CEE 4674 Airport Planning and Design

Geometric Design: Part 1

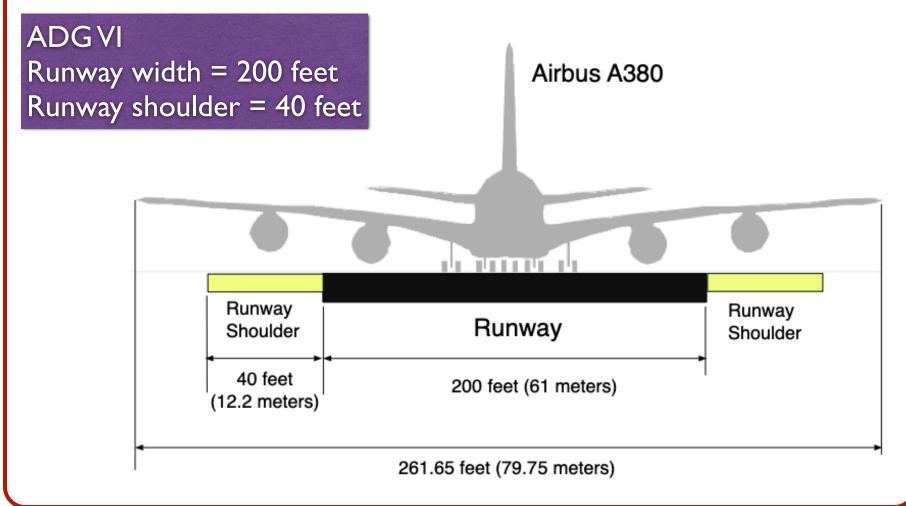
Dr. Antonio A. Trani Professor of Civil Engineering Virginia Polytechnic Institute and State University

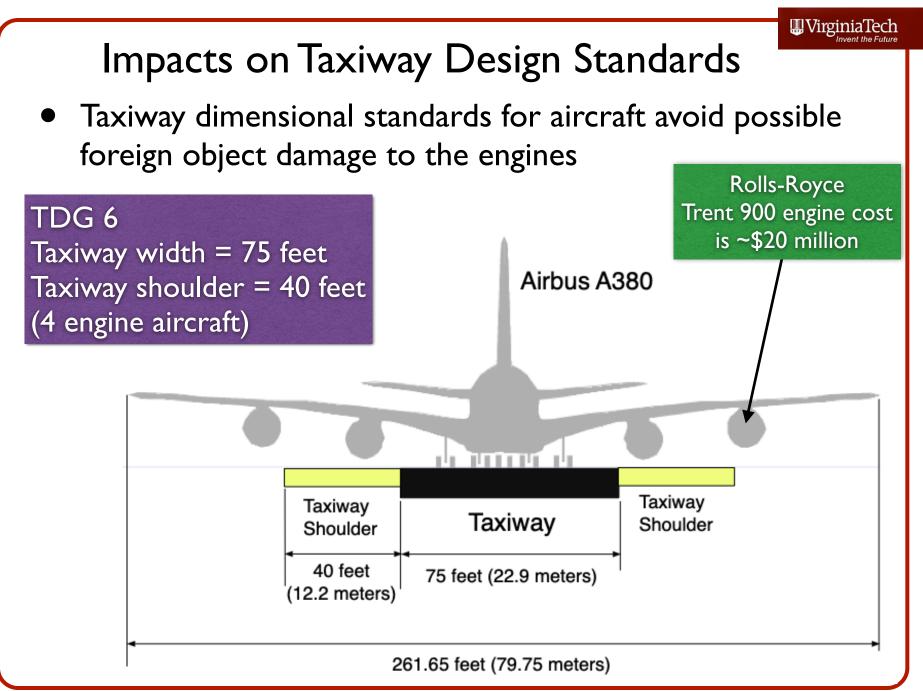
Blacksburg, Virginia

Organization of this Presentation

- Review of geometric design standards
- Runway-runway separation standards
- Runway-taxiway separations
- Taxiway and taxilanes
- Runway exit types and kinematic model application
- Runway exit locations

Taxiway and Runway Design Distances

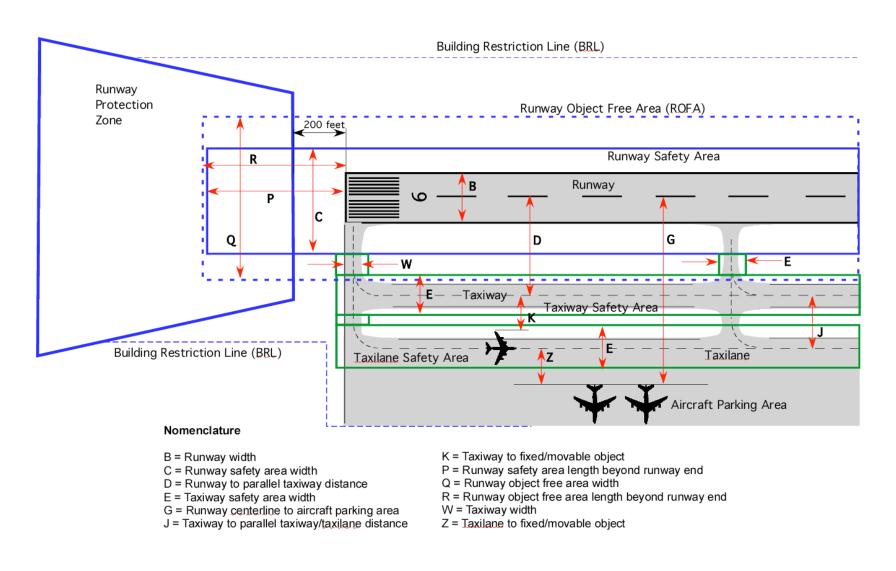

- Source of information: FAA AC 5300-13B Chapters 3, 4 and Appendix G (Tables)
- Dictated by safety analyses
- Provide sufficient space for expansion, and safe and efficient movement of aircraft
- For regular aircraft (those than can be classified according to the FAA design standard) use Tables


Where do I find the Runway and Taxiway Geometric Design Standards?

- Runway design standards (Chapter 3)
 - Runway design concepts (All Chapter 3)
 - Runway gradients (Section 3.16)
- Taxiway and taxilane design standards (Chapter 4)
 - Taxiway width (Section 4.4 and Table 4-2)
 - Taxiway clearance requirements (Section 4.5)
 - Parallel taxiways (Table 4-1) etc.
- Appendix G or use the FAA runway design standards matrix (web)

Impacts on Runway Design Standards

 Runway and taxiway dimensional standards for aircraft avoid possible foreign object damage to the engines



Airport Planning and Design (Antonio A. Trani)

WirginiaTech

Sample Airport to Learn Design Standards

Runway Design Standards (Appendix G)

- Quick runway geometric design dimensions are included in tables of Appendix G of FAA AC 150/5300-13B
- Alternatively: use the FAA Runway Design Standards Matrix Tool

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):	· · ·		С/І	D/E – II	
ITEM	DIM 1		VISIBILIT	Y MINIMUMS	
		Visual	Not Lower than	Not Lower than	Lower than
			1 mile	3/4 mile	3/4 mile
RUNWAY DESIGN			-		
Runway Length	Α	•	Refer to parage	raphs <u>3.3</u> and <u>3.7</u>	.1
Runway Width	В	100 ft	100 ft	100 ft	100 ft
Shoulder Width		10 ft	10 ft	10 ft	10 ft
Blast Pad Width		120 ft	120 ft	120 ft	120 ft
Blast Pad Length		150 ft	150 ft	150 ft	150 ft
Crosswind Component		16 knots	16 knots	16 knots	16 knots

Table G-8. Runway Design Standards Matrix, C/D/E-II

FAA Runway Design Standards Matrix Tool

Runway Design Standards Matrices Form

Instructions: Choose to view data for a single Aircraft Approach Category (AAC) and Airplane Design Group (ADG) or compare two. If you compare two, the differences between the first and second option will be highlighted in yellow.

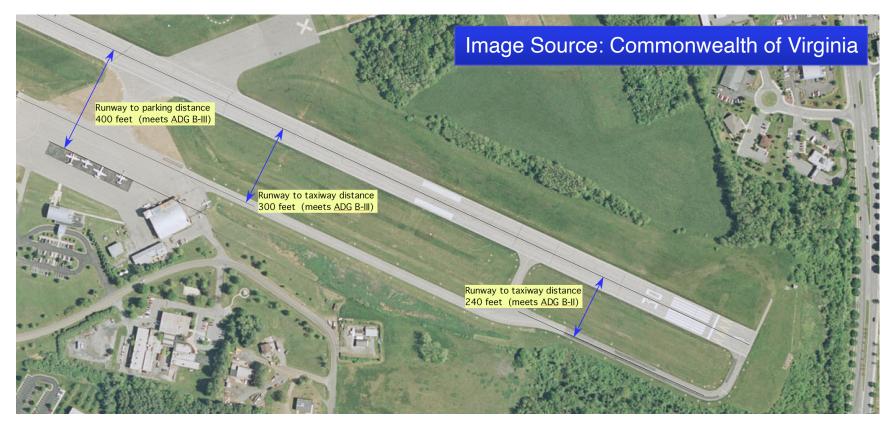
Main Category (required):	C/D/E - III	~
Compare Category (optional):	- Not Selected -	~
Submit Reset	·	

C/D/E - III

Runway Dims	DIM ¹	Visual	Not Lower than 1 Mile	Not Lower than 3/4 Mile	Lower than 3/4 Mile
Runway Width ¹²	В	100 ft	100 ft	100 ft	100 ft
Shoulder Width ¹²		20 ft	20 ft	20 ft	20 ft
Blast Pad Width ¹²		140 ft	140 ft	140 ft	140 ft
Blast Pad Length		200 ft	200 ft	200 ft	200 ft
Crosswind Component		16 knots	16 knots	16 knots	16 knots

	6
	NORF

Airbus A320neo landing at ATL runway 8L ADG - III AAC - C


https://www.faa.gov/airports/engineering/ airport_design/rdsm/

Sample Runway Design Standards Form

Table G-4. Runway Design Standards Matrix, A/B-II

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):	1		A	/B – II	
ITEM	DIM 1		VISIBILIT	Y MINIMUMS	
		Visual	Not Lower than	Not Lower than	Lower than
			1 mile	3/4 mile	3/4 mile
RUNWAY DESIGN		-			
Runway Length	Α		Refer to parage	raphs <u>3.3</u> and <u>3.7</u>	.1
Runway Width	В	75 ft	75 ft	75 ft	100 ft
Shoulder Width		10 ft	10 ft	10 ft	10 ft
Blast Pad Width		95 ft	95 ft	95 ft	120 ft
Blast Pad Length		150 ft	150 ft	150 ft	150 ft
Crosswind Component		13 knots	13 knots	13 knots	13 knots
RUNWAY PROTECTION			•		
Runway Safety Area (RSA)					
Length beyond departure end ^{9, 10}	R	300 ft	300 ft	300 ft	600 ft
Length prior to threshold	Р	300 ft	300 ft	300 ft	600 ft
Width	С	150 ft	150 ft	150 ft	300 ft
Runway Object Free Area (ROFA)					
Length beyond runway end	R	300 ft	300 ft	300 ft	600 ft
Length prior to threshold	Р	300 ft	300 ft	300 ft	600 ft
Width	Q	500 ft	500 ft	500 ft	800 ft

Old Virginia Tech Airport (Before Runway Extension)

Airport had legacy parallel taxiway standards B-II standard near runway end 30 New taxiway has been re-aligned WirginiaTech

Runway Design Standards (D-VI)

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):			C/D	$\mathbf{E} - \mathbf{VI}$								
ITEM	DIM 1		VISIBILIT	Y MINIMUMS								
		Visual	Not Lower than	Not Lower than	Lower than							
			1 mile	3/4 mile	3/4 mile							
RUNWAY DESIGN		-	-									
Runway Length	Α		Refer to parage	raphs 3.3 and 3.7	.1							
Runway Width B 200 ft 200 ft 200 ft 200 ft Standard H												
Shoulder Width		40 ft	40 ft	40 ft	40 ft							
Blast Pad Width		280 ft	280 ft	280 ft	280 ft							
Blast Pad Length		400 ft	400 ft	400 ft	400 ft							
Crosswind Component		20 knots	20 knots	20 knots	20 knots							
RUNWAY SEPARATION												
Runway centerline to:			_									
Parallel runway centerline	Н	-	Refer to p	paragraph <u>3.9</u>								
Holding Position ⁸		280 ft	280 ft	280 ft	280 ft							
Parallel taxiway/taxilane centerline 2,6	D	500 ft	500 ft	500 ft	500 ft							
Aircraft parking area	G		Refer to para	ngraph <u>5.4.1.2</u>								
Helicopter touchdown pad	\			C 150/5390-2								

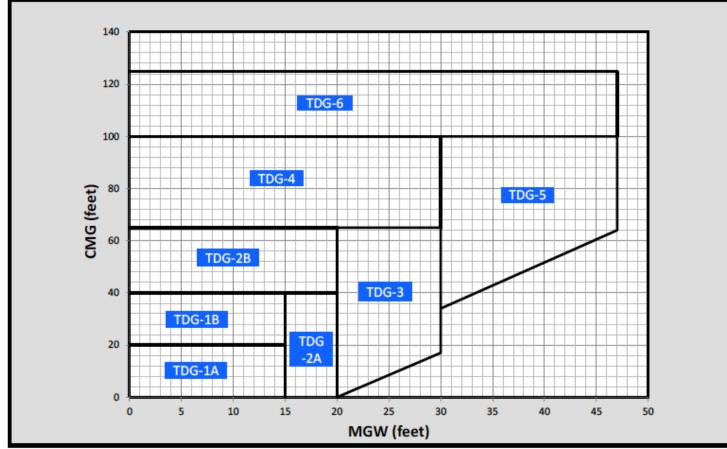
Note: See the Footnotes on the following page.

