Airport Landside Notes

Dr.Antonio A.Trani

Professor of Civil and Environmental Engineering Virginia Tech

Goals of this Section of the Notes

- Understand various terminal design concepts
- Understand the airport terminal design process
- Examine how runway/taxiway/gate geometric design parameters affect the terminal design concept
- Learn simple gate capacity methods
- Estimate Automated People Mover capacity and configurations

Airport Terminal Design

- Normally carried out by a team of architects and engineers
- Like most design processes, this is an iterative process where many tradeoffs need to be examined

References for Airport Terminal Design

- Airport

Cooperative Research Program
(ACRP) Report 25
(2 volumes)

- International Air Transport Association (IATA) Airport Development Reference Manual (IOth Edition)

More References for Airport Terminal

- FAA Advisory Circular 150/5360-I3A
- ACRP Airport Terminal Design Electronic Resource Library (ERL) (https://crp.trb.org/ acrp0715/)
- Virginia Tech Air

Transportation Systems Lab developed the ACRP ERL with Intermodal Logistics Consulting

Material Presented in this Section

- Brief description of terminal concepts
+ horizontal distribution
+ vertical distribution
+ landside components
- Future directions and impacts
- Some analytic techniques to model and simulate terminals

Purpose of the Discussion

- To review and understand the basic airport terminal concepts
- To discuss modeling techniques applicable to primary and secondary flows inside the airport terminal
- Discussion of challenges in airport terminal modeling
- Passenger behavior modeling
- Shopping activities inside airport terminals
- Security implications

Basic review of Terminal Concepts

Goals in the design of airport terminals:

- Walking distances (keep them short)
- Pleasing environment (helps the traveler)
- Services (well located and available)
- Security (minimize threat potential)
- Cost effective (typically includes concessions)
- Aesthetics (good waiting environment)

Sometimes these goals contradict each other (i.e., like the cost effectiveness vs. aesthetics)

Airport Terminal Concepts

Horizontal Distribution

1) Linear
2) Pier-Finger
3) Satellite
4)Transporter

- Combinations of these are possible
- In fact, most airport terminals evolve over time from one concept to another one (i.e., linear to pier and then to satellite or transporter)
- Landside configurations have either centralized or decentralized services

Airport Terminal Concepts (cont.)

Vertical Distribution

1) One floor terminals
2) One and a half floor terminals
3) Two floor terminals

- Used to separate arrival and departing flows
- Provide and added level of security in today's environment

Linear Concept (Centralized Terminal)

EXAMPLE OF LINEAR CONCEPT SEMI-CENTRALIZED TERMINAL

Source: IATA Airport Development Reference Manual

Linear Centralized Terminal (Advantages)

- Short walking distances if check-in facilities are decentralized (and not many transfer passengers)
- Good for passenger orientation
- Provides generous curb length
- Easy and cheap to construct
- Requires simple baggage conveying/sorting systems (reduces the procurement and operation cost of the baggage conveyance system)
- Good for separation of arriving and departing passengers

Linear Centralized Terminal (Disadvantages)

- Decentralization requires duplication of services
- Potentially long walking distances for transfer passengers or with centralized services
- More expensive logistics for handling transfer baggage
- Reduced compatibility of building/apron geometry and future very large capacity aircraft development (i.e., 8590 m wingspan)
- If a decentralized terminal concept is adopted extensive flight information system is display is required
- Examples: Mexico City, Kansai, London Heathrow Terminal 4, Munich, etc.

Compact Module with Semi-Centralized

Terminal

Source: IATA Airport Development Reference Manual

Compact Module (Advantages)

A special variation of the linear concept

- Saves some space compared to straight linear terminal
- Provides short walking distances is properly designed (see sketches of Kansas City Airport) for terminating passengers
- Increased curb length
- It has been implemented in some of the largest airports
- Charles de Gaulle Airport Terminal 2 (Paris)
- Dallas-Fort Worth Airport (Dallas, Texas)
- Kansas City Airport (extreme case of compactness)

Compact Module (Disadvantages)

