 1$ 20 0 $\frac{\$B\$5}{18}$ $\times 2$ 60 0 Constraints Final Lagrange Multiplier $\frac{\$B\$18}{15}$ $\times 2 \ge 0$ Formula 60 0 \$\frac{1}{1}\$ 20 0 $\frac{\$B\$18}{15}$ $\times 2 \ge 0$ Formula 60 0 $\frac{\$B\$16}{15}$ $\times 1$ $\times 2$ $\times 60$ 300 $\frac{\$B\$17}{1}$ $\times 1$ $\Rightarrow 0$ Formula 20 0 $\frac{\$B\$14}{3}$ $\times 1$ 2×2 $= 180$ 100 100

Virginia

Unconstrained Optimization Problems

- Common in engineering applications
- Can be solved using Excel solver as well
- The idea is to write an equation (linear or nonlinear) and then use solver to iterate the variable (or variables) to solve the problem

Virginia

Simple One Dimensional Unconstrained Optimization

- Given the quadratic equation
- $y = 2x^2 20x + 18$
 - Find the minima of the equation for all values of x

Solution:

• Lets try the Excel Solver

Virginia

Plot of Equation to be Solved

Virginia Tech

Virginia

0	00					m	iinima_examp	ple.xls
0	A	В	C	D	E		F	G
1	Finding the Mi	nima of a fund	tion		000	TIO		f w
2		2		JU	1622	Va	IUE UI	
3	Function	y=2*x^2 - 20 3	* × + 18		_			
4								
5	Guess	5			Values	of× y	·	
6	Equation	-32				0	18	
7						0.5	8.5	
8	1.2	102268 No. 1866	10.2511225	12	20	1	0	
9		Simple Qua	dratic Forn	nula		1.5	-7.5	
10						2	-14	
11	120				1	2.5	-19.5	
12	100					3	-24	
13					1	3.5	-27.5	
14	80			1	*	4	-30	
15	60				-	4.5	-31.5	
16	i			1		5	-32	
17	1 40			-		5.5	-31.5	
18	20			*		6	-30	
19				*		6.5	-27.5	
20		, , ,	6	1D 12	14	7	-24	
21	-20	A CONTRACTOR	and the			7.5	-19.5	
22	-40					8	-14	
23	252		Value of a			8.5	-7.5	
24						9	0	
25						9.5	8.5	
26					0	10	18	

Solver	Parameters	
Set Target Cell: SB\$6		Solve
Equal To: 🔘 Max 💿 Min 🔘 Valu	ue of: 0	Close
By Changing Cells:		Options
×	Guess	Reset All
Subject to the Constraints:		Help
	Add	
	Change	
	Delete	

0	00					D.	minima_exa	mple.xls
0	A	B	C	D	E		F	G
1	Finding the	Minima of a fur	nction		nim		mof	X 7
2	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -					IU		Y
3	Function	y=2*x^2 - 20)*×+18					•
4								
5	Guess	5			Values	ofx	У	
6	Equation	-32			_	0	18	1
7						0.5	8.5	1
8		cian la c		. X.		1	0	<u>í</u>
9		Simple Qu	ladratic Form	ula		1.5	-7.5	1
10					1.47	2	-14	5 <u>-</u>
11	120					2.5	-19.5	1
12	100					3	-24	
15	80			22		3.5	-27.5	1
14	00					4	-30	
15	6D					4.5	-31.5	
10	40				1	0	-32	
10	1			*		5.5	-31,5	
10	20			2	27	0	-30	
20				· · ·	22	6,5	-27.0	
20	-20	4	6	10 12	14	7 5	-24	2
22		*****	****			7.5	-19.0	
22	-40 -					0 E	-14	
23			Walking of a			8.5	-7.5	
24						9	0	
25						9.5	8.5	
26						10	18	i

Finding the Roots of y U Excel Solver	sing Virginia
• Easily change the minimimzation prob finder by changing the character of the Excel Solver	olem into a root operation in
Solver Parameters	
Set Target Cell: SB\$6	Solve
Equal To: 🔘 Max 🔘 Min 🕙 Value of: 0	Close
By Changing Cells:	Options
x Guess	Reset All
Subject to the Constraint: Root finder of y Add	Help

Example for Class Practice

- Minimization example (mixing problem)
- Airline fleet assignment problem

Virginia

Virginia IIII Tech

Minimization LP Example

A construction site requires a minimum of 10,000 cu. meters of sand and gravel mixture. The mixture must contain no less than 5,000 cu. meters of sand and no more than 6,000 cu. meters of gravel.

Materials may be obtained from two sites: 30% of sand and 70% gravel from site 1 at a delivery cost of \$5.00 per cu. meter and 60% sand and 40% gravel from site 2 at a delivery cost of \$7.00 per cu. meter.

a) Formulate the problem as a Linear Programming problem

b) Solve using Excel Solver

Water Pollution Management

The following are pollution loadings due to five sources:

Note: Pollution removal schemes vary in cost dramatically.

Source	Pollution Loading (kg/yr)	Unit Cost of Removal (\$/kg)
River A	18,868	1.2
River B	20,816	1.0
River C	37,072	0.8
Airport	28,200	2.2
City	12,650	123.3

Virginia

Virginia March

Water Pollution Management

It is desired to reduce the total pollution discharge to the lake to 70,000 kg/yr. Therefore the target pollution reduction is 117,606-70,000 = 47,606 kg/yr.

Solution:

Let x_1, x_2, x_3, x_4, x_5 be the pollution reduction values expected in (kg/yr). The costs of unit reduction of pollution are given in the previous table.

The total pollution reduction from all sources should be at least equal to the target reduction of 47,606 kg.

LP Applications - Water Pollution Management

The reductions for each source cannot be greater than the present pollution levels. Mathematically,

 $x_1 \le 18868$ constraint for River A

 $x_2 \le 20816$ constraint for River B

 $x_3 \leq 37072$ constraint for River C

 $x_4 \le 28200$ airport constraint

 $x_5 \le 12650$ city constraint

Virginia

Water Pollution Management

The reductions at each source should also be non negative.

Using this information we characterize the problem as follows:

Min $z = 1.2x_1 + 1.0x_2 + 0.8x_3 + 2.2x_4 + 123.3x_5$

S.t. $x_1 + x_2 + x_3 + x_4 + x_5 \ge 47606$

 $x_1 \leq 18868$

 $x_2 \leq 20816$

 $x_3 \leq 37072$

Virginia Tech

Virginia

Water Resource Management

Rewrite the objective function as follows:

Max $-z + 1.2x_1 + 1.0x_2 + 0.8x_3 + 2.2x_4 + 123.3x_5 + Mx_{12}$

St.
$$x_1 + x_2 + x_3 + x_4 + x_5 - x_6 + x_{12} = 47606$$

 $x_1 + x_7 = 18868$

 $x_2 + x_8 = 20816$

 $x_3 + x_9 = 37072$

 $x_4 + x_{10} = 28200$

 $x_5 + x_{11} = 12650$

Virginia