CEE 4674 Airport Planning and Design

Geometric Design: Part 1

Dr. Antonio A. Trani
Professor of Civil Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia

Organization of this Presentation

- Review of geometric design standards
- Runway-runway separation standards
- Runway-taxiway separations
- Taxiway and taxilanes
- Runway exit types and kinematic model application
- Runway exit locations

Taxiway and Runway Design Distances

- Source of information: FAA AC 5300-I3B Chapters 3,4 and Appendix G (Tables)
- Dictated by safety analyses
- Provide sufficient space for expansion, and safe and efficient movement of aircraft
- For regular aircraft (those than can be classified according to the FAA design standard) use Tables

Where do I find the Runway and Taxiway Geometric Design Standards?

- Runway design standards (Chapter 3)
- Runway design concepts (All Chapter 3)
- Runway gradients (Section 3.16)
- Taxiway and taxilane design standards (Chapter 4)
- Taxiway width (Section 4.4 and Table 4-2)
- Taxiway clearance requirements (Section 4.5)
- Parallel taxiways (Table 4-I) etc.
- Appendix G or use the FAA runway design standards matrix (web)

Impacts on Runway Design Standards

- Runway and taxiway dimensional standards for aircraft avoid possible foreign object damage to the engines

```
ADG VI
Runway width = 200 feet
Runway shoulder = 40 feet
Runway shoulder \(=40\) feet
```

Airbus A380
Airbus A380

Runway Shoulder	Runway	Runway Shoulder
40 feet $(12.2$ meters)		

261.65 feet (79.75 meters)

Impacts on Taxiway Design Standards

- Taxiway dimensional standards for aircraft avoid possible foreign object damage to the engines

```
TDG }
Taxiway width = 75 feet
Taxiway shoulder = 40 feet
(4 engine aircraft)
```

Taxiway Shoulder	Taxiway	Taxiway Shoulder
40 feet $(12.2$ meters $)$	75 feet (22.9 meters)	

261.65 feet (79.75 meters)

Sample Airport to Learn Design Standards

Runway Design Standards (Appendix G)

- Quick runway geometric design dimensions are included in tables of Appendix G of FAA AC I50/5300-I3B
- Alternatively: use the FAA Runway Design Standards Matrix Tool

Table G-8. Runway Design Standards Matrix, C/D/E-II

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		C/D/E - II			
ITEM	$\underset{1}{\mathrm{DIM}}$	VISIBILITY MINIMUMS			
		Visual	Not Lower than 1 mile	Not Lower than 3/4 mile	$\begin{gathered} \text { Lower than } \\ 3 / 4 \text { mile } \end{gathered}$
RUNWAY DESIGN					
Runway Length	A		Refer to paragr	raphs 3.3 and 3.7	
Runway Width	B	100 ft	100 ft	100 ft	100 ft
Shoulder Width		10 ft	10 ft	10 ft	10 ft
Blast Pad Width		120 ft	120 ft	120 ft	120 ft
Blast Pad Length		150 ft	150 ft	150 ft	150 ft
Crosswind Component		16 knots	16 knots	16 knots	16 knots

FAA Runway Design Standards Matrix Tool

Runway Design Standards Matrices Form

Instructions: Choose to view data for a single Aircraft Approach Category (AAC) and Airplane Design Group (ADG) or compare two. If you compare two, the differences between the first and second option will be highlighted in yellow.

Main Category (required):	C/D/E - III
Compare Category (optional):	-Not Selected -
Submit \quad Reset	

Runway Dims	DIM ${ }^{1}$	Visual	Not Lower than 1 Mile	Not Lower than $3 / 4$ Mile	Lower than 3/4 Mile
Runway Width ${ }^{12}$	B	100 ft	100 ft	100 ft	100 ft
Shoulder Width ${ }^{12}$		20 ft	20 ft	20 ft	20 ft
Blast Pad Width ${ }^{12}$		140 ft	140 ft	140 ft	140 ft
Blast Pad Length		200 ft	200 ft	200 ft	200 ft
Crosswind Component		16 knots	16 knots	16 knots	16 knots

Airbus A320neo landing at ATL runway 8L ADG - III
AAC - C
https://www.faa.gov/airports/engineering/ airport_design/rdsm/

Sample Runway Design Standards Form

Table G-4. Runway Design Standards Matrix, A/B-II

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		A/B - II			
ITEM	$\underset{1}{\mathrm{DIM}}$	VISIBILITY MINIMUMS			
		Visual	Not Lower than 1 mile	Not Lower than 3/4 mile	Lower than $3 / 4$ mile
RUNWAY DESIGN					
Runway Length	A	Refer to paragraphs 3.3 and 3.7.1			
Runway Width	B	75 ft	75 ft	75 ft	100 ft
Shoulder Width		10 ft	10 ft	10 ft	10 ft
Blast Pad Width		95 ft	95 ft	95 ft	120 ft
Blast Pad Length		150 ft	150 ft	150 ft	150 ft
Crosswind Component		13 knots	13 knots	13 knots	13 knots
RUNWAY PROTECTION Runway Safety Area (RSA)					
Length beyond departure end ${ }^{9,10}$	R	300 ft	300 ft	300 ft	600 ft
Length prior to threshold	P	300 ft	300 ft	300 ft	600 ft
Width	C	150 ft	150 ft	150 ft	300 ft
Runway Object Free Area (ROFA)					
Length beyond runway end	R	300 ft	300 ft	300 ft	600 ft
Length prior to threshold	P	300 ft	300 ft	300 ft	600 ft
Width	Q	500 ft	500 ft	500 ft	800 ft