- Can be confusing to the passenger (due to rounded shape - disorienting)
- Requires a very extensive flight information service
- Requires some sort of people mover to transport passengers between terminals (see the solution adopted at DFW)
- Man power requirements might be higher due to duplication of services at each compact terminal
- Usually long walking distances result for transfer passengers
- Transfer of baggage between terminals is also a problem

Example of Compact Module Terminal (DFW)

AMERICAN AIRLINES EAST SIDE TERMINAL COMPLEX DALLAS/FORT WORTH INTERNATIONAL AIRPORT

DISTANCE FROM A TO B $=6,100^{\prime}$
40 AIRCRAFT PARKING POSITIONS

Source: L.W. Elliot and Associates

Example of Compact Module Terminal (MCO)

Pier-Finger Concept with Centralized Terminal

Pier/Finger Concept (Advantages)

- Centralization of services (less costly)
- Reduces the number of airline and government staff employees to manage the facility (due to the high level of centralization)
- Use of simple flight information services (due to the centralization)
- The best concept for passenger control (security viewpoint)
- Examples: Amsterdam Schiphol, London Heathrow Terminal 3, San Francisco Intl. Terminal, Chicago O'Hare terminals A, B, E, F

Pier/Finger Concept (Disadvantages)

- Potentially long walking distances (specially for long piers)
- The curb length is generally insufficient (congestion is possible)
- Limited expansion capability of the main terminal
- Reduced aircraft maneuverability (instances where the piers are not parallel)
- Separation of arriving and departing passengers should be executed at different levels (3 level finger)
- High capital cost for passenger moving and baggage conveyance systems

Example of a Pier Concept (Schiphol)

Example of a Pier Terminal (SFO Intl.)

Satellite Concept with Centralized Terminal

Source: IATA Airport Development Reference Manual

Satellite Concept (Advantages)

- Allows centralization of airline and government staff
- Capability of good concession areas near the gates (preferred by passengers)
- Simple flight information system
- Good expansion capability (provided land is available)
- Good to control passenger movement (excellent for security)
- Examples: Atlanta, Denver, Charles de Gaulle Terminal 1 (Paris), Tokyo Narita Terminal 2

Satellite Concept (Disadvantages)

- High capital and maintenance cost of the passenger moving system
- High capital and maintenance cost of the baggage conveyance system (could be very complex)
- Curbside is usually small and provides an opportunity for congestion
- Transfer passengers require larger connecting times
- Limited expansion capability of the main terminal

Example of Satellite Concept (Denver)

AUTOMATED GROUND TRANSPORTATION SYSTEM DENVER INTERNATIONAL AIRPORT

Transporter Concept with Centralized

Terminal

EXAMPLE OF TRANSPORTER CONCEPT CENTRALIZED TERMINAL

Source:
IATA Airport Development Reference Manual

Transporter Concept (Advantages)

- Good concept for small to medium size airports (<10 million enplanements)
- Good for aircraft maneuvering
- Simple and smaller main terminal
- Separation of arriving and departing passengers is possible
- Reduced walking distances
- Easy to expand provided land is available
- Examples: Dulles (Washington, DC) and Mirabel (Canada)

Transporter Concept (Disadvantages)

- The concept is impractical when the volume of traffic surpasses 10 million due to transporter delays and frequencies needed
- Larger connection times
- High capital cost and maintenance of transporters
- Curbside might prove insufficient (possible congestion)
- Complexity in the airside to manage transporters and aircraft
- Additional cost of for larger number of ground vehicles
- Creates demand surges due to limited frequency of transporters

Vertical Distribution Concepts

One Floor Airport Terminal

Scale in ft.
Source: IATA Airport Development Reference Manual

One Floor Airport Terminal Characteristics

- Simple and easy to implement (low cost)
- Good for passenger orientation
- Provides good amount of curb space
- Limited (or no) capability to use boarding gates
- Generally only apply to small airports
- Passenger flows can be easily controlled (separation inside the terminal)

One and a Half Level Airport Terminal

- Provides a single level curbside (arriving and departing passengers processed at grade)
- Two level terminal building
- Departure lounges on the second level (boarding gates)