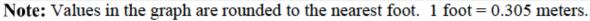
Be careful with footnotes

UrginiaTech

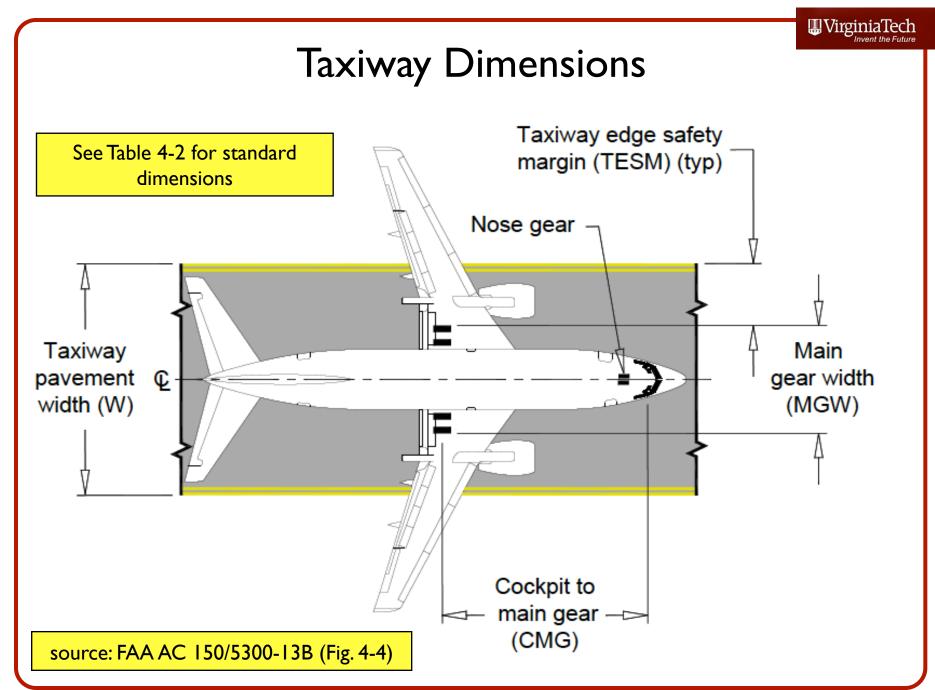
Footnotes - be Careful for Exceptions

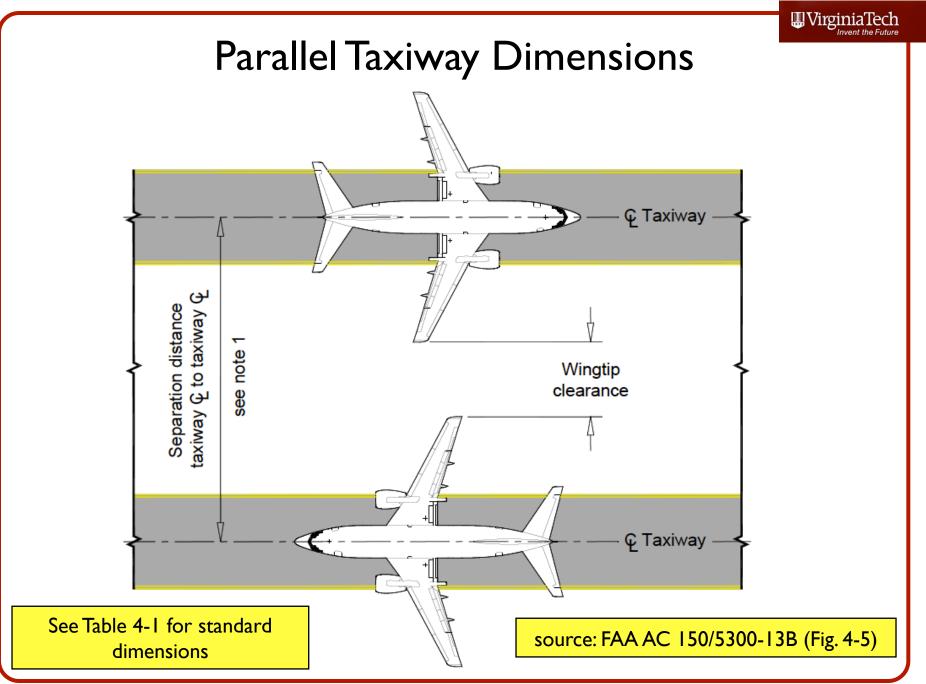
Footnotes:


- 1. Letters correspond to the dimensions in Figure 3-1.
- The runway to taxiway/taxilane centerline separation standards are for airports at sea level. For airports at higher elevations, an increase to these separation distances may be required to keep taxiing and holding aircraft clear of the inner-transitional OFZ (refer to paragraph <u>3.11.4</u>). This standard cannot be used to justify a decrease in runway to taxiway/taxilane separation.
- 3. The standard runway centerline to parallel taxiway centerline separation distance is 400 feet (122 m) for airports at or below an elevation of 1,345 feet (410 m); 450 feet (137 m) for airports between elevations of 1,345 feet (410 m) and 6,560 feet (2,000 m); and 500 feet (152 m) for airports above an elevation of 6,560 feet (2,000 m).
- For approaches with visibility less than 1/2-statute mile (0.8 km), runway centerline to taxiway/taxilane centerline separation increases to 400 feet (122 m).
- For approaches with visibility less than 1/2-statute mile (0.8 km), the separation distance increases to 500 feet (152 m).
- 6. If the runway elevation is greater than or equal to 100 feet (30.5 m) above sea level, with approaches with visibility less than 3/4 statute mile (1.2 km), the separation distance increases by an elevation adjustment. For approaches with visibility less than 1/2-statute mile (0.8 km), the separation distance increases to 550 feet (168 m).


Footnotes - Part 2

- Increase this distance 1 foot (0.3 m) for each 100 feet (30.5 m) above 5,100 feet (1,555 m) above sea level.
- Increase this distance 1 foot (0.3 m) for each 100 feet (30.5 m) above sea level. For C-III aircraft, see footnote 7.
- The RSA length beyond the runway end begins at the runway end when a stopway is not present. When a stopway is present, the length begins at the stopway end.
- The RSA length beyond the runway end may be reduced to that required to install an EMAS (the designed set-back of the EMAS included). See the latest edition of <u>AC 150/5220-22</u> for additional guidance.
- 11. This value only applies if that runway end is equipped with electronic or visual vertical guidance. ILS, GLS, LPV, LNAV/VNAV, and RNP lines of minima provide electronic vertical guidance. A PAPI or VASI provides visual vertical guidance. If there is no such guidance for that runway, use the value for "length beyond departure end."
- 12. For airplanes with maximum certificated takeoff weight greater than 150,000 lbs (68,027 kg), the standard runway width is 150 feet (46 m), the shoulder width is 25 feet (7.6 m), and the runway blast pad width is 200 feet (61 m).
- When an RSA width of 500 feet (152 m) is not practical, an RSA width of 400 feet (122 m) is permissible.


Some Taxiway Design Elements Use TDG

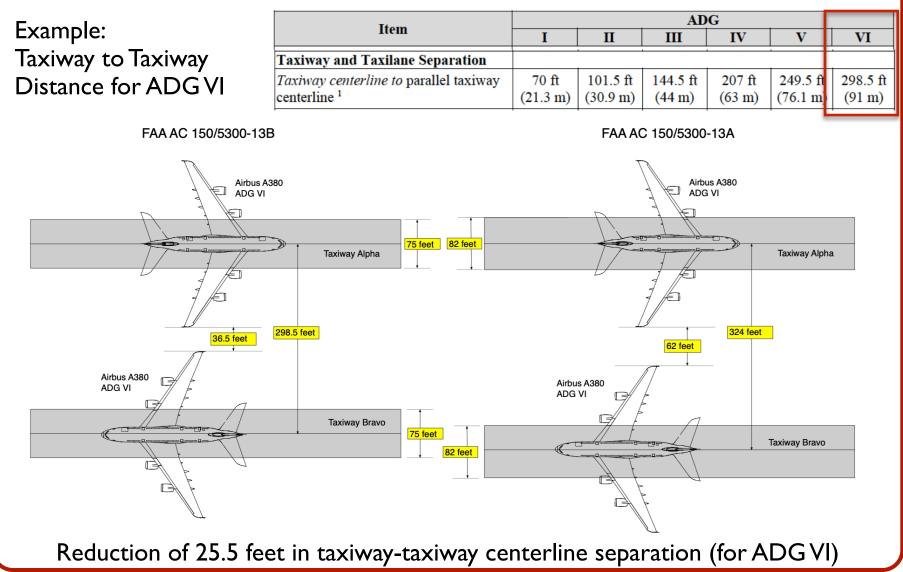

• Taxiway design group needs to be established before any taxiway design is carried out

Airport Planning and Design (Antonio A. Trani)

UirginiaTech

Taxiway Design Standards (Based on ADG Groups)

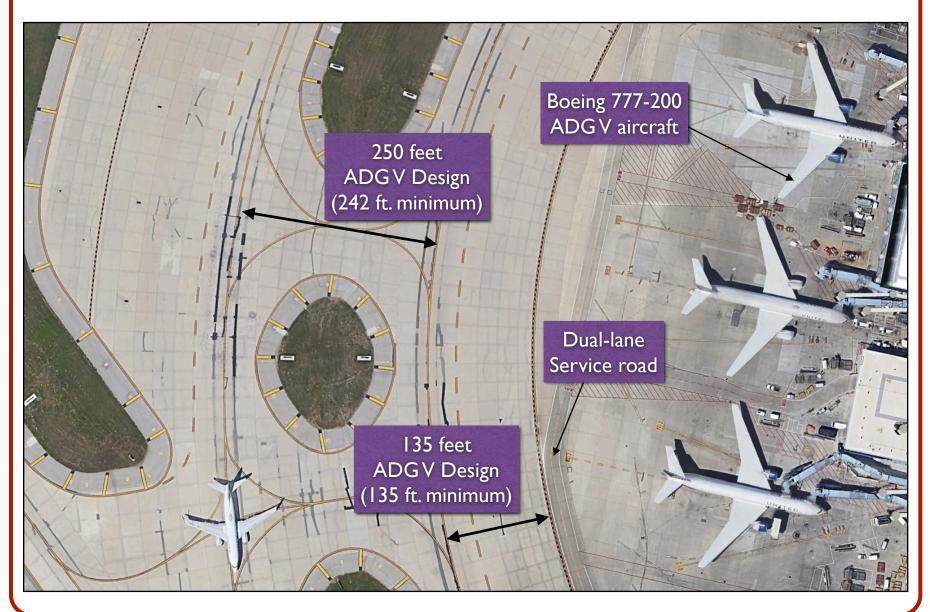
T4			AD	G		
Item	Ι	II	III	IV	V	VI
Taxiway and Taxilane Protection						
TSA (maximum ADG wingspan)	49 ft (14.9 m)	79 ft	118 ft (36 m)	171 ft	214 ft (65 m)	262 ft
	· · · ·	(24.1 m)		(52 m)	· · ·	(80 m)
TOFA ²	89 ft	124 ft	171 ft	243 ft	285 ft	335 ft
	(27.1 m)	(38 m)	(52 m)	(74 m)	(87 m)	(102 m)
TLOFA ²	79 ft	110 ft	158 ft	224 ft	270 ft	322 ft
	(24.1 m)	(34 m)	(48 m)	(68 m)	(82 m)	(98 m)
Taxiway and Taxilane Separation					1	
<i>Taxiway centerline to</i> parallel taxiway centerline ¹	70 ft	101.5 ft	144.5 ft	207 ft	249.5 ft	298.5 ft
	(21.3 m)	(30.9 m)	(44 m)	(63 m)	(76.1 m)	(91 m)
<i>Taxiway centerline to</i> fixed or movable object ²	44.5 ft	62 ft	85.5 ft	121.5 ft	142.5 ft	167.5 ft
	(13.6 m)	(18.9 m)	(26.1 m)	(37 m)	(43 m)	(51 m)
<i>Taxilane centerline to</i> parallel taxilane centerline ¹	64 ft	94.5 ft	138 ft	197.5 ft	242 ft	292 ft
	(19.5 m)	(28.8 m)	(42 m)	(60.2 m)	(74 m)	(89 m)
<i>Taxilane centerline to</i> fixed or movable object ²	39.5 ft	55 ft	79 ft	112 ft	135 ft	161 ft
	(12.2 m)	(16.8 m)	(24.1 m)	(34 m)	(41 m)	(49 m)
Wingtip Clearance						
Taxiway wingtip clearance	20 ft	22.5 ft	26.5 ft	36 ft	35.5 ft	36.5 ft
	(6.1 m)	(6.9 m)	(8.1 m)	(11 m)	(10.8 m)	(11.1 m)
Taxilane wingtip clearance	15 ft	15.5 ft	20 ft	26.5 ft	28 ft	30 ft
	(4.6 m)	(4.7 m)	(6.1 m)	(8.1 m)	(8.5 m)	(9.1 m)


Note 1: See Figure 4-5.

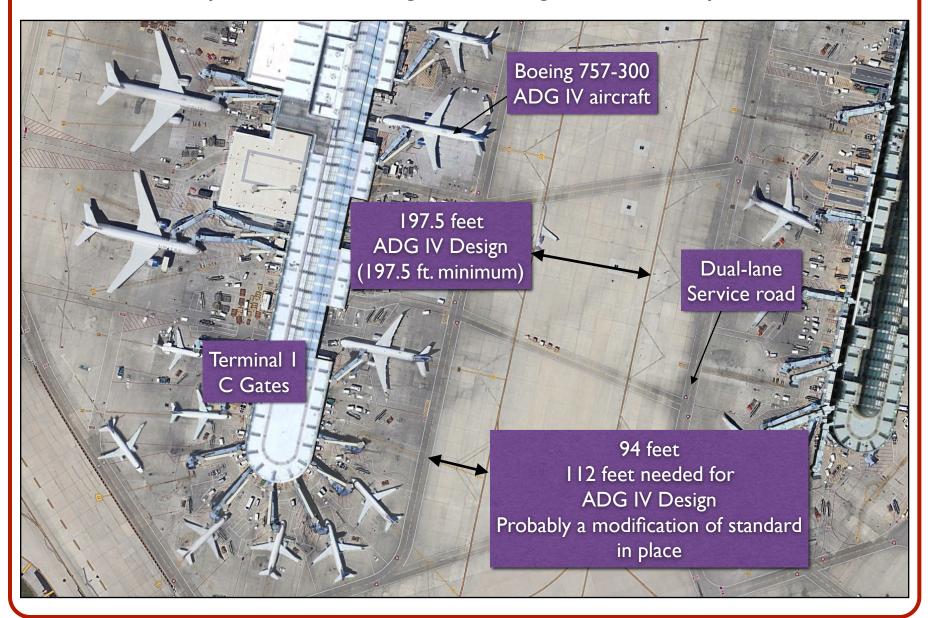
Note 2: See Figure 4-6.