Old Virginia Tech Airport (Before Runway Extension)

Airport had legacy parallel taxiway standards
B-II standard near runway end 30
New taxiway has been re-aligned

Runway Design Standards (D-VI)

Table G-12. Runway Design Standards Matrix, C/D/E-VI

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		C/D/E - VI			
ITEM	$\underset{1}{\mathrm{DIM}}$	VISIBILITY MINIMUMS			
		Visual	Not Lower than 1 mile	Not Lower than $3 / 4$ mile	Lower than 3/4 mile
RUNWAY DESIGN					
Runway Length	A		Refer to paragr	aphs 3.3 and 3.7	
Runway Width	B	200 ft	200 ft	200 ft	200 ft
Shoulder Width		40 ft	40 ft	40 ft	40 ft
Blast Pad Width		280 ft	280 ft	280 ft	280 ft
Blast Pad Length		400 ft	400 ft	400 ft	400 ft
Crosswind Component		20 knots	20 knots	20 knots	20 knots

RUNWAY SEPARATION

Runway centerline to:

Parallel runway centerline H	Refer to paragraph 3.9			
Holding Position ${ }^{8}$	280 ft	280 ft	280 ft	280 ft
Parallel taxiway/taxilane centerline ${ }^{2,6} \quad \mathrm{D}$	500 ft	500 ft	500 ft	500 ft
Aircraft parking area G	Refer to paragraph 5.4.1.2			
Helicopter touchdown pad	Refer to AC 150/5390-2			

Note: Values in the table are rounded to the nearest foot. 1 foot $=0.305$ meters.
Note: See the Footnotes on the following page.

Be careful with footnotes

Footnotes - be Careful for Exceptions

Footnotes:

1. Letters correspond to the dimensions in Figure 3-1.
2. The runway to taxiway/taxilane centerline separation standards are for airports at sea level. For airports at higher elevations, an increase to these separation distances may be required to keep taxiing and holding aircraft clear of the inner-transitional OFZ (refer to paragraph 3.11.4). This standard cannot be used to justify a decrease in runway to taxiway/taxilane separation.
3. The standard runway centerline to parallel taxiway centerline separation distance is 400 feet $(122 \mathrm{~m})$ for airports at or below an elevation of 1,345 feet $(410 \mathrm{~m}) ; 450$ feet $(137 \mathrm{~m})$ for airports between elevations of 1,345 feet (410 m) and 6,560 feet $(2,000 \mathrm{~m})$; and 500 feet (152 $\mathrm{m})$ for airports above an elevation of 6,560 feet $(2,000 \mathrm{~m})$.
4. For approaches with visibility less than $1 / 2$-statute mile (0.8 km), runway centerline to taxiway/taxilane centerline separation increases to 400 feet (122 m).
5. For approaches with visibility less than $1 / 2$-statute mile (0.8 km), the separation distance increases to 500 feet (152 m).
6. If the runway elevation is greater than or equal to 100 feet (30.5 m) above sea level, with approaches with visibility less than $3 / 4$ statute mile $(1.2 \mathrm{~km})$, the separation distance increases by an elevation adjustment. For approaches with visibility less than $1 / 2$-statute mile $(0.8 \mathrm{~km})$, the separation distance increases to 550 feet $(168 \mathrm{~m})$.

Footnotes - Part 2

7. Increase this distance 1 foot (0.3 m) for each 100 feet (30.5 m) above 5,100 feet ($1,555 \mathrm{~m}$) above sea level.
8. Increase this distance 1 foot $(0.3 \mathrm{~m})$ for each 100 feet (30.5 m) above sea level. For C-III aircraft, see footnote 7 .
9. The RSA length beyond the runway end begins at the runway end when a stopway is not present. When a stopway is present, the length begins at the stopway end.
10. The RSA length beyond the runway end may be reduced to that required to install an EMAS (the designed set-back of the EMAS included). See the latest edition of AC 150/5220-22 for additional guidance.
11. This value only applies if that runway end is equipped with electronic or visual vertical guidance. ILS, GLS, LPV, LNAV/VNAV, and RNP lines of minima provide electronic vertical guidance. A PAPI or VASI provides visual vertical guidance. If there is no such guidance for that runway, use the value for "length beyond departure end."
12. For airplanes with maximum certificated takeoff weight greater than $150,000 \mathrm{lbs}(68,027 \mathrm{~kg})$, the standard runway width is 150 feet (46 m), the shoulder width is 25 feet $(7.6 \mathrm{~m})$, and the runway blast pad width is 200 feet (61 m).
13. When an RSA width of 500 feet (152 m) is not practical, an RSA width of 400 feet (122 m) is permissible.

Some Taxiway Design Elements Use TDG

- Taxiway design group needs to be established before any taxiway design is carried out

Note: Values in the graph are rounded to the nearest foot. 1 foot $=0.305$ meters.