> ILLUSTRATION OF A $1 ½$ LEVEL PASSENGER TERMINAL BUILDING

IATA Airport Development Reference Manual

One and a Half Level Airport Terminal

Source: IATA Airport Development Reference Manual

One and a Half Level Terminal (Departures)

Source: IATA Airport Development Reference Manual

Two-Level Airport Terminal

- Good for separating arriving and departing flows inside the airport terminal
- Provides increased curb space

ILLUSTRATION OF A TWO LEVEL PASSENGER TERMINAL BUILDING

Source: IATA Airport Development Reference Manual

Two Level Airport Terminal (Arrivals)

Source: IATA Airport Development Reference Manual

Two Level Airport Terminal (Departures)

Source: IATA Airport Development Reference Manual

Airport Terminal Level of Service Standards

Level of Service Standards

Proposed by IATA to provide airport terminal design standards. These are static LOS values.

Table 1. IATA Level of Service Standards ${ }^{\text {a }}$.

Level of Service (\mathbf{m}^{2} per occupant)							
	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	F	
Check-in Queue Area	1.8	1.6	1.4	1.2	1.0	N/A	
Wait / Circulation	2.7	2.3	1.9	1.5	1.0	N/A	
Hold Room	1.4	1.2	1.0	0.8	0.6	N/A	
Baggage Claim Area (excludes claim service)	2.0	1.8	1.6	1.4	1.2	N/A	

a. Source: IATA Airport Development Reference Manual.

Interpretation of LOS Standards (IATA, 1995)

Table 2. Interpretation of Level of Service (IATA).

Legend	Remarks
A	Excellent service; free flow conditions; excellent level of comfort
B	High level of service; condition of stable flow; very few delays
C	Good level of service; stable flow; few delays
D	Adequate level of service; condition of unstable flow; acceptable delays
E	Inadequate level of service; condition of unstable flow; unacceptable delays
F	Unacceptable level of service; condition of cross flows; system breakdown

LOS Design Criteria

- Level of service C is perhaps a good design tradeoff for most airport terminals
- LOS B is an excellent design practice if the budget allows it
- Level of service A is too expensive and prohibitive to implement

Personal Space Preferences

- Human factors studies suggest the human body can be approximated using a personal ellipse (personal sphere) of dimensions: 330 mm by 580 mm (depth by shoulder breadth). This however works only well in crowded mass transit vehicles where standees tolerate crowding.
- Some port authorities in the US employ body ellipses of 18 by 24 in for mass transit studies (crowding inside trains)
- Given that passengers at airports carry baggage it is desirable to increase these dimensional standards to at least $5-10 \mathrm{ft}^{2}$. This will imply a circle of approximately 760 mm (30 in) which is consistent with the single lane walking criteria used by most airport authorities.

Space for Movement

- Provide a minimum of 760 mm (30 in) of lateral spacing between each lane of pedestrians
- Longitudinal spacing for normal walking to avoid conflicts should be on the order of 2.5 to $3.0 \mathrm{~m}(8-10 \mathrm{ft}$)
- The resulting net area per pedestrian is then $2-3 \mathrm{~m}^{2}(20-$ $30 \mathrm{ft}^{2}$) for free flow
- When queueing is allowed (not pedestrian flow) personal spaces of $0.5-1.0 \mathrm{~m}^{2}\left(5-10 \mathrm{ft}^{2}\right)$ are tolerated
- Stairway spaces are smaller because the presence of treads. Typically, personal spaces of 1-2 m ${ }^{2}\left(10-20 \mathrm{ft}^{2}\right)$ are needed for unimpeded stair flow

Predestrian Walking Speeds

- Pedestrian speed varies according to pedestrian density and other factors such as age, gender, personal disabilities, environmental factors and trip purpose
- Typical speeds are $85 \mathrm{~m} / \mathrm{min}$ ($270 \mathrm{ft} / \mathrm{min}$)
- College students are known to walk faster than average populations

Principles of Pedestrian Flow

- Uses a hydrodynamic analogy to model pedestrian flow
- The basic pedestrian traffic flow equation is,
$f=\frac{s}{a}$
where:
f is the pedestrian volume measured in pedestrians per foot or meter width of traffic way per minute ($\mathrm{pr} / \mathrm{m}-\mathrm{min}$)
S is the average pedestrian flow speed ($\mathrm{m} / \mathrm{min}$)
a is the average are per pedestrian $\left(\mathrm{m}^{2} / \mathrm{pr}\right)$

Principles of Pedestrian Flow

Note that this equation is analogous to that used to model traffic flows on highways. The term a is just the inverse of the flow density (k) typically employed in highway traffic modeling.