Note 3: See paragraphs 4.5.3.1 and 4.5.4.1 for TSA and TOFA standards at fillets.

source: FAA AC 150/5300-13B (Table 4-1)


Taxiway Design Standards (Based on ADG Groups) Have Changed

WirginiaTech


nvent the Future

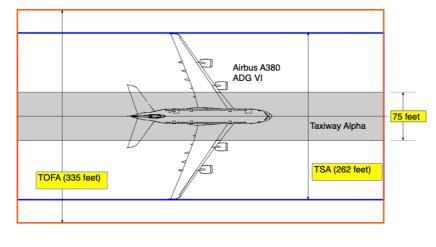
Example Taxilane Design at Chicago O'Hare Airport

UirginiaTech

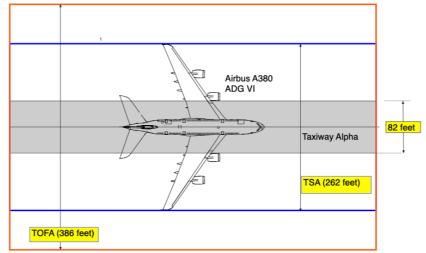
Example Taxilane Design at Chicago O'Hare Airport

UirginiaTech

Legacy Airports May Have Different Geometric Design Standards on Multiple Parts of the Airfield


- Geometric design standards evolve over time
- Legacy airports like Chicago ORD may have different design standards on various parts of the airfield
- Pilots and ATC controllers need to be aware of the limitations of such geometric design standards in order to avoid accidents
- Many airports have special taxiway-taxilane routes to handle large aircraft (such as Airbus A380 or ADG VI).

Significant Changes in Taxiway Object Free Areas (Based on ADG Groups)


Example: Taxiway Object Free Areas for ADG VI

FAA 150/5300-13B TOFA - 335 feet

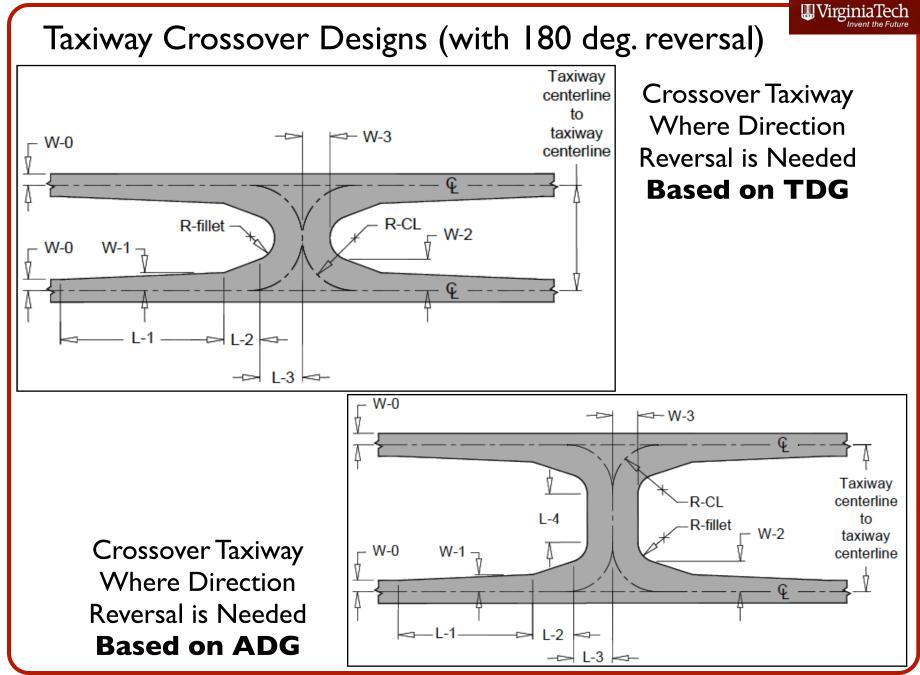
FAA 150/5300-13A TOFA - 386 feet

Reduction of 51 feet feet in TOFA width for ADG VI

VirginiaTech

Taxiway Design Standards (Based on TDG Groups)

source: FAA AC 150/5300-13B (Table 4-2)


Item				T	DG						
Item	1A	1B	2A	2B	3	4	5	6			
Taxiway/Taxilane Width ¹	25 ft	25 ft	35 ft	35 ft	50 ft	50 ft	75 ft	75 ft			
	(7.6 m)	(7.6 m)	(10.7 m)	(10.7 m)	(15.2 m)	(15.2 m)	(22.9 m)	(22.9 m)			
Taxiway Edge Safety Margin ¹	5 ft	5 ft	7.5 ft	7.5 ft	10 ft	10 ft	14 ft	14 ft			
	(1.5 m)	(1.5 m)	(2.3 m)	(2.3 m)	(3 m)	(3 m)	(4.3 m)	(4.3 m)			
Taxiway Shoulder Width ²	10 ft	10 ft	15 ft	15 ft	20 ft	20 ft	30 ft	30 ft			
	(3 m)	(3 m)	(4.6 m)	(4.6 m)	(6.1 m)	(6.1 m)	(9.1 m)	(9.1 m)			
Taxiway/Taxilane Centerline to Parallel Taxiway/Taxilane Centerline w/180 Degree Turn	See <u>Table 4-6</u> and <u>Table 4-7</u> .										

Note 1: See Figure 4-4.

Note 2: When the most demanding aircraft has four engines and is TDG 6, the standard taxiway shoulder width is 40 feet (12.2 m).

WirginiaTech

nvent the Future

Crossover Taxiway Design Standards (Based TDG Group)

Table 4-6. Crossover Taxiways with Direction Reversal Between Taxiways Based on TDG

Dimension				TI)G			
(See <u>Figure 4-22</u>)	1A	1B	2A	2B	3	4	5	6
Taxiway Centerline to Centerline Distance	50	100	100	162	162	250	250	312
W-0 (ft)	12.5	12.5	17.5	17.5	25	25	37.5	37.5
W-1 (ft)	25	22	26	31	37	45	55	60
W-2 (ft)	25	50	50	81	81	125	125	156
W-3 (ft)	21	29	34	44	51	65	78	88
L-1 (ft)	58	115	111	213	206	365	354	472
L-2 (ft)	0	39	39	72	71	118	117	152
L-3 (ft)	21	29	34	44	51	65	78	88
R-Fillet (ft)	0	0	0	0	0	0	0	0
R-CL (ft)	25	50	50	81	81	125	125	156

Note: 1 ft = 0.305 m

source: FAA AC 150/5300-13B (Table 4-6)

Airport Planning and Design (Antonio A. Trani)

Crossover Taxiway Design Standards (Based on ADG Group)

Dimension									1	TDG								
Dimension (see Figure	1A	11	8	2.	A		2 B		-	3		4		4	5		6	
<u>4-23</u>)										ADG								
	Π	Π	III	Π	Ш	Π	Ш	IV	Ш	IV	Ш	IV	V	IV	V	IV	V	VI
Taxiway Centerline to Centerline Distance	70	102	144	102	144	102	144	207	144	207	144	207	249	207	249	207	249	298
W-0 (ft)	12.5	12.5	12.5	17.5	17.5	17.5	17.5	17.5	25	25	25	25	25	37.5	37.5	37.5	37.5	37.5
W-1 (ft)	21	18	18	23	23	26	30	26	36	33	35	41	45	51	55	51	55	59
W-2 (ft)	21	31	32	39	36	51	72	52	72	57	72	104	125	104	125	104	125	149
W-3 (ft)	16	29	19	32.5	23.5	71.5	47	30.5	55	38	121	74.5	6 5.5	88.5	78	133.5	103.5	<mark>90</mark> .5
L-1 (ft)	53	9 2	94	<mark>98</mark>	9 3	180	206	180	197	177	303	345	364	329	353	411	440	466
L-2 (ft)	0	46	46	45	45	84	76	84	77	83	140	131	118	132	117	179	173	156
L-3 (ft)	21	44	32	39	36	72	47	52	55	57	121	74	6 5	89	78	133	104	90
L-4 (ft)	28	4	46	4	6 2	0	0	69	0	69	0	0	0	0	0	0	0	0
R-Fillet (ft)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R-CL (ft)	21	49	41	49	41	51	72	69	72	69	72	103.5	124.5	103.5	124.5	103.5	124.5	149
Steering Angle (degrees)	50	50	50	50	50	77	57	50	57	50	85	61	50	61	50	76	63	52

Note: 1 ft = 0.305 m

source: FAA AC 150/5300-13B (Table 4-7)

Airport Planning and Design (Antonio A. Trani)

UrginiaTech

Crossover Taxiways (TDG vs.ADG)

Table 4-6. Crossover Taxiways with Direction Reversal Between Taxiways Based on TDG

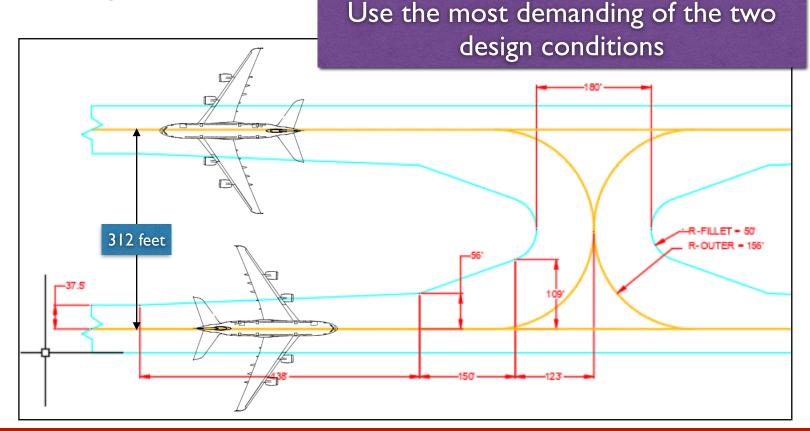
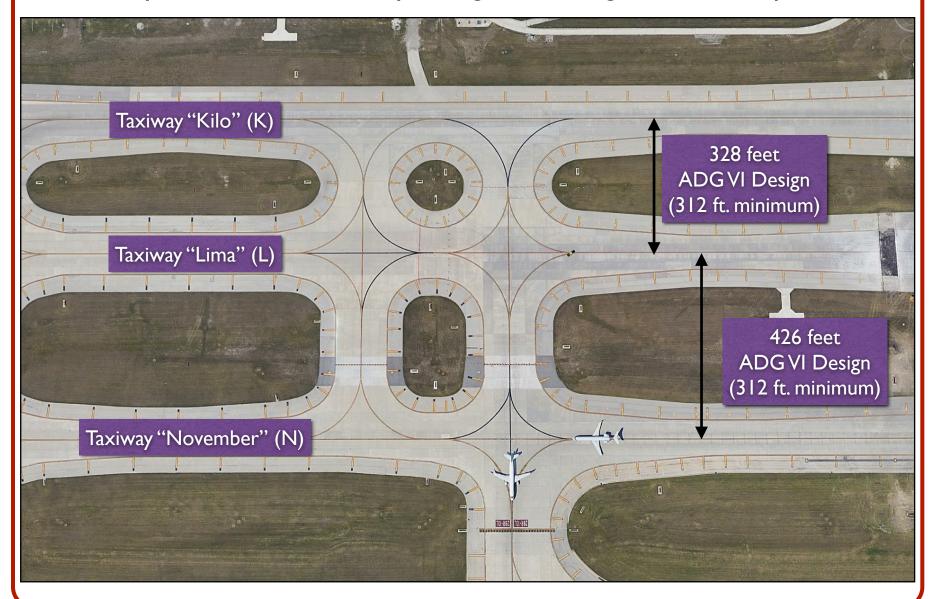

Dimension		TDG 1A 1B 2A 2B 3 4 5									
(See <u>Figure 4-22</u>)	1A 1B 2A 2B 3 4						5	6			
Taxiway Centerline to Centerline Distance	50	100	100	162	162	250	250	312			

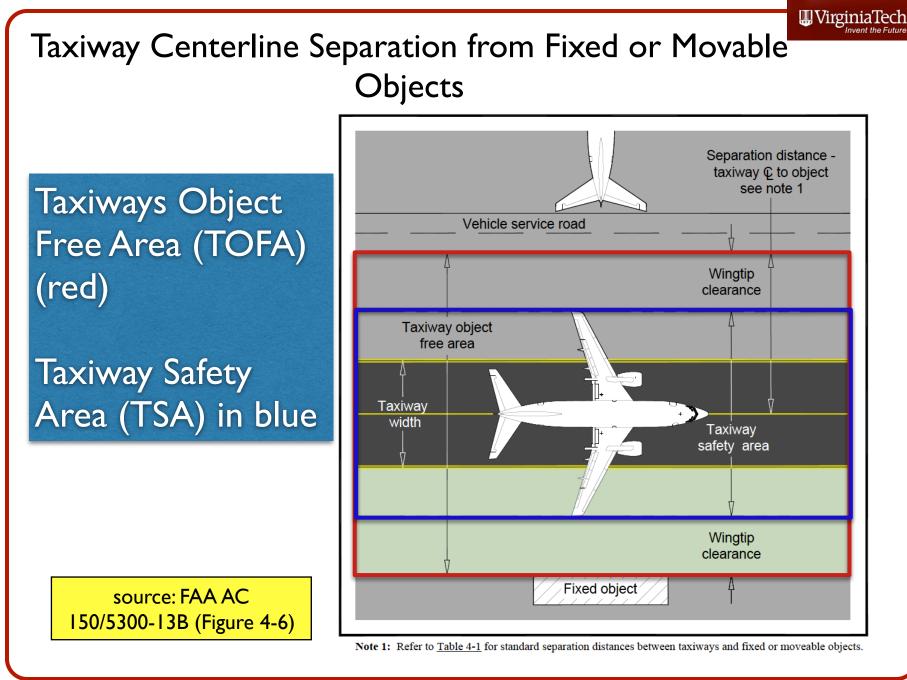
Table 4-7. Crossover Taxiways with Direction Reversal Between Taxiways Based on ADG


D:		TDG																
Dimension	1A	11	В	2.	A		2 B			3		4		4.	5		6	
(see <u>Figure</u> <u>4-23</u>)									1	ADG								
<u></u>	Π	Π	Ш	Π	Ш	Π	Ш	IV	Ш	IV	Ш	IV	V	IV	V	IV	V	VI
Taxiway Centerline to Centerline Distance	70	102	144	102	144	102	144	207	144	207	144	207	249	207	249	207	24	298

Crossover Taxiway Design for A380 (TDG vs. ADG)

- Crossover taxiway distance based on TDG is 312 feet between taxiway centerlines
- Crossover taxiway distance based on ADG is 298 feet between taxiway centerlines

Example Crossover Taxiway Design at Chicago O'Hare Airport



Taxiway Safety Margins are Important for Safe Airport Operations

- The aircraft comes close to the taxiway edge
- FAA taxiway edge safety margin is 14 feet for ADG VI


WirginiaTech

Taxilane Separation from Fixed or Movable Objects from Taxilane (Apron Taxiway)

Taxilanes do have Object Free Areas

> source: FAA AC 150/5300-13B (Figure 4-8)

Note 1: Refer to Table 4-1 for standard separation distances between taxilanes and fixed or moveable objects.