Taxiway Dimensions

Parallel Taxiway Dimensions

Airport Planning and Design (Antonio A.Trani)

Taxiway Design Standards (Based on ADG Groups)

Item	ADG					
	I	II	III	IV	V	VI
Taxiway and Taxilane Protection						
TSA (maximum ADG wingspan)	$\begin{gathered} 49 \mathrm{ft} \\ (14.9 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 79 \mathrm{ft} \\ (24.1 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 118 \mathrm{ft} \\ & (36 \mathrm{~m}) \end{aligned}$	$\begin{gathered} 171 \mathrm{ft} \\ (52 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 214 \mathrm{ft} \\ & (65 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 262 \mathrm{ft} \\ & (80 \mathrm{~m}) \end{aligned}$
TOFA ${ }^{2}$	$\begin{gathered} 89 \mathrm{ft} \\ (27.1 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 124 \mathrm{ft} \\ (38 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 171 \mathrm{ft} \\ (52 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 243 \mathrm{ft} \\ (74 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 285 \mathrm{ft} \\ & (87 \mathrm{~m}) \end{aligned}$	$\begin{gathered} 335 \mathrm{ft} \\ (102 \mathrm{~m}) \end{gathered}$
TLOFA ${ }^{2}$	$\begin{gathered} 79 \mathrm{ft} \\ (24.1 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 110 \mathrm{ft} \\ (34 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 158 \mathrm{ft} \\ & (48 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 224 \mathrm{ft} \\ & (68 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 270 \mathrm{ft} \\ & (82 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 322 \mathrm{ft} \\ & (98 \mathrm{~m}) \end{aligned}$
Taxiway and Taxilane Separation						
Taxiway centerline to parallel taxiway centerline ${ }^{1}$	$\begin{gathered} 70 \mathrm{ft} \\ (21.3 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 101.5 \mathrm{ft} \\ (30.9 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 144.5 \mathrm{ft} \\ & (44 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 207 \mathrm{ft} \\ & (63 \mathrm{~m}) \end{aligned}$	$\begin{gathered} 249.5 \mathrm{ft} \\ (76.1 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 298.5 \mathrm{ft} \\ (91 \mathrm{~m}) \end{gathered}$
Taxiway centerline to fixed or movable object ${ }^{2}$	$\begin{gathered} 44.5 \mathrm{ft} \\ (13.6 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 62 \mathrm{ft} \\ (18.9 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 85.5 \mathrm{ft} \\ (26.1 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 121.5 \mathrm{ft} \\ & (37 \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 142.5 \mathrm{ft} \\ & (43 \mathrm{~m}) \end{aligned}$	$\begin{gathered} 167.5 \mathrm{ft} \\ (51 \mathrm{~m}) \end{gathered}$
Taxilane centerline to parallel taxilane centerline ${ }^{1}$	$\begin{gathered} 64 \mathrm{ft} \\ (19.5 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 94.5 \mathrm{ft} \\ (28.8 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 138 \mathrm{ft} \\ (42 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 197.5 \mathrm{ft} \\ (60.2 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 242 \mathrm{ft} \\ (74 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 292 \mathrm{ft} \\ & (89 \mathrm{~m}) \end{aligned}$
Taxilane centerline to fixed or movable object ${ }^{2}$	$\begin{gathered} 39.5 \mathrm{ft} \\ (12.2 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 55 \mathrm{ft} \\ (16.8 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 79 \mathrm{ft} \\ (24.1 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 112 \mathrm{ft} \\ (34 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 135 \mathrm{ft} \\ (41 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 161 \mathrm{ft} \\ (49 \mathrm{~m}) \end{gathered}$
Wingtip Clearance						
Taxiway wingtip clearance	$\begin{gathered} 20 \mathrm{ft} \\ (6.1 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 22.5 \mathrm{ft} \\ & (6.9 \mathrm{~m}) \end{aligned}$	$\begin{gathered} 26.5 \mathrm{ft} \\ (8.1 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 36 \mathrm{ft} \\ (11 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 35.5 \mathrm{ft} \\ (10.8 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 36.5 \mathrm{ft} \\ (11.1 \mathrm{~m}) \end{gathered}$
Taxilane wingtip clearance	$\begin{gathered} 15 \mathrm{ft} \\ (4.6 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 15.5 \mathrm{ft} \\ (4.7 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 20 \mathrm{ft} \\ (6.1 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 26.5 \mathrm{ft} \\ & (8.1 \mathrm{~m}) \end{aligned}$	$\begin{gathered} 28 \mathrm{ft} \\ (8.5 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 30 \mathrm{ft} \\ (9.1 \mathrm{~m}) \end{gathered}$

Note 1: See Figure 4-5.
Note 2: See Figure 4-6.
Note 3: See paragraphs 4.5.3.1 and 4.5.4.1 for TSA and TOFA standards at fillets.

Taxiway Design Standards (Based on ADG Groups) Have Changed

Example:
Taxiway to Taxiway Distance for ADG VI

Item	ADG					V
	I	II	III	IV	V	VI
Taxiway and Taxilane Separation						
Taxiway centerline to parallel taxiway						
centerline ${ }^{1}$	70 ft $(21.3 \mathrm{~m})$	101.5 ft $(30.9 \mathrm{~m})$	144.5 ft $(44 \mathrm{~m})$	207 ft $(63 \mathrm{~m})$	249.5 ft $(76.1 \mathrm{~m}$	298.5 ft $(91 \mathrm{~m})$

Reduction of 25.5 feet in taxiway-taxiway centerline separation (for ADGVI)

Example Taxilane Design at Chicago O’Hare Airport

Example Taxilane Design at Chicago O'Hare Airport

Legacy Airports May Have Different Geometric Design Standards on Multiple Parts of the Airfield

- Geometric design standards evolve over time
- Legacy airports like Chicago ORD may have different design standards on various parts of the airfield
- Pilots and ATC controllers need to be aware of the limitations of such geometric design standards in order to avoid accidents
- Many airports have special taxiway-taxilane routes to handle large aircraft (such as Airbus A380 or ADG VI).