Application constraints of Equation (1):

- The pedestrian flow has to be steady (no interruptions)
- Uniform and continuous pedestrian movement

Walkway Levels of Service

Volume $\langle\mathrm{P}\rangle$

Source: Fruin

Interpretation of Walkway LOS

Table 2. Walkway LOS Standards (Source: Fruin)

LOS	\boldsymbol{f} Pedestrian Flow $\mathbf{p r} / \mathbf{m - m i n}$ $(\mathbf{p r} / \mathbf{f t}-\mathbf{m i n})$	\boldsymbol{a} Average Area $\mathbf{m}^{2} / \mathbf{p r}$ $\left(\mathbf{f t}^{2} / \mathbf{p r}\right)$	Description of Flow Conditions
A	$<23(<7)$	$>3.3(>35)$	Free flow
B	$23-33(7-10)$	$2.3-3.3(25-35$	Minor conflicts
C	$33-49(10-15)$	$1.4-2.3(15-25)$	Crowded but fluid, passing is restrictive
D	$49-66(15-20)$	$0.9-1.4(10-15)$	Significant conflicts, passing and speed restrictions
E	$66-82(20-25)$	$0.5-0.9(5-10)$	Shuffling walk, passing and crossflows very difficult
F	Variable Flow	$<0.5(<5)$	Frequent stops, contacts

Example 1:Pedestrian Flow Equations

Chicago O'Hare has two terminals as show in the figure below.

Example Application of Pedestrian Flow Equations

The original design predicted a maximum 15-minute flow of 2,500 passengers.

1) Determine the width of the corridor (w) to serve this expected volume if a high LOS C is used.

Application of Pedestrian Flow Equations

2) Compare with LOS B and A
3) Find the average flow speed under the given conditions

Application of Pedestrian Flow Equations

1) 2,500 pedestrians in 15 minutes is equivalent to 166.7 pedestrians per minute ($\mathrm{pr} / \mathrm{min}$)

- Looking at the basic walkway LOS curve (on page Cl of this handout) we observe that for LOS C this corresponds to an expected flow of,
$f=10 \mathrm{pr} / \mathrm{ft}-\mathrm{min}$
This implies a corridor or 17 ft (for passenger flow) plus 4 ft to account for 2 boundary layers on each side of the passageway. The total corridor width should be 6.5 m (21 ft) for LOS C.

Application of Pedestrian Flow Equations

2) For LOS B the width would be $8.5 \mathrm{~m}(28 \mathrm{ft})$ wide

For LOS A (assuming $5 \mathrm{pr} / \mathrm{ft}-\mathrm{min}$ as the design standard) would yield a corridor 11.7 m (33.8 ft) wide

Note that airport terminal construction cost in the US is around \$2000-3000 per square meter (regular space not underground).

In our example, a 350 m corridor would have implied a cost difference of 5.5 million dollars at $\$ 3,000$ per square meter (comparing LOS A vs. LOS C)
3) The resulting speed in the corridor would be about 67 $\mathrm{m} / \mathrm{min}(220 \mathrm{ft} / \mathrm{min}$)

Fundamental Pedestrian Flow Relationships

Fundamental Pedestrian Speed-Area and Speed-Density Relationships

Stairway Pedestrian Flows

- Pedestrian flows decrease in stairways for two obvious reasons:
- Restricted flow movement (bottleneck effect)
- Large energy expenditure while negotiating steps (specially true upwards)
- Ascending speeds vary from 15 to $90 \mathrm{~m} / \mathrm{min}(50-300 \mathrm{ft} /$ min) with an average speed of $30.5 \mathrm{~m} / \mathrm{min}(100 \mathrm{ft} / \mathrm{min})$
- For a single lane motion in stairways use 760 mm width (30 in)
- Use 1520 mm (60 in) minimum for fluid two-way movement
- Design stairway spaces at multiples of 760 mm