UirginiaTech

Example (Dulles International Airport)

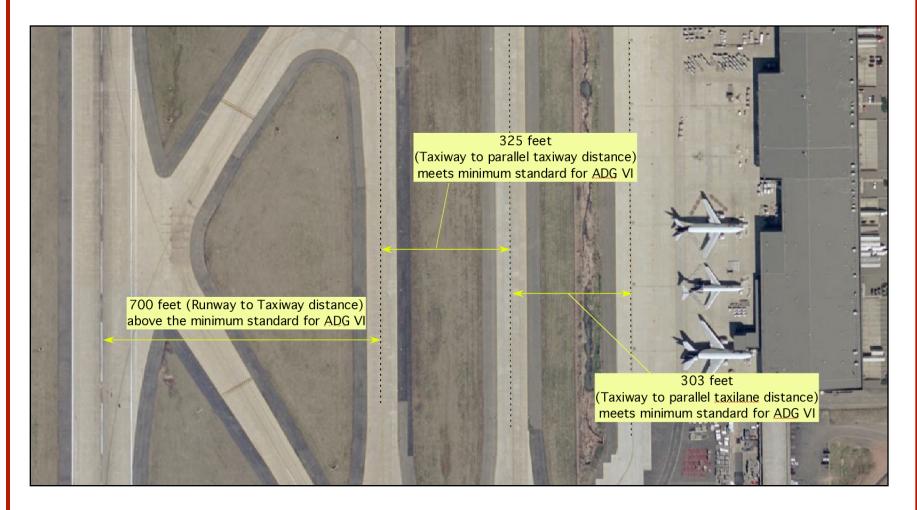
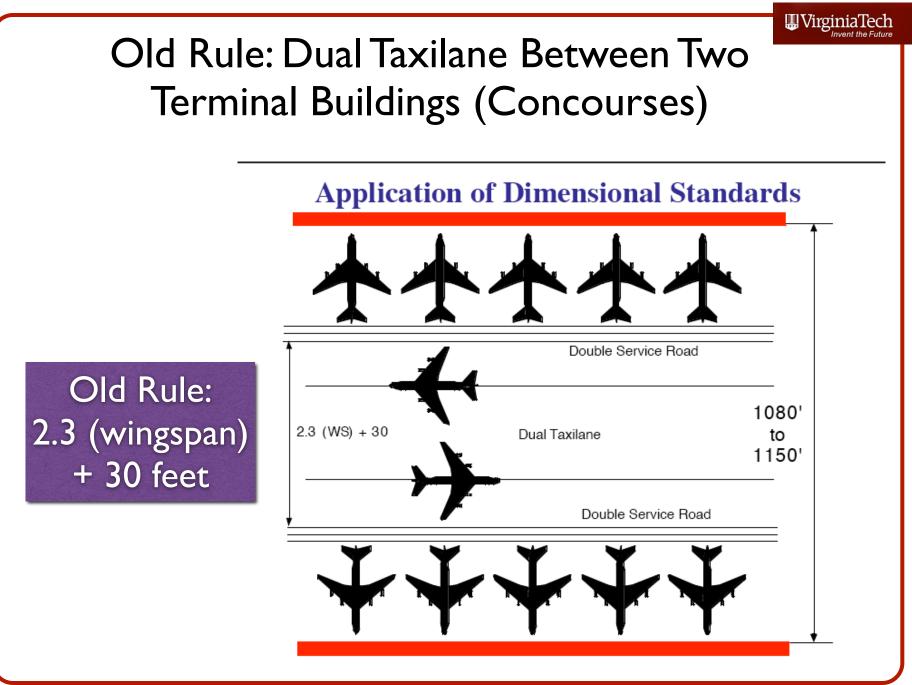
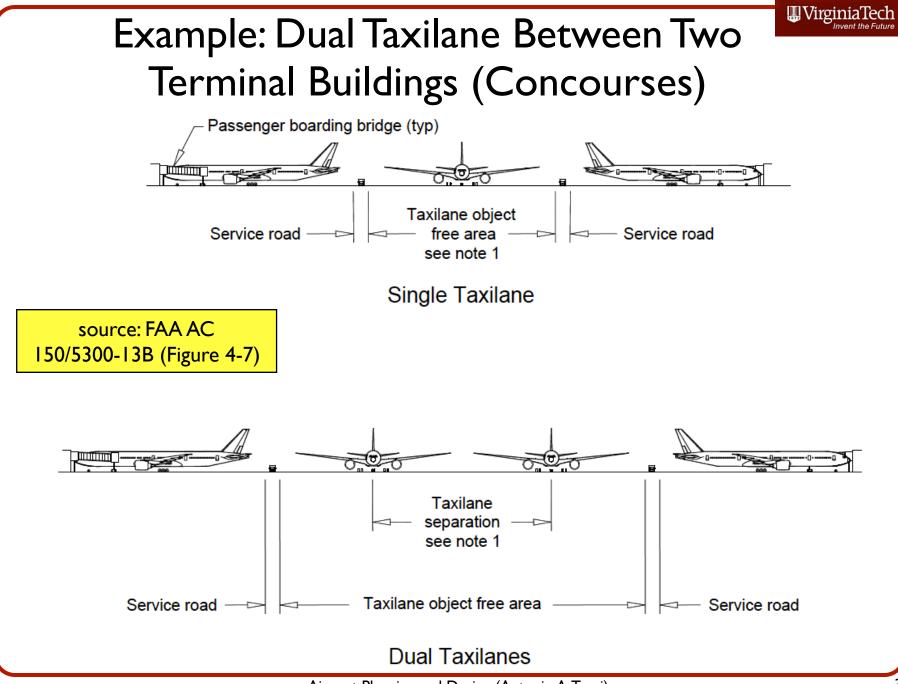


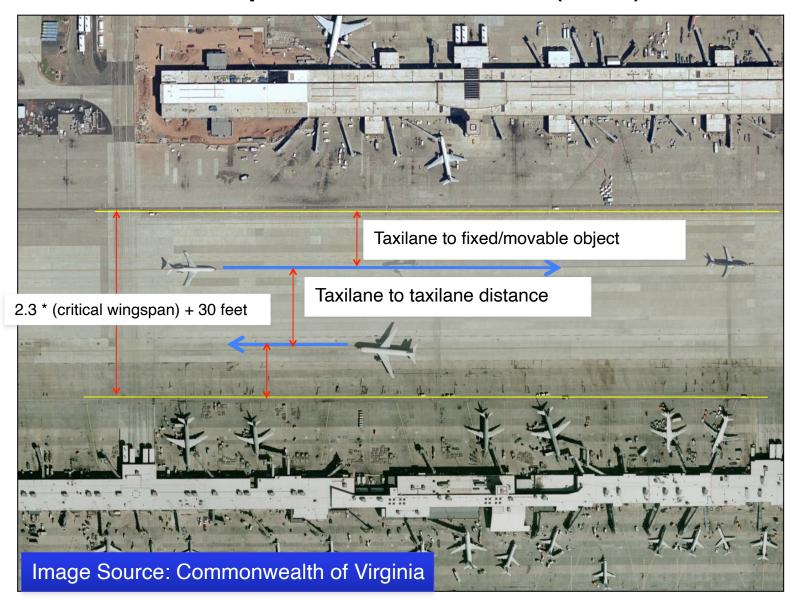
Image Source: U.S. Geological Survey


Rules for Derivation of Taxiway/Taxilane Separation Standards

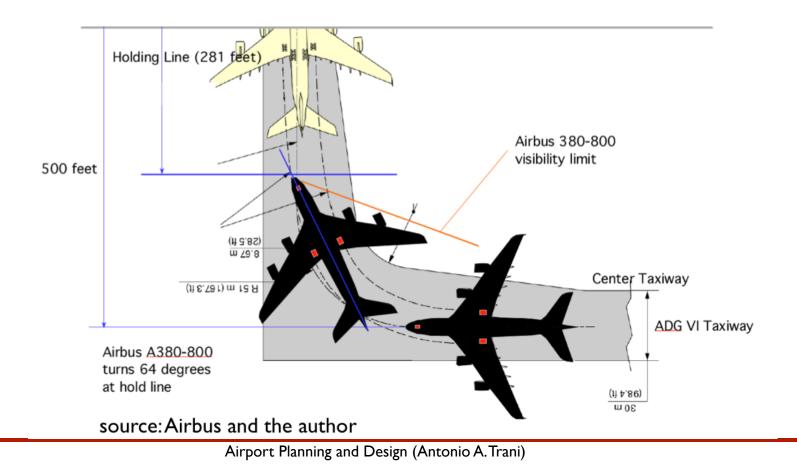

Dimension	Old Rule (until 2021)	New Rule Applies Today
Taxiway centerline to parallel taxiway centerline	1.2 times airplane wingspan plus 10 feet	1.1 times airplane wingspan plus 10 feet
Taxiway centerline to fixed or movable object	0.7 times airplane wingspan plus 10 feet	0.6 times airplane wingspan plus 10 feet
Taxilane centerline to parallel taxilane centerline	1.1 t imes airplane wingspan plus 10 feet	1.075 times airplane wingspan plus 10 feet
Taxilane centerline to fixed or movable object	0.6 times airplane wingspan plus 10 feet	0.575 times airplane wingspan plus 10 feet

Aircraft Rights-of-Way Near Gate Areas

- Dual taxilanes
- 2.3 times airplane wingspan plus 30 feet (10 m)
- Aircraft parked at gates require wingtip to wingtip separations at gates or tie-down areas for safety:
 - 10 ft. (3 m.) for aircraft in groups I and II
 - 15 ft. (5 m.) for group III
 - 20 ft. (6 m.) for group IV
 - 25 ft. (8 m.) for group V
 - 30 ft. (10 m.) for group VI


Source: FAA AC 150/5300-13

Airport Planning and Design (Antonio A.Trani)


Example Dual Taxilane (IAD)

UirginiaTech

Detailed Geometric Design of Taxiway Junctions

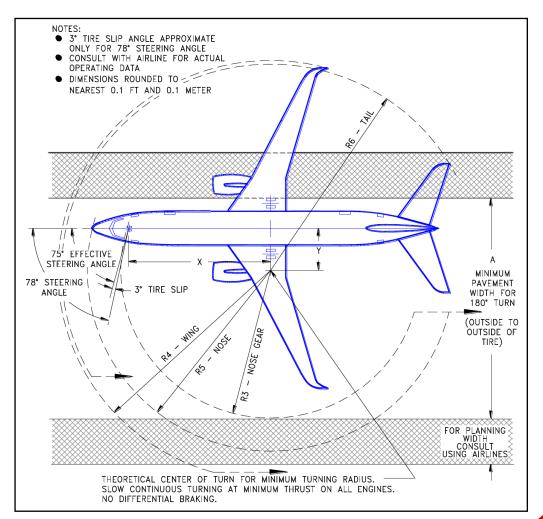
- Aircraft can have long distances between cockpit and main gear
- Main landing gear tracks inside the centerline followed by the nose gear
- Taxiway fillets are needed to provide safety margins in turns

FAA Geometric Design Design Philosophy for Intersections

- Use the cockpit over centerline steering method
- FAA no longer advocates judgmental oversteering
- Cockpit over centerline steering reduces the risk of pavement excursions
- Design taxiway intersections with steering angles to 50 degrees or less

Steering Angle Explanation Modern aircraft nose landing gears are designed to reach steering angles of 70 degrees

Boeing 737-800 (A.Trani)

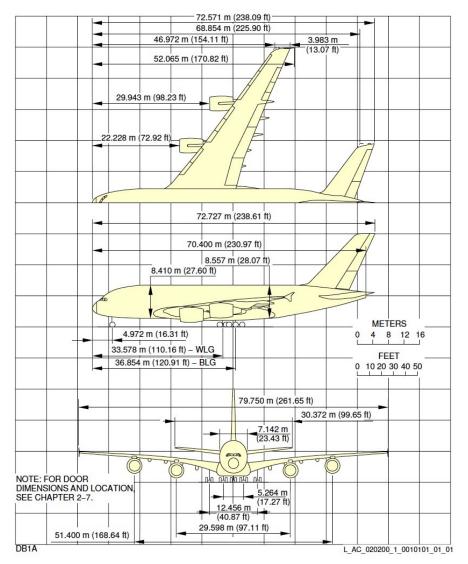

Gulfstream 550 (A.Trani)

Steering Angle Information

A Boeing 737-800 has a maximum steering angle of 78 degrees (75 degrees effective steering angle)

Source: Boeing 737 Airplane Characteristics for Airport Planning (Chapter 4)