Significant Changes in Taxiway Object Free Areas (Based on ADG Groups)

Example:
Taxiway Object Free Areas for ADG VI

FAA I50/5300-I3B TOFA - 335 feet

Reduction of 51 feet feet in TOFA width for ADG VI

Taxiway Design Standards (Based on TDG Groups)

source: FAA AC I50/5300-I 3B (Table 4-2)

Item	TDG							
	1A	$\mathbf{1 B}$	$\mathbf{2 A}$	$\mathbf{2 B}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Taxiway/Taxilane Width 1	25 ft	25 ft	35 ft	35 ft	50 ft	50 ft	75 ft	75 ft
	$(7.6 \mathrm{~m})$	$(10.7 \mathrm{~m})$	$(10.7 \mathrm{~m})$	$(15.2 \mathrm{~m})$	$(15.2 \mathrm{~m})$	$(22.9 \mathrm{~m})$	$(22.9 \mathrm{~m})$	

Note 1: See Figure 4-4.
Note 2: When the most demanding aircraft has four engines and is TDG 6, the standard taxiway shoulder width is 40 feet (12.2 m).

Taxiway Crossover Designs (with I80 deg. reversal)

Airport Planning and Design (Antonio A.Trani)

Crossover Taxiway Design Standards (Based TDG Group)

Table 4-6. Crossover Taxiways with Direction Reversal Between Taxiways Based on TDG

Dimension (See Figure 4-22)	TDG							
	1A	1B	2A	2B	3	4	5	6
Taxiway Centerline to Centerline Distance	50	100	100	162	162	250	250	312
W-0 (ft)	12.5	12.5	17.5	17.5	25	25	37.5	37.5
W-1 (ft)	25	22	26	31	37	45	55	60
W-2 (ft)	25	50	50	81	81	125	125	156
W-3 (ft)	21	29	34	44	51	65	78	88
L-1 (ft)	58	115	111	213	206	365	354	472
L-2 (ft)	0	39	39	72	71	118	117	152
L-3 (ft)	21	29	34	44	51	65	78	88
R-Fillet (ft)	0	0	0	0	0	0	0	0
R-CL (ft)	25	50	50	81	81	125	125	156

Note: $1 \mathrm{ft}=0.305 \mathrm{~m}$
source: FAA AC 150/5300-I3B (Table 4-6)

Crossover Taxiway Design Standards (Based on ADG Group)

Dimension (see Figure 4-23)	TDG																	
	1A	1	B	2	A		2B					4		5	5		6	
	ADG																	
	II	II	III	III	III	II	III	IV	III	IV	III	IV	V	IV	V	IV	V	VI
Taxiway Centerline to Centerline Distance	70	102	144	102	144	102	144	207	144	207	144	207	249	207	249	207	249	298
W-0 (ft)	12.5	12.5	12.5	17.5	17.5	17.5	17.5	17.5	25	25	25	25	25	37.5	37.5	37.5	37.5	37.5
W-1 (ft)	21	18	18	23	23	26	30	26	36	33	35	41	45	51	55	51	55	59
W-2 (ft)	21	31	32	39	36	51	72	52	72	57	72	104	125	104	125	104	125	149
W-3 (ft)	16	29	19	32.5	23.5	71.5	47	30.5	55	38	121	74.5	65.5	88.5	78	133.5	103.5	90.5
L-1 (ft)	53	92	94	98	93	180	206	180	197	177	303	345	364	329	353	411	440	466
L-2 (ft)	0	46	46	45	45	84	76	84	77	83	140	131	118	132	117	179	173	156
L-3 (ft)	21	44	32	39	36	72	47	52	55	57	121	74	65	89	78	133	104	90
L-4 (ft)	28	4	46	4	62	0	0	69	0	69	0	0	0	0	0	0	0	0
R-Fillet (ft)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R-CL (ft)	21	49	41	49	41	51	72	69	72	69	72	103.5	124.5	103.5	124.5	103.5	124.5	149
Steering Angle (degrees)	50	50	50	50	50	77	57	50	57	50	85	61	50	61	50	76	63	52

Note: $1 \mathrm{ft}=0.305 \mathrm{~m}$
source: FAA AC I50/5300-I3B (Table 4-7)

Crossover Taxiways (TDG vs.ADG)

Table 4-6. Crossover Taxiways with Direction Reversal Between Taxiways Based on TDG

Dimension	TDG							
(See Figure 4-22)	$\mathbf{1 A}$	$\mathbf{1 B}$	$\mathbf{2 A}$	$\mathbf{2 B}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Taxiway Centerline to Centerline Distance	50	100	100	162	162	250	250	312

Table 4-7. Crossover Taxiways with Direction Reversal Between Taxiways Based on ADG