Stairway Levels of Service

Interpretation of Stairway LOS

Table 3. Stairway LOS Standards (Source: Fruin)

LOS	Pedestrian Flow $\mathbf{p r} / \mathbf{m - m i n}$ $(\mathbf{p r} / \mathbf{f t}-\mathbf{m i n})$	\boldsymbol{a} Average Area $\mathbf{m}^{2} / \mathbf{p r}$ $\left(\mathbf{f t}^{2} / \mathbf{p r}\right)$	Description of Flow Conditions
A	$<5(<16)$	$>1.9(>20)$	Free flow
B	$16-23(5-7)$	$1.4-1.9(15-20)$	Minor conflicts
C	$23-33(7-10)$	$0.9-1.4(10-15)$	Crowded but fluid, passing is restrictive
D	$33-43(10-13)$	$0.7-0.9(7-10)$	Significant conflicts, passing and speed restrictions
E	$43-56(13-17)$	$0.4-0.7(4-7)$	Shuffling walk, passing and crossflows very difficult
F	Variable Flow	$<0.4(<4)$	Frequent stops, contacts

Queueing LOS

- These standards are similar to IATA criteria for queueing
- However, these have been primarily derived from studies of mass transit systems and thus do not include baggage
- These standards are static but can be computed in simulation models by computing the instantaneous state of the system and then taking an average of area available to serve pedestrians.

Interpretation of Queueing LOS

Table 4. Queueing LOS Standards (Source: Fruin)

LOS	Average Area $\mathbf{m}^{2} / \mathbf{p r}$ $\left(\mathbf{f t}^{2} / \mathbf{p r}\right)$	Interpersonal Spacing $\mathbf{m}(\mathbf{f t})$	Description of Flow Conditions
A	$>1.2(>13)$	$>1.2(>4)$	Standing, circulation within queueing
B	$0.9-1.2(10-13)$	$1.1-1.2(3.5-4)$	Standing, partially restricted circulation
C	$0.7-0.9(7-10)$	$0.9-1.1(3-3.5)$	Standing, restricted circula- tion
D	$0.3-0.7(3-7)$	$0.6-0.9(2-3)$	Standing without contact; long term waiting discom- fort

Table 4. Queueing LOS Standards (Source: Fruin)			
LOS	Average Area $\mathbf{m}^{2} / \mathbf{p r}$ $\left(\mathbf{f t}^{2} / \mathbf{p r}\right)$	Interpersonal Spacing $\mathbf{m}(\mathbf{f t})$	Description of Flow Conditions
E	$0.2-0.3(2-3)$	$0.3-0.6(1-2)$	Standing without contact, crowd pressure
F	$<0.2(<2)$	$<0.3(<1)$	Close contact, Uncomfortable

Walking Distances at Airport Terminals

- Numerous surveys in urban studies suggest 400 m . is the maximum walking distance accepted in the U.S. (used in mass transit studies)
- Unfortunately few studies have been conducted to understand how much distance is acceptable at airports terminals
- It is not uncommon today to walk $300-450 \mathrm{~m}$ inside large airport terminals and thus passenger seem to accept this fact

Time-Space Analysis of Holding Areas at Airports

- Pedestrian flow equations are limited to instances where the flow of passengers is uniform and continuos
- There are numerous instances where this analysis is of little us when pedestrians traverse areas inside a terminal where they are forced to stop briefly (i.e., security checkin stations)
- In these circumstances the Time-Space approach provides an alternative to estimate sizes of elements inside a terminal for a given level of service

Time-Space Approach

This approach assumes that the area provided per pedestrian in an element of the airport terminal is the quotient of the Total Supply (TS) and the Total Demand (TD)
$a=\frac{T S}{T D}$
The interpretations of TS and TD are as follows:
$T S=T \times S$
$T D=n \times t$

Time-Space Approach

where:
T is the total period of analysis
S is the total area available at the airport terminal site considered
t is the predicted occupancy (or dwell) time per passenger inside the airport terminal element considered
n is the total number of passengers occupying the airport terminal element considered

Example 2: Time-Space Approach

The airport shown in the next figures has two security checkpoints for all passengers boarding aircraft. Each security check point has two x-ray machines. A survey reveals that on the average a passenger takes 45 seconds to go through the system (negative exponential distribution service time).