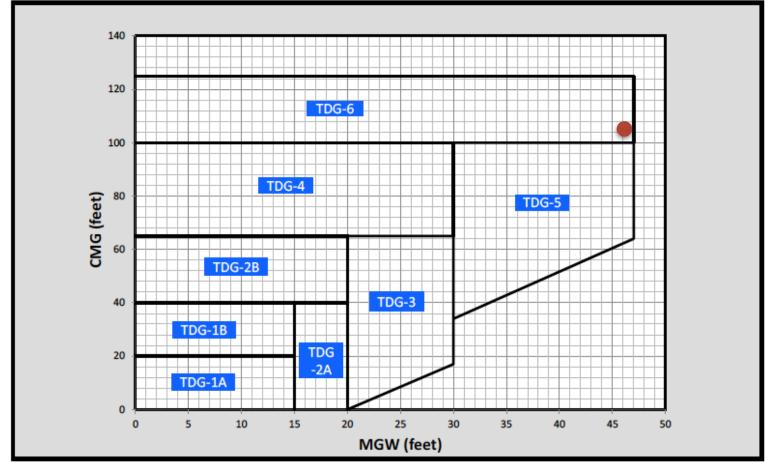
VirginiaTech


nvent the Future

Example : Taxiway-Taxiway Fillet Design for an Airbus A380 (ADG VI, TDG 6)

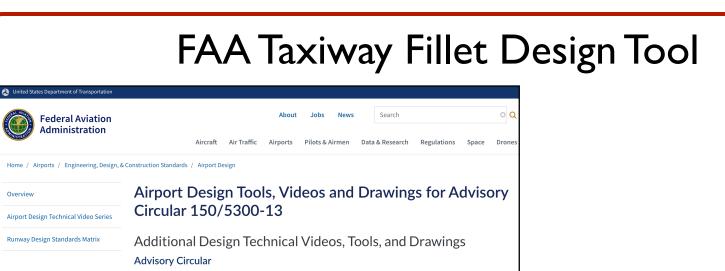
- Design a taxiway-taxiway junction for an Airbus A380 class vehicle using FAA design criteria
- FAA recommends using the cockpit centerline tracking
- Draw the solution to scale and specify the dimensions of the taxiway-taxiway junction
- Compare the solution with the recommendations by Airbus

Example : Taxiway-Taxiway Fillet Design for an Airbus A380



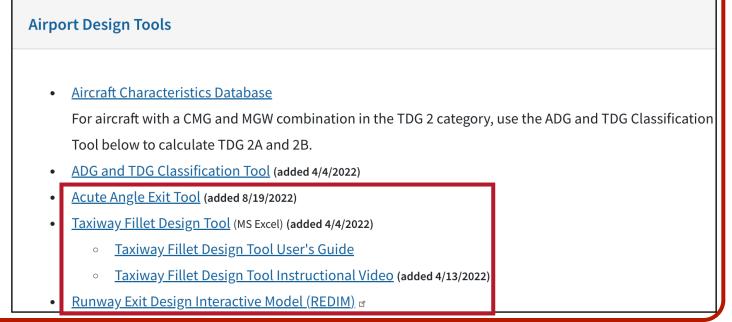
Obtain the critical dimensions for geometric design standards

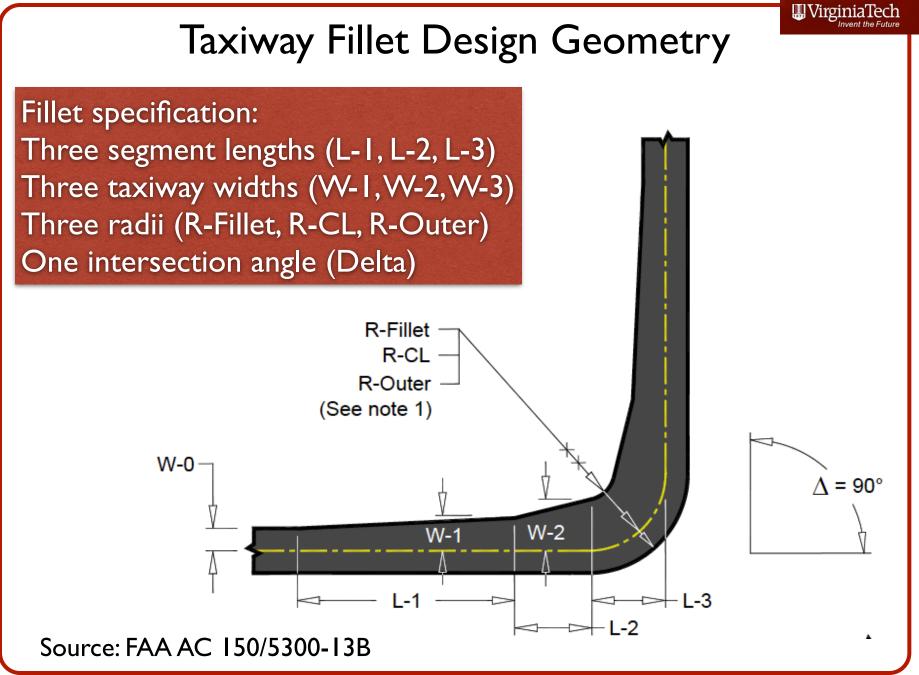
Consult with the aircraft manufacturer data


UrginiaTech

Use Taxiway Design Group 6 for A380

Note: Values in the graph are rounded to the nearest foot. 1 foot = 0.305 meters.


CMG = 104.6 feet and MG width = 47 feet


- AC 150/5300-13 Airport Design
- Runway Design Matrix Tool

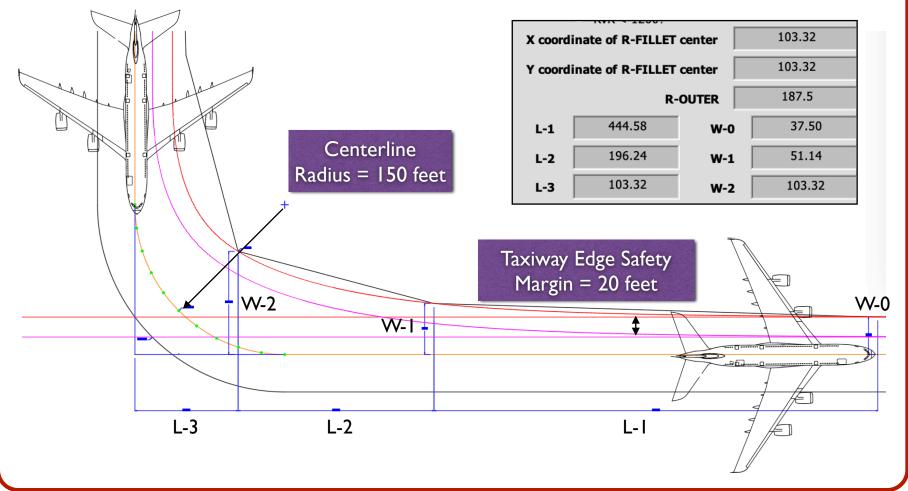
Overview

Source: <u>https://www.faa.gov/airports/engineering/airport_design</u>

III Virginia Tech

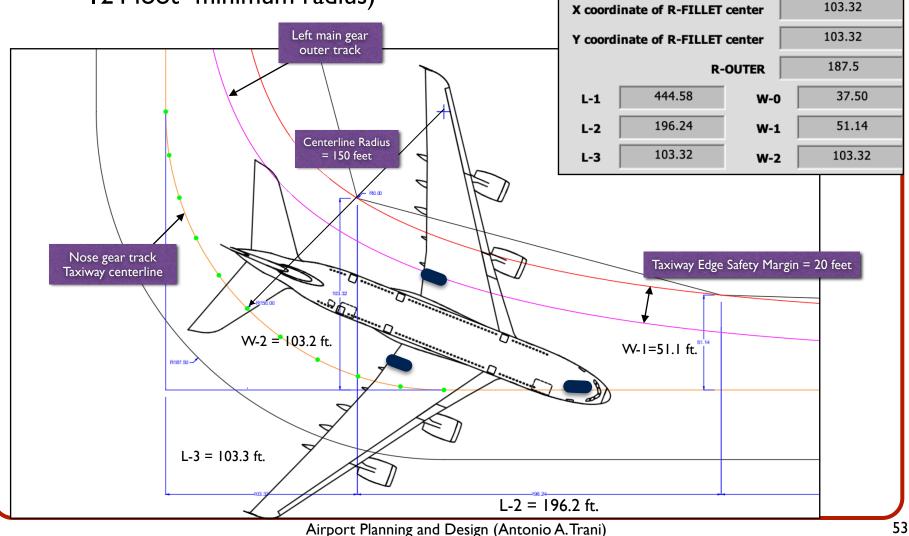
Taxiway Fillet Design Tool (FAA)

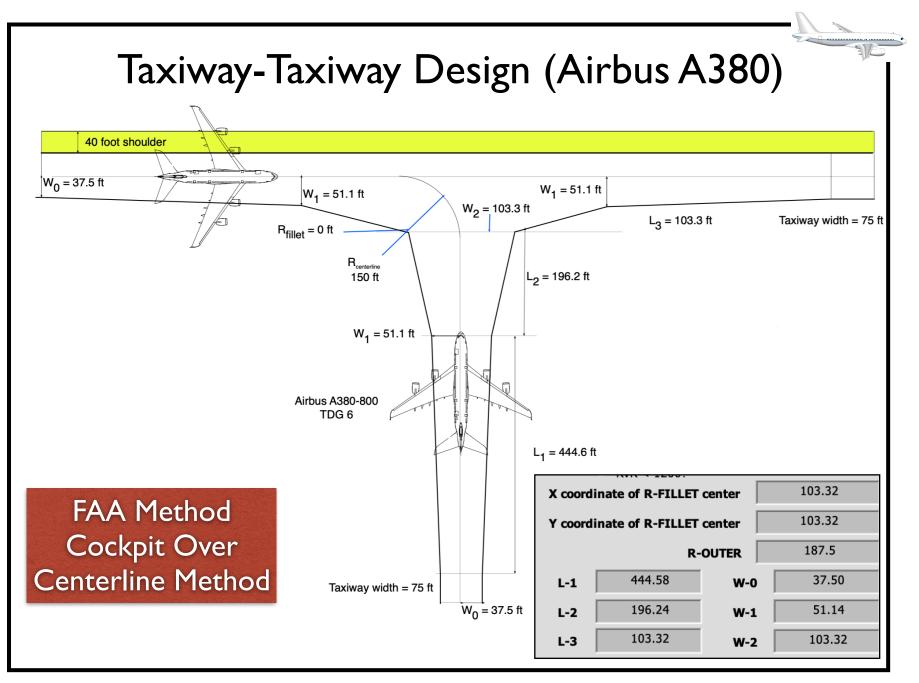
White fields must be provided by the user Program calculates Minimum R-CL, and fillet dimensions

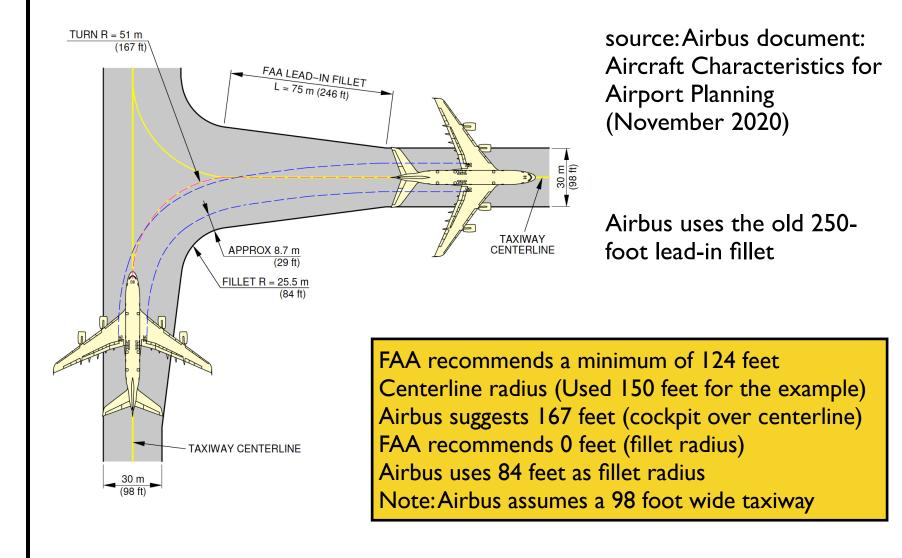

Duo guo m	Taxiway-Fillet-Design-Tool					
Program calculates	Taxiway Fillet Design 1	The R	The R-CL selected will result in a maximum steering angle of 35.9 degrees			
Minimum R-CL	Select TDG then <enter></enter>	Re	Reference 150/5300-13, Airport Design, for additional information			
to meet 50 degree steering angle	СМБ	100	Enter edge light offset then <enter> (Blank for no edge lights)</enter>			
	MGW	47	RVR < 1200?			
	TESM	14	X coordinate of R-FILLET center			89.95
	Taxiway Width	75	Y coordinate of R-FILLET center 89.95			89.95
	Enter delta then <enter></enter>	90		R	-OUTER	187.5
	R-Fillet (default)	0	L-1	311.12	W-0	37.50
Minimum	R-Fillet (if not using default) then <enter></enter>		L-2	136.11	W-1	48.93
centerline radius	Minimum recommended R-CL	92	L-3	89.95	W-2	89.95
(R-CL) is 92 feet	Enter R-CL then <enter></enter>	150	Enter DXF file name:			
			Criteri			
You can design with higher radii	Tool Notes	Design Curve	-	reate XF File		Exit

- Design the fillet for 90-degree intersection for the Airbus A380 (TDG-6)
- In the design use a centerline radius of 150 feet (more than the minimum recommended for design)