Dimension (see Figure 4-23)	TDG																	
	1A	1B		2A		2B			3		4			5		6		
	ADG																	
	II	II	III	II	III	II	III	IV	III	IV	III	IV	V	IV	V	IV	V	VI
Taxiway Centerline to Centerline Distance	70	102	144	102	144	102	144	207	144	207	144	207	249	207	249	207	24	298

Crossover Taxiway Design for A380 (TDG vs.ADG)

- Crossover taxiway distance based on TDG is 312 feet between taxiway centerlines
- Crossover taxiway distance based on ADG is 298 feet between taxiway centerlines

Use the most demanding of the two design conditions

Example Crossover Taxiway Design at Chicago O'Hare Airport

Taxiway Safety Margins are Important for Safe Airport

Operations

Main gear width ~ 29.5 feet CMG ~ 36 feet

Taxiway width 35 feet

TDG 3

Taxiway Safety Margin $=10$ feet

Saab 2000 taxiing at BCB Airport

Taxiway Safety Margins are Important for Safe Airport

Operations

- The aircraft comes close to the taxiway edge
- FAA taxiway edge safety margin is 14 feet for ADG VI

Taxiway Centerline Separation from Fixed or Movable Objects

Taxiways Object Free Area (TOFA) (red)
 Taxiway Safety Area (TSA) in blue

> source: FAA AC 150/5300-13B (Figure 4-6)

Note 1: Refer to Table 4-1 for standard separation distances between taxiways and fixed or moveable objects.

Taxilane Separation from Fixed or Movable Objects from Taxilane (Apron Taxiway)

Taxilanes do have Object Free Areas

Note 1: Refer to Table 4-1 for standard separation distances between taxilanes and fixed or moveable objects.

Example (Dulles International Airport)

Image Source: U.S. Geological Survey

Rules for Derivation of Taxiway/Taxilane Separation Standards

\(\left.$$
\begin{array}{|c|c|c|}\hline \text { Dimension } & \begin{array}{c}\text { Old Rule } \\
\text { (until 2021) }\end{array} & \begin{array}{c}\text { New Rule } \\
\text { Applies Today }\end{array} \\
\hline \begin{array}{c}\text { Taxiway centerline } \\
\text { to parallel taxiway } \\
\text { centerline }\end{array} & \begin{array}{r}\mathbf{1 . 2} \text { times airplane wingspan plus } \\
10 \text { feet }\end{array} & \begin{array}{r}\mathbf{1 . 1} \text { times airplane wingspan plus } \\
10 \text { feet }\end{array} \\
\hline \begin{array}{c}\text { Taxiway centerline } \\
\text { to fixed or movable } \\
\text { object }\end{array}
$$ \& \begin{array}{r}\mathbf{0 . 7} times airplane wingspan plus

10 feet\end{array} \& \mathbf{0 . 6 times airplane wingspan plus} 10 feet\end{array}\right]\)| $\mathbf{1 . 0 7 5}$ times airplane wingspan |
| ---: |
| plus 10 feet |

Aircraft Rights-of-Way Near Gate Areas

- Dual taxilanes
- 2.3 times airplane wingspan plus 30 feet (10 m)
- Aircraft parked at gates require wingtip to wingtip separations at gates or tie-down areas for safety:
- 10 ft . (3 m .) for aircraft in groups I and II
- 15 ft . (5 m .) for group III
- 20 ft . (6 m .) for group IV
- 25 ft . (8 m.) for group V
-30 ft . (10 m.) for group VI
Source: FAA AC 150/5300-13

Old Rule: Dual Taxilane Between Two

 \section*{Terminal Buildings (Concourses)}

 \section*{Terminal Buildings (Concourses)}}
\qquad
Application of Dimensional Standards

Old Rule:
2.3 (wingspan) +30 feet

Example: Dual Taxilane Between Two Terminal Buildings (Concourses)

Single Taxilane

Dual Taxilanes

Example Dual Taxilane (IAD)

Detailed Geometric Design of Taxiway Junctions

- Aircraft can have long distances between cockpit and main gear
- Main landing gear tracks inside the centerline followed by the nose gear
- Taxiway fillets are needed to provide safety margins in turns

FAA Geometric Design Design Philosophy for Intersections

- Use the cockpit over centerline steering method
- FAA no longer advocates judgmental oversteering
- Cockpit over centerline steering reduces the risk of pavement excursions
- Design taxiway intersections with steering angles to 50 degrees or less

Steering Angle Explanation

- Modern aircraft nose landing gears are designed to reach steering angles of 70 degrees

Boeing 737-800 (A.Trani)

Gulfstream 550 (A.Trani)

Steering Angle Information

A Boeing 737-800 has a maximum steering angle of 78 degrees (75 degrees effective steering angle)

Source: Boeing 737 Airplane Characteristics for Airport Planning (Chapter 4)

Example :Taxiway-Taxiway Fillet Design for an Airbus A380 (ADG VI,TDG 6)

- Design a taxiway-taxiway junction for an Airbus A380 class vehicle using FAA design criteria
- FAA recommends using the cockpit centerline tracking
- Draw the solution to scale and specify the dimensions of the taxiway-taxiway junction
- Compare the solution with the recommendations by Airbus

Example : Taxiway-Taxiway Fillet Design for an Airbus

 A380

Obtain the critical dimensions for geometric design standards

Consult with the aircraft manufacturer data

Use Taxiway Design Group 6 for A380

Note: Values in the graph are rounded to the nearest foot. 1 foot $=0.305$ meters.