The arrival rate is known to be random (this equates to a Poisson distribution) with a mean arrival rate of one passenger every 25 seconds.

In the design year (2010) the demand for services is expected to grow by 60% compared to that today.

Relevant Operational Questions

a) What is the level of service provided with two x-ray machines?
b) If four x-ray machines are installed in the horizon year find the new level of service.

Airport Terminal Layout

\| $\|_{\text {I }}$ Departure Lounges

Ticket Counter Modules

\square Utility Space and Concessions

Security Check Point Layout

Circulation Area
From Ticket Counters
From Ticket Counters

Solution

Since the Time-Space approach requires details about the size of the space provided at the security check point we need to either find this information or assume some reasonable values based on typical security counter spaces.

One good source for typical spaces at airports is IATA's Airport Development Reference Manual (IATA, 1995)

A typical x-ray security layout is shown in the next page

Detail of Security Check Point (IATA)

EXAMPLE OF PASSENGER SEARCH BY WALK-THROUGH MAGNETOMETER WITH HAND BAGGAGE SEARCH BY X-RAY SCANNER

TS Approach Example

- From the previous diagram an area of 3 by 12 meters is needed for each one of the x-ray stations (so $S=36 \mathrm{sq}$. meters per station)
- The queue area is actually treated as a 'black box' where the passenger time in the system is the sum of both the service time and the queueing time
- Note that since the queue length is not known according to this naive model, some estimate of the passage time, t, is necessary. Running the steady-state stochastic model for two servers we obtain an average time in the system of 4 minutes (3.95 min) and thus 4.5 minutes is a reasonable estimate that includes walking time through the black box.

TS Approach Example

$$
a=\frac{T S}{T D}=\frac{T \times S}{n \times t}=\frac{1 \mathrm{hr} \times 72 \mathrm{~m}^{2}}{144 \mathrm{pr} \times 0.075 \mathrm{hr}}=6.7 \frac{\mathrm{~m}^{2}}{\mathrm{pr}}
$$

Looking at the table of walkway levels of service this space would have an equivalent LOS of A

Note that this model requires an estimate of the transit times across the terminal section being analyzed (something that is not always possible)

Other Applications of the TS Approach

The same method has been used to estimate the width of corridors where there is flow interruption activities. For example, window shopping.

Let $S=w l$ be the space available for an activity inside an airport terminal. Here w is the width of the are in question and l is the length of the area in question. Then,
$w=\frac{a n t}{T l}$

Application of TS to Corridor Design

Using example 1 (Chicago O'Hare underground passageway) and compare the answers using the TS method.

- The corridor length is $1,100 \mathrm{ft}(l)$
- At $220 \mathrm{ft} / \mathrm{min}$ it takes 5 minutes to traverse this corridor at LOS C speed (previously computed)
- Assume LOS C (use the same $25 \mathrm{ft}^{2} / \mathrm{pr}$ as before)
- Read the value of a from the chart ($20 \mathrm{ft}^{2} / \mathrm{pr}$)
- 2,500 passengers in 15 minutes (n)

TS Approach to Corridor Design

Applying equation (8),

$$
w=\frac{a n t}{T l}=\frac{25 \times 2500 \times 5}{15 \times 1100}=18.8 \mathrm{ft}
$$

Note that just like before we need to add 2 ft on each side to account for boundary layers at the corridor edges.

The resulting corridor according to this method is then 22.8 ft (or 6.95 m).