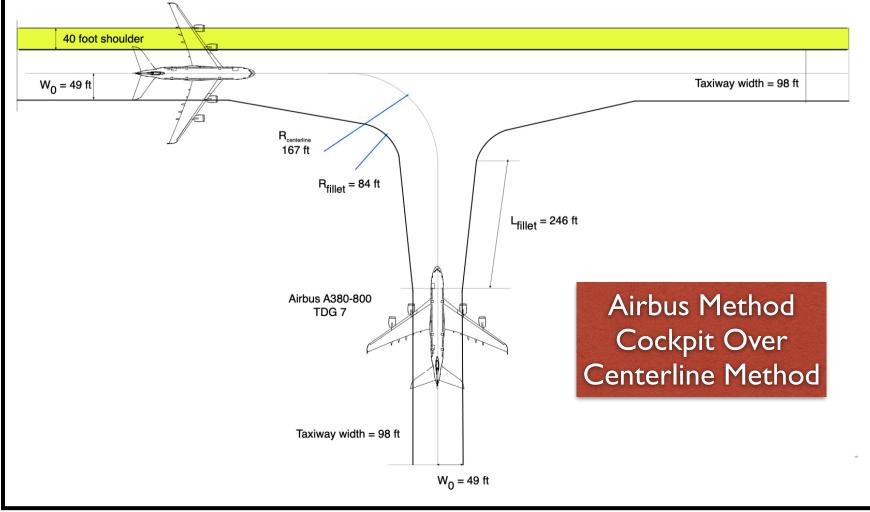
	Construction Taxiway-Fillet-Design-Tool							
	Taxiway Fillet Design Tool			The R-CL selected will result in a maximum steering angle of 44.5 degrees				
	Select TDG then <enter></enter>	Refe	Reference 150/5300-13, Airport Design, for additional information					
	СМБ	135		Enter edge light offset then <enter> (Blank for no edge lights)</enter>				
	MGW 35			RVR < 1200?	_			
	TESM	20	X coordin	X coordinate of R-FILLET center		103.32		
	Taxiway Width	75 Y coordinate of R-FILLET center		103.32				
	Enter delta then <enter></enter>	90		R-OUTER				
	R-Fillet (default)	0	L-1	444.58	W-0	37.50		
	R-Fillet (if not using default) then <enter></enter>		L-2	196.24	W-1	51.14		
	Minimum recommended R-CL	124	L-3	103.32	W-2	103.32		
	Enter R-CL then <enter></enter>	150	Enter DXF file n					
Enter the de		F	,					
CL (note mi 124 fe	hol Notes	Design Curve		eate F File		Exit		

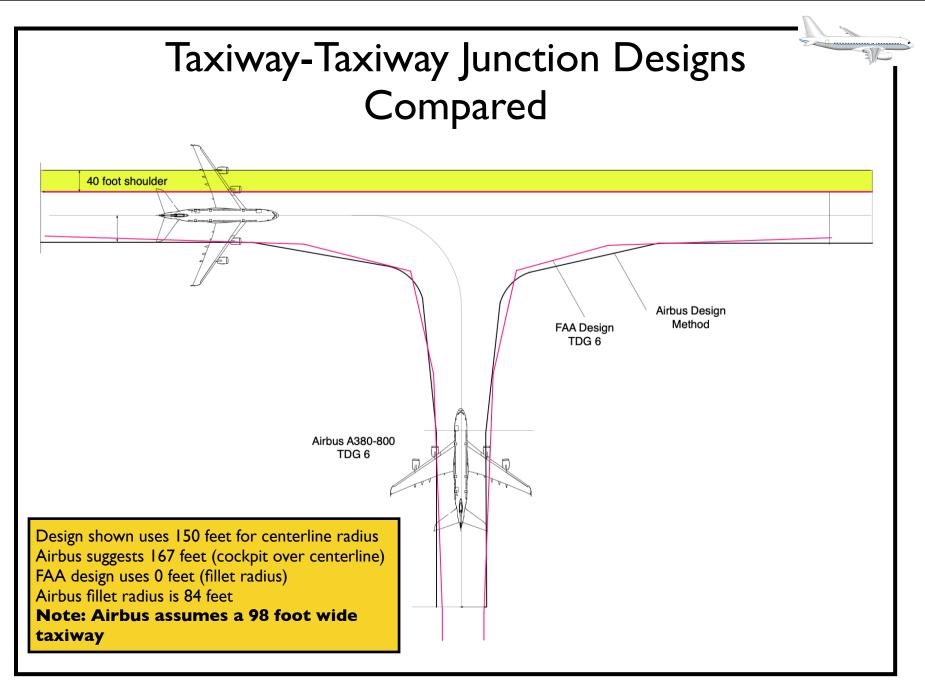

VirginiaTech


- 90-degree taxiway junction, Airbus A380 (TDG-6)
- Taxiway centerline radius of 150 feet (instead of the 124 foot- minimum radius)

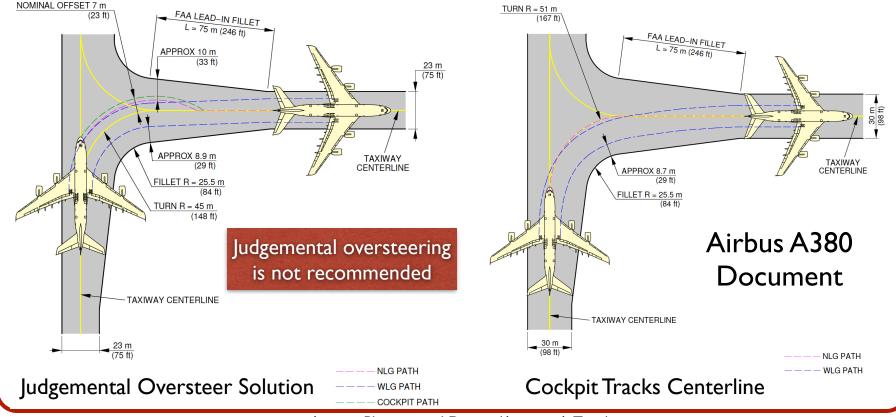

UrginiaTech

- 90-degree taxiway junction, Airbus A380 (TDG-6)
- Taxiway centerline radius of 150 feet (instead of the 124 foot- minimum radius)



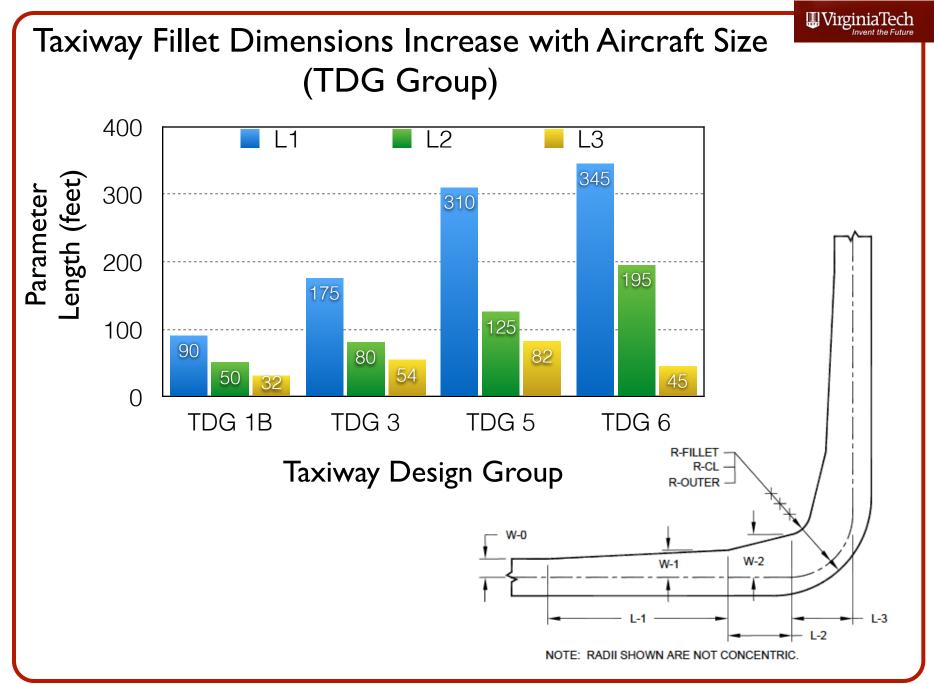

Verification with Aircraft Manufacturer Data

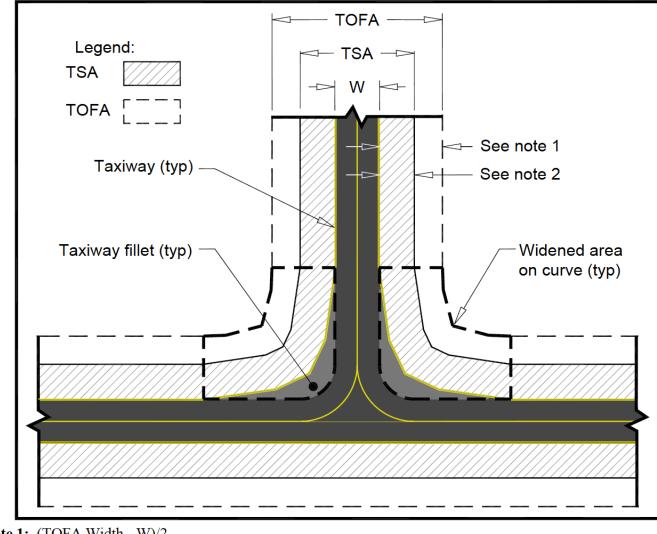
Taxiway-Taxiway Junction Design for Airbus A380 (Airbus Fillet Design in Airport Planning Documents)



CEE 4674 - Airport Planning and Design (copyright A. Trani)

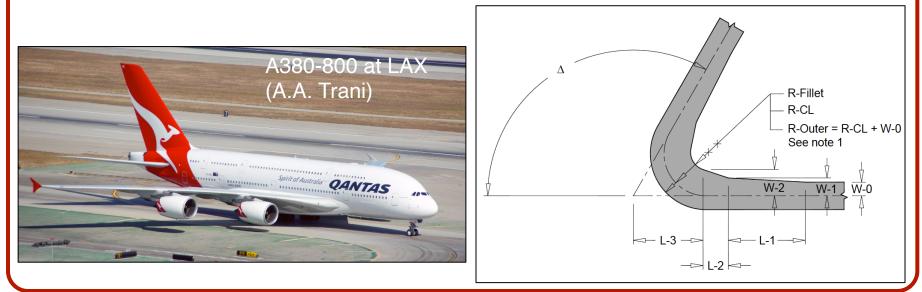
Consult with the Aircraft Manufacturer to Verify your Geometric Design Solution


- These documents contain example taxiway-taxiway and runwaytaxiway designs to help you compare your analysis
- See Chapter 4 (Section 4) on both Airbus and Boeing documents


🛄 Virginia lech

UirginiaTech Minimum Centerline Radii Suggested by FAA Taxiway Fillet Design Tool (90 Degree Taxiway Turn) 130 124 108 Radius (feet) 92 92 87 65 Centerline 60 60 43 40 22 (TDG 1B TDG 2B TDG 3 TDG 4 TDG 5 TDG 6 Taxiway Design Group

Airport Planning and Design (Antonio A. Trani)

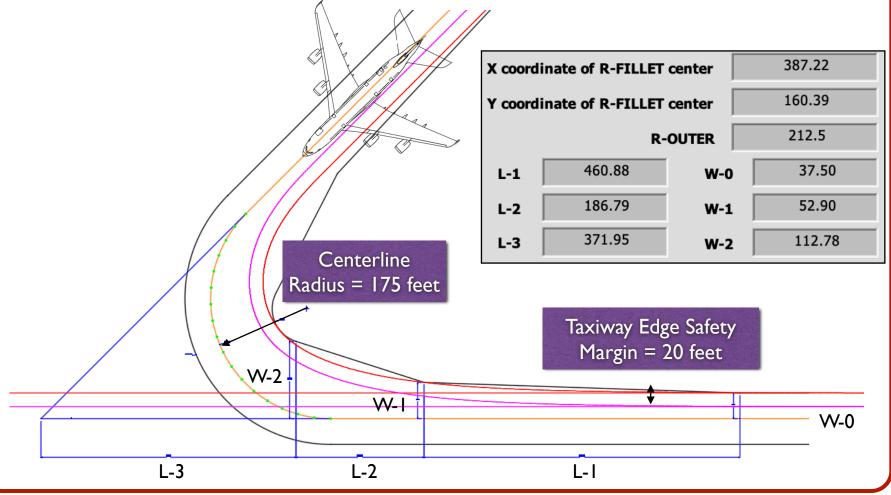

Taxiway Safety Area and Taxiway OFA

Note 1: (TOFA Width - W)/2 Note 2: (TSA Width - W)/2 Note 3: See paragraph <u>4.5.3.1</u> and paragraph <u>4.5.4.1</u> for increased width of TSA and TOFA, respectively. UirginiaTech

Example : Taxiway-Taxiway Fillet Design for an Airbus A380 (ADG VI, TDG 6)

- Design a taxiway-taxiway junction for an Airbus A380 class vehicle using FAA design criteria
- Taxiway-Taxiway angle (delta) 135 degrees
- Draw the solution to scale and specify the dimensions of the taxiway-taxiway junction

Airport Planning and Design (Antonio A. Trani)


Taxiway Design Tool (FAA)

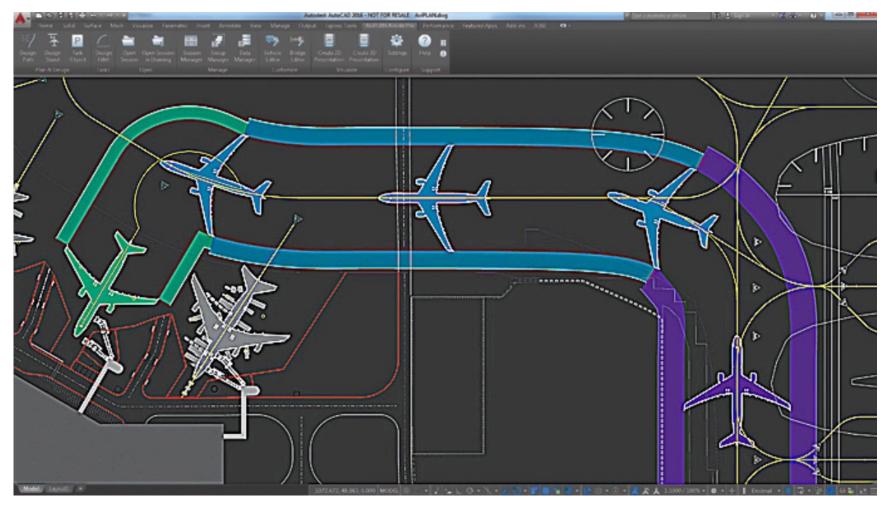
- 135 degree intersection for the Airbus A380 (TDG-6)
- In the design use a centerline radius of 175 feet (more than the minimum recommended for design)