CMG $=104.6$ feet and $M G$ width $=47$ feet

FAA Taxiway Fillet Design Tool

(2) United States Department of Transportation

Federal Aviation
Administration

	About Jobs	News	Search		OQ	
Aircraft	Air Traffic	Airports	Pilots \& Airmen	Data \& Research	Regulations	Space

Home / Airports / Engineering, Design, \& Construction Standards / Airport Design

Overview
irport Design Technical Video Series

Runway Design Standards Matrix

Airport Design Tools, Videos and Drawings for Advisory Circular 150/5300-13

Additional Design Technical Videos, Tools, and Drawings
Advisory Circular

- AC 150/5300-13-Airport Design
- Runway Design Matrix Tool

Source: https://www.faa.gov/airports/engineering/airport_design
Airport Design Tools

- Aircraft Characteristics Database

For aircraft with a CMG and MGW combination in the TDG 2 category, use the ADG and TDG Classification Tool below to calculate TDG 2A and 2B.

- ADG and TDG Classification Tool (added 4/4/2022)
- Acute Angle Exit Tool (added 8/19/2022)
- Taxiway Fillet Design Tool (MS Excel) (added 4/4/2022)
- Taxiway Fillet Design Tool User's Guide
- Taxiway Fillet Design Tool Instructional Video (added 4/13/2022)

Runway Exit Design Interactive Model (REDIM) ©

Taxiway Fillet Design Geometry
Fillet specification:
Three segment lengths (L-I, L-2, L-3)
Three taxiway widths ($\mathrm{W}-\mathrm{I}, \mathrm{W}-2, \mathrm{~W}-3$)
Three radii (R-Fillet, R-CL, R-Outer)
One intersection angle (Delta)

Source: FAA AC I50/5300-I3B

Taxiway Fillet Design Tool (FAA)

White fields must be provided by the user Program calculates Minimum R-CL, and fillet dimensions

Taxiway Design Tool (FAA) Example

- Design the fillet for 90 -degree intersection for the Airbus A380 (TDG-6)
- In the design use a centerline radius of I 50 feet (more than the minimum recommended for design)

Airport Planning and Design (Antonio A.Trani)

Taxiway Design Tool (FAA) Example

- 90-degree taxiway junction, Airbus A380 (TDG-6)
- Taxiway centerline radius of 150 feet (instead of the 124 foot- minimum radius)

Taxiway Design Tool (FAA) Example

- 90-degree taxiway junction, Airbus A380 (TDG-6)
- Taxiway centerline radius of 150 feet (instead of the 124 foot- minimum radius)

Airport Planning and Design (Antonio A.Trani)

Taxiway-Taxiway Design (Airbus A380)

Verification with Aircraft Manufacturer Data

Taxiway-Taxiway Junction Design for Airbus A380 (Airbus Fillet Design in Airport Planning Documents)

Taxiway-Taxiway Junction Designs Compared

Consult with the Aircraft Manufacturer to Verify your Geometric Design Solution

- These documents contain example taxiway-taxiway and runwaytaxiway designs to help you compare your analysis
- See Chapter 4 (Section 4) on both Airbus and Boeing documents

Minimum Centerline Radii Suggested by FAA Taxiway Fillet Design Tool (90 Degree Taxiway Turn)

Taxiway Fillet Dimensions Increase with Aircraft Size
 (TDG Group)

Taxiway Design Group

NOTE: RADII SHOWN ARE NOT CONCENTRIC.

Taxiway Safety Area and Taxiway OFA

Note 1: $($ TOFA Width $-W) / 2$
Note 2: $($ TSA Width - W)/2
Note 3: See paragraph 4.5.3.1 and paragraph 4.5.4.1 for increased width of TSA and TOFA, respectively.

Example :Taxiway-Taxiway Fillet Design for an Airbus A380 (ADG VI,TDG 6)

- Design a taxiway-taxiway junction for an Airbus A380 class vehicle using FAA design criteria
- Taxiway-Taxiway angle (delta) - 135 degrees
- Draw the solution to scale and specify the dimensions of the taxiway-taxiway junction

Taxiway Design Tool (FAA)

- I35 degree intersection for the Airbus A380 (TDG-6)
- In the design use a centerline radius of 175 feet (more than the minimum recommended for design)

Taxiway-Fillet-Design-Tool

Taxiway Fillet Design Tool

Taxiway Design Tool (FAA) Example

- I35-degree taxiway junction, Airbus A380 (TDG-6)
- Taxiway centerline radius of 175 feet (instead of the 157 foot- minimum radius)

Sample Old Taxiway Fillet Design

250 feet Lead-in Fillet Old Design

Taxiway at ATL Airport (A. Trani)

Use of Specialized Software

- Several computer design software have been developed to facilitate geometric design of airports
- AviPLAN Turn and AviPlan Turn Pro are a family of products designed to help designers simulate and verify airport designs
- Software are add-ons to AutoCad
- Designers select a path to be tested and the software performs a kinematic simulation to verify the design