Pedestrain Flow Uses in Terminal Airport Models

All simulation languages can extract the instantaneous values of state variables of the system:

- Queue lengths
- Delays (or waiting times)
- These state variables (or statistical metrics in some models) should have en effect in the future (at time $t+\Delta t$ in the simulation) behavior of temporary entities of the model
- If passengers are modeled individually define an attribute (to each passenger) that changes the delay times of future activities (such as moving through a congested corridor)

LOS Modeling in Airport Terminal Models

- Simulation models are much more refined that current methods to estimate levels of service and as such, they describe dynamically a situation that static models such as the TS approach cannot
- Sometimes, however, is necessary to compare the outputs of airport terminal simulation models with LOS standards such as those stated in the literature (Fruin, IATA, etc.)
- One approach to obtain concurrent LOS statistics in your models is to define resources that have physical size attributes associated with them. Once this is done you can compute LOS statistics such as passengers per unit area during the entire simulation.

LOS Modeling in Airport Terminal Models

For example, the plot below shows dynamically how LOS varies for a hybrid simulation of an APM system over time. Notice that at the end we could collect averages.

Airport Cooperative Research Program

- Administered by the Transportation Research Board (TRB)
- FAA funded project to improve the state of knowledge in airport design practice
- ACRP report 25 :Airport

Passenger Terminal Planning and Design

- Volume I: Guidebook
- Volume 2: Excel application

ACRP Report \# 25

- Spreadsheet Models
- CD-ROM contains II spreadsheet model
- Practical learning exercises and several airport-specific sample data sets
- A user's guide to assist the user in the correct use of each model
- Terminal planning as design hour determination, gate demand, check-in and passenger and baggage screening

Design Hourly Flows

- Goal:
- To estimate passenger flows in the design hour
- To estimate hourly flights to be used to size future gate and airport terminal requirements
- Use baseline data to understand the variations of passenger flows and flights over a long period of time

Relationship Between Annual and Hourly

 Flows- Many studies have been conducted to establish a relationship between annual passengers and design hourly flows
- The characteristics of the passenger using the airport influence the hourly design values (i.e., transfer vs destination airports)
- Examples:
- Atlanta Hartsfield - 60\% of passengers transfer
- Punta Cana - 0\% passengers transfer
- Discuss in class how various airport services are affected

Relationship Between Annual and Hourly

Flows (2)

Sample Airport Design Hour Spreadsheet

REQUIRED DATA: Historical Enplanement data from the last 5 complete calendar ye														
Total Commercial Passenger Enplanements										RESET ALL INPUTS				
Year	January	February	March	April	May	June	July	August	September	October	November	December		
2004	339,212	335,431	380,372	383,986	384,009	412,229	433,519	438,881	359,801	392,988	389,683	390,748		
2005	351,751	343,331	410,799	410,089	417,314	431,319	448,310	453,798	381,840	396,737	390,193	386,018		
2006	346,250	345,682	406,676	412,639	410,434	430,066	437,895	446,311	373,111	401,655	395,973	407,416		
2007	371,721	365,513	432,975	433,370	438,341	452,244	456,592	478,329	388,735	414,229	390,115	366,854		
2008	350,450	350,533	408,656	392,136	385,109	398,749	411,909	419,764	342,455	362,867	325,972	344,026		
Year	Total	Monthly Average	Maximum Value	Peak Month	$\begin{gathered} \text { PM } \\ \% \text { of Year } \end{gathered}$		have	termin	ed AUGU	T to be	the Pea	Month		
2004	4,640,859	386,738	438,881	August	9.5\%									
2005	4,821,499	401,792	453,798	August	9.4\%									
2006	4,814,108	401,176	446,311	August	9.3\%									
2007	4,989,018	415,752	478,329	August	9.6\%					Procee				
2008	4,492,626	374,386	419,764	August	9.3\% Average Peak Month 9.4\% Percentage of Annual					Next Step				
Average Peak Month				AUGUST										
		Input Cells												
	Calcu	ated Values												
	Linked/Sh	ared Values												
(1) Cllak the 'RESET ALL INPUTS' button to begin.														
(2) Input the most recent full calendar year into Cell A11 (i.e. 2008)														
(3) Inpul monthly enplanements data from one of the following sources: Airport records, U.S. DOT (T-100), FAA (Air Traffic data), or OAG(using Scheduled Seats).														
(4) Rovilow the Peak Month results in Cells E14:E18 and the most common month, giving more weight to more recent years, in Cell E19.														