	Taxiway-Fillet-Design-Tool						
Taxiway Fillet Design Tool			DXF file created and located at				
Select TDG then <enter></enter>	6	•	Reference 150/5300-13, Airport Design, for additional information				
СМБ	135		Enter edge light offset then <enter> (Blank for no edge lights)</enter>				
MGW	35		RVR < 1200?				
TESM	20		X coordinate of R-FILLET center 387.22				
Taxiway Width	75		Y coordinate of R-FILLET center 160.39				
Enter delta then <enter></enter>	135			R-	OUTER	212.5	
R-Fillet (default)	50		L-1	460.88	W-0	37.50	
R-Fillet (if not using default)			L-2	186.79	W-1	52.90	
Minimum recommended R-CL	157		L-3	371.95	W-2	112.78	
Enter R-CL then <enter></enter>	175		Enter DXF file name:				

III Virginia Tech

- 135-degree taxiway junction, Airbus A380 (TDG-6)
- Taxiway centerline radius of 175 feet (instead of the 157 foot- minimum radius)

UirginiaTech


Sample **Old** Taxiway Fillet Design

Use of Specialized Software

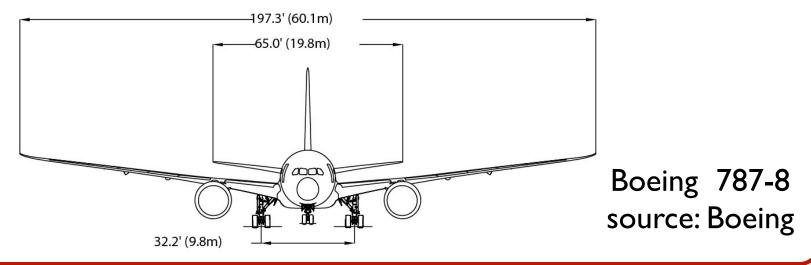
- Several computer design software have been developed to facilitate geometric design of airports
- AviPLAN Turn and AviPlan Turn Pro are a family of products designed to help designers simulate and verify airport designs
- Software are add-ons to AutoCad
- Designers select a path to be tested and the software performs a kinematic simulation to verify the design

Gate Parking Maneuver Simulated in AviPLAN Turn Pro

source: Transoft Solutions

UirginiaTech

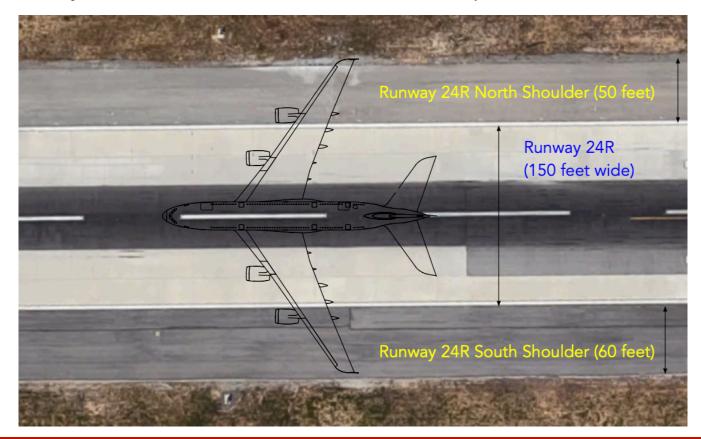
UirginiaTech


3D Visualization in AviPLAN Turn Pro

Airport Planning and Design (Antonio A. Trani)

Other Important Sources to Help Your do Airport Geometric Design

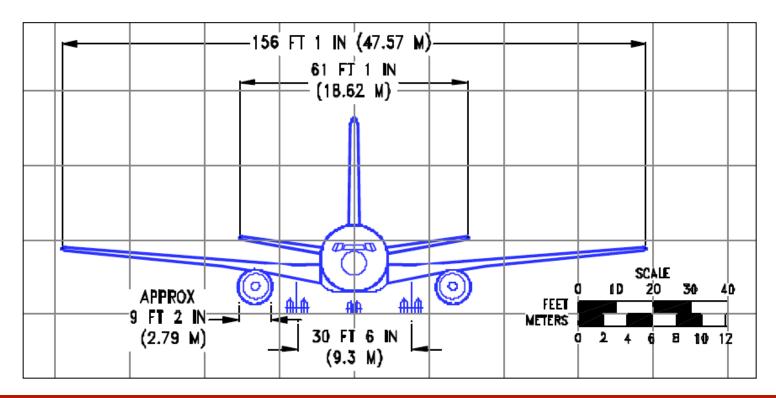
- Consult aircraft manufacturer web sites to obtain 3D drawings of aircraft
- Airbus aircraft (<u>http://www.airbus.com/support/maintenance-engineering/technical-data/autocad-3-view-drawings-of-airbus-aircraft/</u>)
- Boeing aircraft (<u>http://www.boeing.com/commercial/airports/</u> <u>3_view.page</u>)

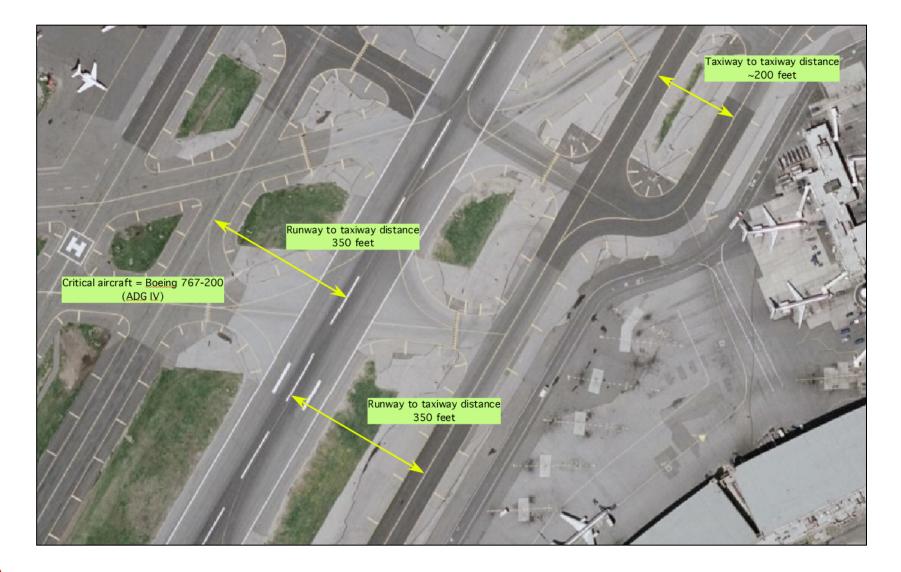

Legacy Airports Modification of Standards

Legacy Design Standards and Old Airports

- Many airports in the U.S. were designed and constructed before the current design standards were developed
- Consequently many times we find that current geometric design standards are not met
- These airports require Modification of Standards (MOS)
- MOS are approved by FAA on a one-to-one basis
- For example, the Airbus A380 requires a 200 foot wide runway (see ADG VI standards)
- The FAA and ICAO have provided a MOS procedure whereby the A380 can operate from 150 foot runways with 50 foot stabilized shoulders

Example: MOS at LAX Runway 24R


- Standard width for ADG VI is 200 feet. Shoulder width is 40 feet.
- MOS allows Airbus A380 landings on runway 24R (150-foot wide runway with 50/60 foot shoulder widths)


UirginiaTech

Example of a Legacy Airport The Following Example Applies to LGA

- Delta Airlines operates Boeing 767-300 into LGA
- The critical aircraft wingspan is 156.08 feet (ADG IV)

Current Situation (LGA)

Runway Design Standards (Boeing 767 D-IV)

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		C/D/E - IV			
ITEM	DIM ¹	VISIBILITY MINIMUMS			
		Visual	Not Lower than	Not Lower than	Lower than
			1 mile	3/4 mile	3/4 mile
RUNWAY SEPARATION					
Runway centerline to:					
Parallel runway centerline	H	Refer to paragraph <u>316</u>			
Holding Position ^{8,9}		250 ft	250 ft	250 ft	250 ft
Parallel taxiway/taxilane centerline ²	D	400 ft	400 ft	400 ft	400 ft
Aircraft parking area	G	500 ft	500 ft	500 ft	500 ft
Helicopter touchdown pad		Refer to <u>AC 150/5390-2</u>			

Required runway to taxiway = 400 feet Available runway to taxiway = 350 feet A Modification of Standard is needed from the FAA

Sample Modification of Standards (MOS)

- Taxiway centerline to parallel taxiway/taxilane centerline require 1.2 times airplane wingspan plus 10 feet (3 m)
- Required for limiting ADG IV aircraft (171 foot wingspan) = 215 feet
- Rule for Modification of Standards (MOS) = 1.2 * critical wingspan + 10 feet
- Distance = 2 (156.08) + 10 feet = 197 feet
- Airport has 200 feet between parallel taxiways
- Boeing 767-300 was operated from LGA some years ago

Runway Surface Gradient Design Standards

Runway and Surface Gradients

- Located in FAA AC 150/5300-13B, Chapter 3
- Includes vertical profile limits for runways and taxiways
- Important to maintain line-of-sight in the operations
- Pilot to pilot
- ATC controller to aircraft

Surface Gradient Standards Chapter 3 in AC 150/5300-13B

3.16.1.2 Aircraft Approach Categories C, D, and E. Refer to Figure 3-33 and the following, for standards applicable to Aircraft

Refer to <u>Figure 3-33</u> and the following, for standards applicable to Aircraft Approach Categories C, D, and E.

- The maximum allowable longitudinal grade is ±1.50 percent; however, longitudinal grades exceeding ±0.80 percent are not acceptable within the lesser of the following criteria:
 - a. in the first and last quarter of the physical runway length, or
 - the first and last 2,500 feet (762 m) of the physical runway length.
- The maximum allowable grade change is ±1.50 percent; however, runway grade changes are not acceptable within the lesser of the following criteria:
 - a. the first and last quarter of the physical runway length, or
 - b. the first and last 2,500 feet (762 m) of the physical runway length.
- Vertical curves for longitudinal grade changes are parabolic. The length of the vertical curve is a minimum of 1,000 feet (305 m) for each 1.0 percent of change.

Longitudinal Runway Grades

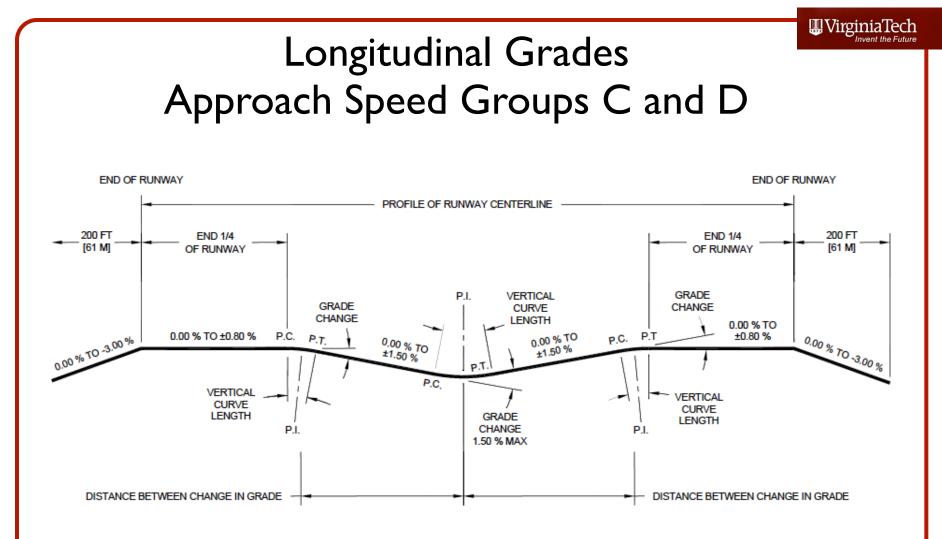
- 1.5 % maximum for runways serving transport aircraft
 - 0.8% maximum in the first and last quarter of the runway (or first and last 2500 feet of the runway length)
- Up to 2% for general utility runways (Groups A and B)
- I.5 % transverse from crest (groups C, D. and E)
- Maximum gradient change 1.5 % for groups C,D, and E. Use 2% for groups A and B
- Vertical curve length (1000 x grade change in feet for groups C, D, and E). Use 300 x grade change for groups A and B.
- Minimum distance between points of intersection (1000 ft. for each 1% grade change for groups C,D, and E)

UirginiaTech Longitudinal Grades Approach Speed Groups A and B END OF RUNWAY END OF RUNWAY 200 FT 200 FT RUNWAY VERTICAL PROFILE AT CENTERLINE [61 M] [61 M] P.C. P.T. VERTICAL 0.00 % TO `3.00 % 0.00 % TO ±2.00 % CURVE LENGTH GRADE 0.00 % TO ±2.00% CHANGE 0.00 % TO ±2.00 % 0.00% 70 GRADE CHANGE VERTICAL CURVE LENGTH P.C. P.T.

Source: FAA AC 5300-13B

P.I.

NOTES:


1. LENGTH OF VERTICAL CURVES WILL NOT BE LESS THAN 300 FT [91 M] FOR EACH 1% GRADE CHANGE, EXCEPT THAT NO VERTICAL CURVE WILL BE REQUIRED WHEN GRADE CHANGE IS LESS THAN 0.4%.

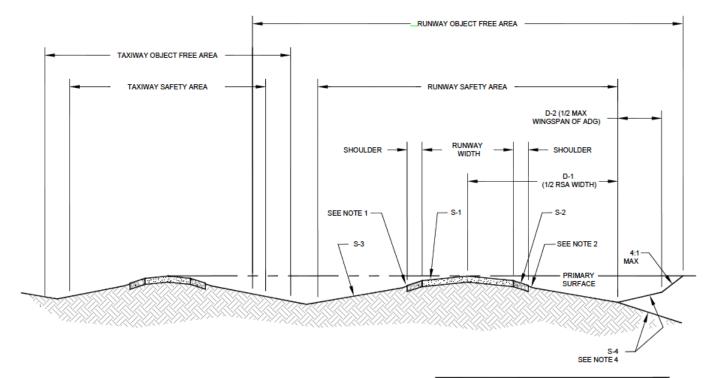
SEE NOTE 3

2. MAXIMUM GRADE CHANGE AT VERTICAL CURVES SHOULD NOT EXCEED 2.00 %.

P.I.