Gate Parking Maneuver Simulated in AviPLAN Turn Pro

source:Transoft Solutions

3D Visualization in AviPLAN Turn Pro

source:Transoft Solutions

Other Important Sources to Help Your do Airport Geometric Design

- Consult aircraft manufacturer web sites to obtain 3D drawings of aircraft
- Airbus aircraft (http://www.airbus.com/support/maintenance-engineering/technical-data/autocad-3-view-drawings-of-airbusaircraft/)
- Boeing aircraft (http://www.boeing.com/commercial/airports/ 3 view.page)

Boeing 787-8 source: Boeing

Legacy Airports Modification of Standards

Legacy Design Standards and Old Airports

- Many airports in the U.S. were designed and constructed before the current design standards were developed
- Consequently many times we find that current geometric design standards are not met
- These airports require Modification of Standards (MOS)
- MOS are approved by FAA on a one-to-one basis
- For example, the Airbus A380 requires a 200 foot wide runway (see ADG VI standards)
- The FAA and ICAO have provided a MOS procedure whereby the A380 can operate from 150 foot runways with 50 foot stabilized shoulders

Example: MOS at LAX Runway 24R

- Standard width for ADG VI is 200 feet. Shoulder width is 40 feet.
- MOS allows Airbus A380 landings on runway 24R (I50-foot wide runway with 50/60 foot shoulder widths)

Example of a Legacy Airport

 The Following Example Applies to LGA- Delta Airlines operates Boeing 767-300 into LGA
- The critical aircraft wingspan is 156.08 feet (ADG IV)

Current Situation (LGA)

Runway Design Standards (Boeing 767 D-IV)

Aircraft Approach Category (AAC) and Airplane Design Group (ADG):		C/D/E - IV			
ITEM	DIM ${ }^{1}$	VISIBILITY MINIMUMS			
		Visual	Not Lower than 1 mile	Not Lower than $3 / 4$ mile	Lower than 3/4 mile
RUNWAY SEPARATION Runway centerline to:					
Parallel runway centerline	H		Refer to p	aragraph 316	
Holding Position ${ }^{8,9}$		250 ft	250 ft	250 ft	250 ft
Parallel taxiway/taxilane centerline ${ }^{2}$	D	400 ft	400 ft	400 ft	400 ft
Aircraft parking area	G	500 ft	500 ft	500 ft	500 ft
Helicopter touchdown pad			Refer to $\underline{\text { A }}$	C 150/5390-2	

Required runway to taxiway $=400$ feet
Available runway to taxiway $=350$ feet
A Modification of Standard is needed from the FAA

Sample Modification of Standards (MOS)

- Taxiway centerline to parallel taxiway/taxilane centerline require 1.2 times airplane wingspan plus 10 feet (3 m)
- Required for limiting ADG IV aircraft (I7I foot wingspan) = 215 feet
- Rule for Modification of Standards (MOS) $=1.2$ * critical wingspan + 10 feet
- Distance $=2(156.08)+10$ feet $=197$ feet
- Airport has 200 feet between parallel taxiways
- Boeing 767-300 was operated from LGA some years ago

Runway Surface Gradient Design Standards

Gulfstream III Landing at BCB (A. Trani)

Longitudinal

Runway and Surface Gradients

- Located in FAA AC I50/5300-I3B, Chapter 3
- Includes vertical profile limits for runways and taxiways
- Important to maintain line-of-sight in the operations
- Pilot to pilot
- ATC controller to aircraft

Surface Gradient Standards Chapter 3 in AC 150/5300-I3B

3.16.1.2 Aircraft Approach Categories C, D, and E.

Refer to Figure 3-33 and the following, for standards applicable to Aircraft Approach Categories C, D, and E.

1. The maximum allowable longitudinal grade is ± 1.50 percent; however, longitudinal grades exceeding ± 0.80 percent are not acceptable within the lesser of the following criteria:
a. in the first and last quarter of the physical runway length, or
b. the first and last 2,500 feet (762 m) of the physical runway length.
2. The maximum allowable grade change is ± 1.50 percent; however, runway grade changes are not acceptable within the lesser of the following criteria:
a. the first and last quarter of the physical runway length, or
b. the first and last 2,500 feet (762 m) of the physical runway length.
3. Vertical curves for longitudinal grade changes are parabolic. The length of the vertical curve is a minimum of 1,000 feet (305 m) for each 1.0 percent of change.

Longitudinal Runway Grades

- I. 5 \% maximum for runways serving transport aircraft
- 0.8% maximum in the first and last quarter of the runway (or first and last 2500 feet of the runway length)
- Up to 2% for general utility runways (Groups A and B)
- I. 5 \% transverse from crest (groups C, D. and E)
- Maximum gradient change $\mathbf{1 . 5}$ \% for groups C,D, and E. Use 2\% for groups A and B
- Vertical curve length ($1000 \mathbf{x}$ grade change in feet for groups C, D, and E). Use $300 \times$ grade change for groups A and B .
- Minimum distance between points of intersection (1000 ft . for each I\% grade change for groups C,D, and E)

Longitudinal Grades Approach Speed Groups A and B

Source: FAA AC 5300-13B

NOTES:

1. LENGTH OF VERTICAL CURVES WILL NOT BE LESS THAN 300 FT [91 M] FOR EACH 1% GRADE CHANGE, EXCEPT THAT NO VERTICAL CURVE WILL BE REQUIRED WHEN GRADE CHANGE IS LESS THAN 0.4\%.
2. MAXIMUM GRADE CHANGE AT VERTICAL CURVES SHOULD NOT EXCEED 2.00 \%.
3. MINIMUM DISTANCE BETWEEN POINTS OF VERTICAL INTERSECTION SHOULD BE $250 \mathrm{FT}[76 \mathrm{M}] \times$ SUM OF ABSOLUTE GRADE CHANGES.

Longitudinal Grades Approach Speed Groups C and D

Source: FAA AC 5300-13 - Figure 3-22
NOTES:

1. MINIMUM LENGTH OF VERTICAL CURVES $=1,000 \mathrm{FT}[305 \mathrm{M}] \times$ GRADE CHANGE (IN \%).
2. THE MINIMUM VERTICAL CURVE LENGTH IS EQUAL TO $1,000 \mathrm{FT}[305 \mathrm{M}] \times$ GRADE CHANGE.
3. THE MINIMUM DISTANCE BETWEEN POINTS OF VERTICAL INTERSECTION MUST BE $1,000 \mathrm{FT}[305 \mathrm{M}] \times$ SUM OF THE ABSOLUTE GRADE CHANGES.

Transverse Grades for Approach Speed Groups A/B and C/D/E

NOTES:

1. CONSTRUCT A $1.5 \operatorname{IN}[4 \mathrm{~cm}]$ DROP BETWEEN PAVED AND UNPAVED SURFACES.
2. MAINTAIN A-5.0\% GRADE FOR 10 FEET OF UNPAVED SURFACE ADJACENT TO THE PAVED SURFACE
3. S-2 APPLIES WHEN SHOULDERS ARE PROVIDED.
4. S-4 SHOULD BE 0\% OR NEGATIVE (UNLIMITED) TO THE EDGE OF THE RUNWAY OFA IF PRACTICABLE. ALLOWABLE POSITIVE SLOPE BASED ON AIRPLANE DESIGN GROUP.
5. REFER TO FIGURE 4-35 FOR TAXIWAY TRANSVERSE GRADES

ADG	I	II	III	IV	V	VI
D-1	SEE TABLE 3-8					
D-2	25	40	59	88	107	131
S-4 (MAXIMUM)	$8: 1$		$10: 1$		$16: 1$	

Source: FAA AC 5300-13 - Figure 3-23

Longitudinal and Transverse Grades of Runway Safety Areas

-

Source: FAA AC 5300-13 - Figure 3-24

NOTE: TRANSITIONS BETWEEN DIFFERENT GRADIENTS SHOULD BE WARPED SMOOTHLY.

Example Problem

- You are conducting a study for an existing airport. The airport wants to handle air carrier operations with airlines flying the Canadair CRJ-700 aircraft (regional jet)
- Determine the suitability of the runway to conduct air carrier operations. If the runway is not suitable for carrier operations suggest modifications to do it

Example Problem: Solution (I)

- The Bombardier CRJ-700 is an interesting aircraft because is a boundary case between Approach speeds B and C . The aircraft has the following geometric characteristics:
- Table I. Bombardier CRJ-700 Information (source: Bombardier Aircraft).

External:			
Length overall	106 ft 8 in	32.51 m	
Wingspan	76 ft 3 in	23.24 m	
Wing area (net)	$760 \mathrm{ft}^{2}$	$70.61 \mathrm{~m}^{2}$	

- The maximum grade allowed is I.5\%.The runway satisfies this criteria.
- The maximum grade change is 1.5%. This criterion is violated at point A.
- The required 0.8% grade for the first $1 / 4$ of the runway is not met by the runway.
- The transitional curve lengths are I,985 feet for point A and I,400 for point B

Example Problem

- Design the two transition curves at points A and B in the vertical profile shown in the figure. Find the curve length and the elevation of the points on the transition curve at points A and B .

Sample Matlab Code

- The equation of a symmetric parabola used as transition curve is given by the following Matlab equations:
$\% \mathrm{GI}=$ grade of first tangent (\%)
$\% \mathrm{G} 2=$ grade of second tangent (\%)
$\% \mathrm{~L}=$ length of transition curve (feet)
$\% \mathrm{x}=$ station along the horizontal axis defining the transition curve

Vertical Curve Solution for Point A

- The transition curve with point of intersection at A (1950 feet long) is shown below
- The Point of Intersection (PI) (point A is located 2207 feet from the runway threshold)
- This is obtained as 970 meters (3182 feet) minus half of the curve length (1950 feet)
- The elevation of the curve is 2050 feet minus the drop in runway elevation between the runway threshold and the point of the curve ($0.85 / 100 * 2207$ feet)
- The elevation of the Point of the Vertical Curve is 2031.2 feet.

Vertical Curve Solution

Line of Sight Standards (Paragraph 418 in FAA AC I50/5300-I3)

- Along runways
- Two points 5 feet above the runway should be mutually visible for the entire runway
- Between intersecting runways
- Two points 5 feet above the runway should be mutually visible inside the runway visibility zone (polygon)
- Three distance rules are used in the creation of the visibility zone: I) < 750 feet, 2) 750 - 1500 feet and 3) >1500 feet
- See diagram (next slide taken from FAA AC 5300-I3)

Runway Visibility Requirements

Runway Visibility Polygon (LGA)