3. MINIMUM DISTANCE BETWEEN POINTS OF VERTICAL INTERSECTION SHOULD BE 250 FT [76 M] x SUM OF ABSOLUTE GRADE CHANGES.

Source: FAA AC 5300-13 – Figure 3-22


NOTES:

1. MINIMUM LENGTH OF VERTICAL CURVES = 1,000 FT [305 M] x GRADE CHANGE (IN %).

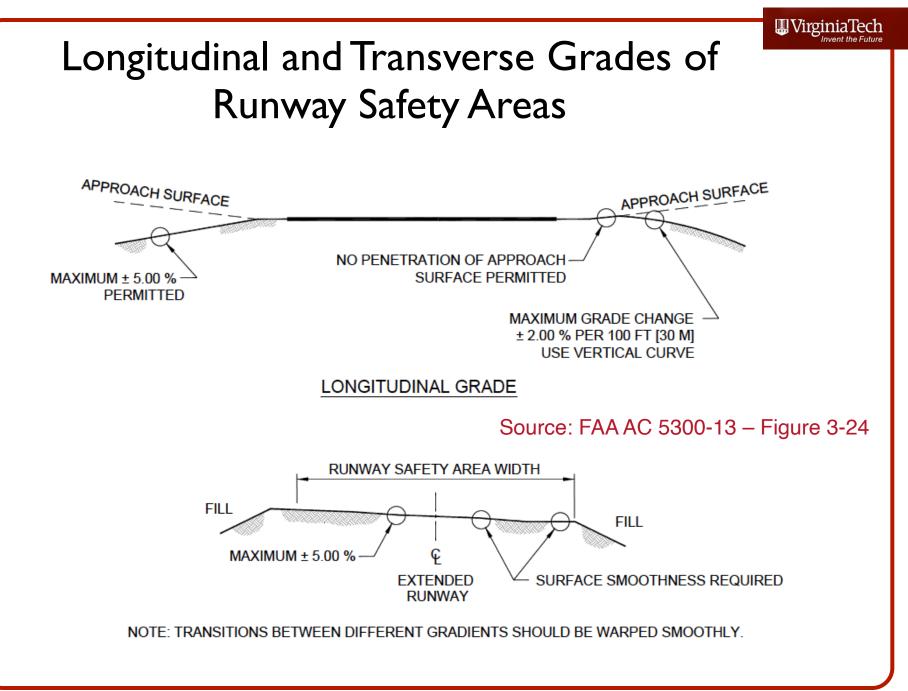
2. THE MINIMUM VERTICAL CURVE LENGTH IS EQUAL TO 1,000 FT [305 M] x GRADE CHANGE.

3. THE MINIMUM DISTANCE BETWEEN POINTS OF VERTICAL INTERSECTION MUST BE 1,000 FT [305 M] × SUM OF THE ABSOLUTE GRADE CHANGES.

Transverse Grades for Approach Speed Groups A/B and C/D/E

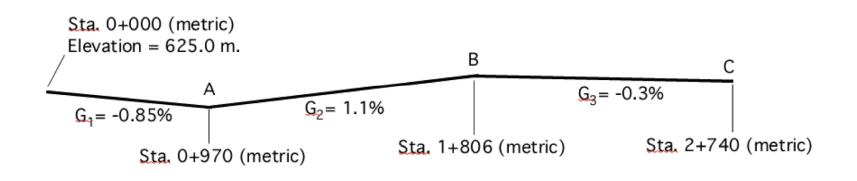
NOTES:

- 1. CONSTRUCT A 1.5 IN [4 cm] DROP BETWEEN PAVED AND UNPAVED SURFACES.
- MAINTAIN A -5.0 % GRADE FOR 10 FEET OF UNPAVED SURFACE ADJACENT TO THE PAVED SURFACE.
- 3. S-2 APPLIES WHEN SHOULDERS ARE PROVIDED.
- S4 SHOULD BE 0% OR NEGATIVE (UNLIMITED) TO THE EDGE OF THE RUNWAY OFA IF PRACTICABLE. ALLOWABLE POSITIVE SLOPE BASED ON AIRPLANE DESIGN GROUP.
- 5. REFER TO FIGURE 4-35 FOR TAXIWAY TRANSVERSE GRADES.


APPROACH CATEGORY	A & B	C, D, AND E
S-1	1.0% TO 2.0%	1.0% TO 1.5%
S-2 (≥S-1)	1.5% TO 5.0%	1.5% TO 5.0%
S-3	1.5% TO 5.0%	1.5% TO 3.0%

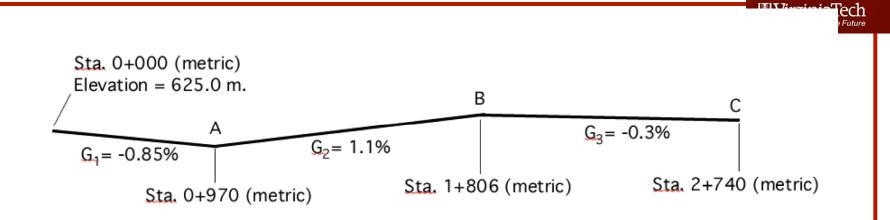
ADG	1	Ш	Ξ	IV	v	VI
D-1	SEE TABLE 3-8					
D-2	25	40	59	86	107	131
S-4 (MAXIMUM)	8:1		10:1		16:1	

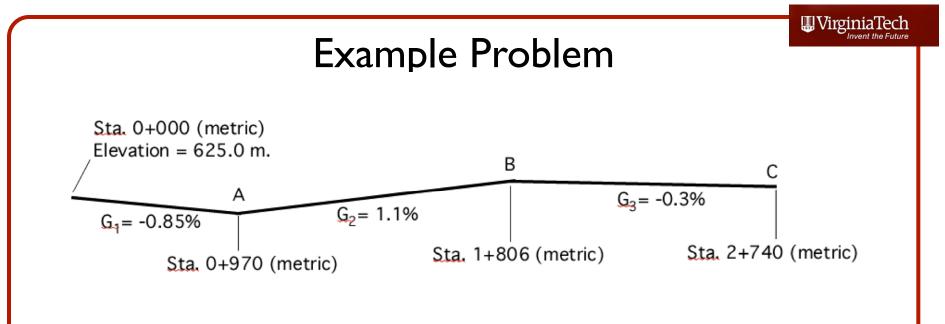
Source: FAA AC 5300-13 – Figure 3-23


UirginiaTech

Invent the Future

Example Problem


- You are conducting a study for an existing airport. The airport wants to handle air carrier operations with airlines flying the Canadair CRJ-700 aircraft (regional jet)
- Determine the suitability of the runway to conduct air carrier operations. If the runway is not suitable for carrier operations suggest modifications to do it


Example Problem: Solution (1)

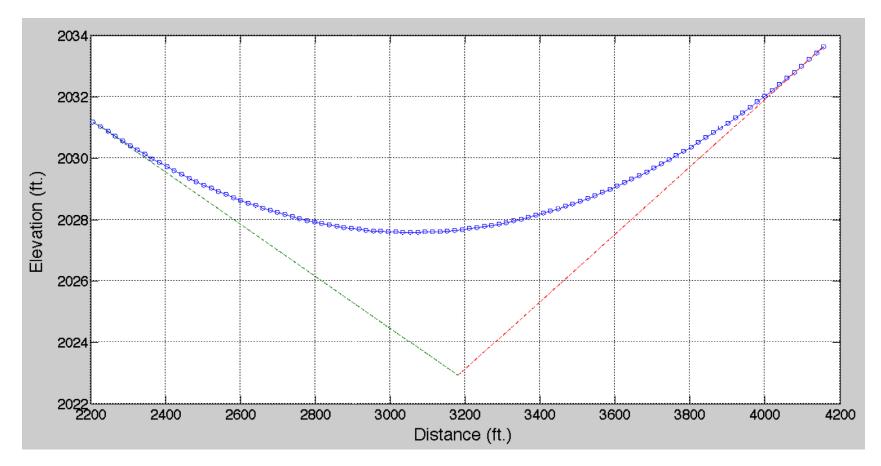
- The Bombardier CRJ-700 is an interesting aircraft because is a boundary case between Approach speeds B and C.The aircraft has the following geometric characteristics:
- Table I. Bombardier CRJ-700 Information (source: Bombardier Aircraft).

External:		
Length overall	106 ft 8 in	32.51 m
Wingspan	76 ft 3 in	23.24 m
Wing area (net)	760 ft ²	70.61 m ²

- The maximum grade allowed is 1.5%. The runway satisfies this criteria.
- The maximum grade change is 1.5%. This criterion is violated at point A.
- The required 0.8% grade for the first 1/4 of the runway is not met by the runway.
- The transitional curve lengths are 1,985 feet for point A and 1,400 for point B

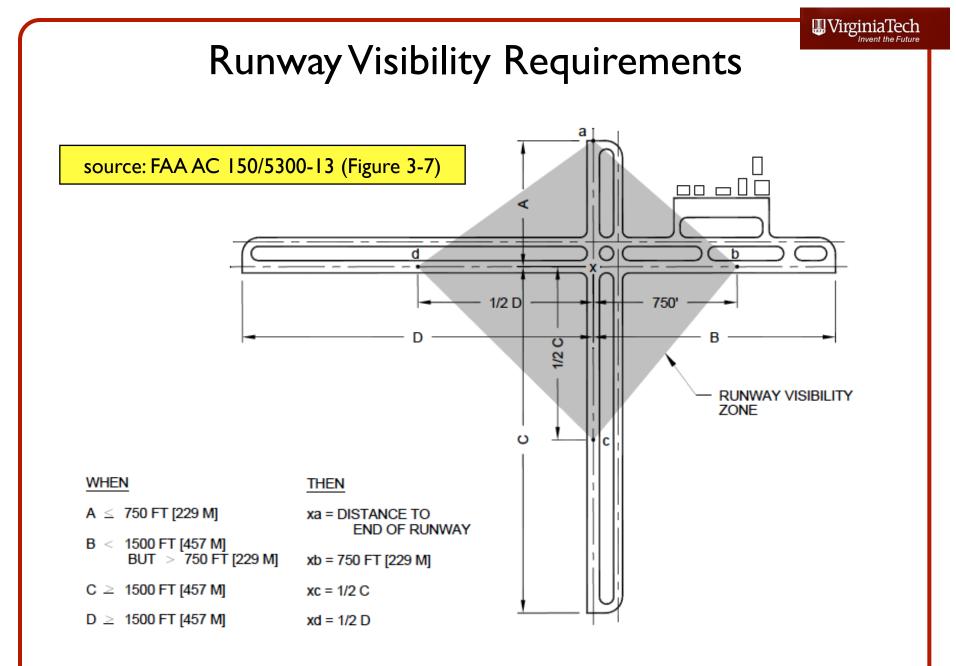
• Design the two transition curves at points A and B in the vertical profile shown in the figure. Find the curve length and the elevation of the points on the transition curve at points A and B.

Sample Matlab Code

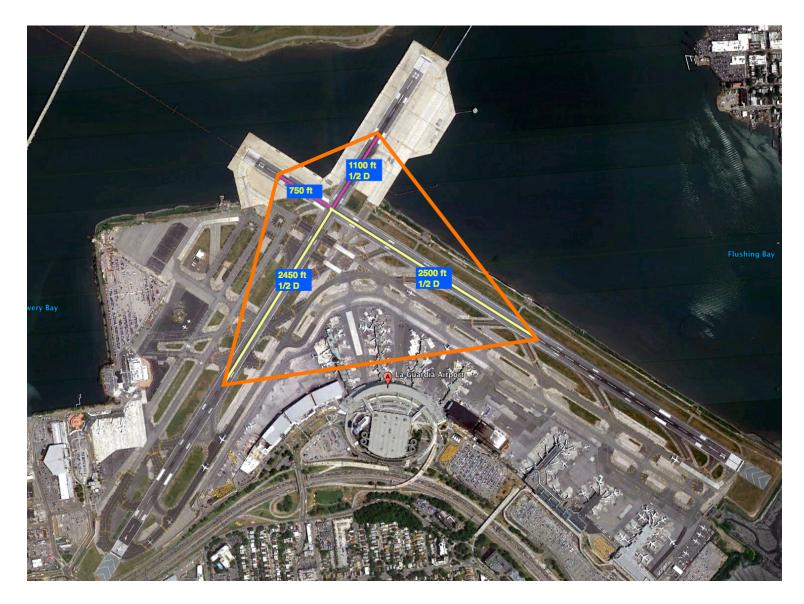

 The equation of a symmetric parabola used as transition curve is given by the following Matlab equations:

- % GI = grade of first tangent (%)
- % G2 = grade of second tangent (%)
- % L = length of transition curve (feet)
- % x = station along the horizontal axis defining the transition curve

Vertical Curve Solution for Point A


- The transition curve with point of intersection at A (1950 feet long) is shown below
- The Point of Intersection (PI) (point A is located 2207 feet from the runway threshold)
- This is obtained as 970 meters (3182 feet) minus half of the curve length (1950 feet)
- The elevation of the curve is 2050 feet minus the drop in runway elevation between the runway threshold and the point of the curve (0.85/100 * 2207 feet)
- The elevation of the Point of the Vertical Curve is 2031.2 feet.

Vertical Curve Solution



Line of Sight Standards (Paragraph 418 in FAA AC 150/5300-13)

- Along runways
 - Two points 5 feet above the runway should be mutually visible for the entire runway
- Between intersecting runways
 - Two points 5 feet above the runway should be mutually visible inside the runway visibility zone (polygon)
 - Three distance rules are used in the creation of the visibility zone: 1) < 750 feet, 2) 750-1500 feet and 3)
 >1500 feet
 - See diagram (next slide taken from FAA AC 5300-13)

Runway Visibility Polygon (LGA)

UirginiaTech