\rightarrow The Peak Months should be consistent; if not, specific knowledge of the conditions affecting the variation should be investigated. If the variation is due to the similarity between certain months, data from earlier years may be gathered to help confirm the most common peak month.

Peak Month Average Day

Raw Schedule to Arrival Data

USE THIS WORKSHEET TO CONVERT A RAW SCHEDULE INTO ARRIVAL DATA FOR A ROLLING 10 MINUTE MODEL

Design Hour Activity Levels

USE THIS WORKSHEET TO FORECAST DESIGN HOUR ACTIVITY LEVELS

Application of Stochastic and Deterministic Queueing Theory in Airport Terminal Design

Basic Discussion

- Use stochastic queues with care - airport terminals are very dynamic and might never reach steady-state conditions
- Use stochastic queues when the demand is less than the supply function (i.e., demand < capacity)
- Use deterministic queues when the demand exceeds supply (saturation or congested conditions)

Multiserver Stochastic Queueing Equations

Assume an infinite source queue with constant λ and μ

- Poisson arrivals with parameter λ_{n}
- Probability function of service completions is negative exponential with parameter μ_{n}
- Only one arrival or service occurs at a given transition

For more information on queueing models consult any Operations Research textbook (i.e., Hillier and Lieberman, 1996)

Multi-server Queueing Equations (I)

$\rho=\lambda / s \mu$ utilization factor
Probabilities of zero and n entities in the system

$$
\begin{gather*}
P_{0}=1 /\left(\sum_{n=0}^{s-1} \frac{(\lambda / \mu)^{n}}{n!}+\frac{(\lambda / \mu)^{s}}{s!}\left(\frac{1}{1-(\lambda / s \mu)}\right)\right) \tag{1}\\
P_{n}=\left(\begin{array}{lc}
\frac{(\lambda / \mu)^{n}}{n!} P_{0} & 0 \leq n \leq s \\
\frac{(\lambda / \mu)^{n}}{s!s^{n-s}} P_{0} & n \geq s
\end{array}\right. \tag{2}
\end{gather*}
$$

Multi-server Queueing Equations (II)

Expected no. of entities in system

$$
\begin{equation*}
L=\frac{\rho P_{0}\left(\frac{\lambda}{\mu}\right)^{s}}{s!(1-\rho)^{2}}+\frac{\lambda}{\mu} \tag{3}
\end{equation*}
$$

Expected no. of entities in queue

$$
\begin{equation*}
L_{q}=\frac{\rho P_{0}\left(\frac{\lambda}{\mu}\right)^{s}}{s!(1-\rho)^{2}} \tag{4}
\end{equation*}
$$

Multi-server Queueing Equations (III)

Average waiting time in queue

$$
\begin{equation*}
W_{q}=\frac{L_{q}}{\lambda} \tag{5}
\end{equation*}
$$

Average waiting time in system

$$
\begin{equation*}
W=\frac{L}{\lambda}=W_{q}+\frac{1}{\mu} \tag{6}
\end{equation*}
$$

Example 3: Level of Service at Airport Terminal Security Checkpoints

The airport shown in the next figures has two security checkpoints for all passengers boarding aircraft. Each security check point has two x-ray machines. A survey reveals that on the average a passenger takes 45 seconds to go through the system (negative exponential distribution service time).

The arrival rate is known to be random (this equates to a Poisson distribution) with a mean arrival rate of one passenger every 25 seconds.

In the design year (2010) the demand for services is expected to grow by 60% compared to that today.

Relevent Operational Questions

a) What is the current utilization of the queueing system (i.e., two x-ray machines)?
b) What should be the number of x-ray machines for the design year of this terminal (year 2010) if the maximum tolerable waiting time in the queue is 2 minutes?
c) What is the expected number of passengers at the checkpoint area on a typical day in the design year (year 2010)?
d) What is the new utilization of the future facility?
e) What is the probability that more than 4 passengers wait for service in the design year?

Airport Terminal Layout

IIII
 Departure Lounges

Ticket Counter Modules

Security Check Points

Utility Space and Concessions

Security Check Point Layout

Circulation Area

From Ticket Counters
From Ticket Counters

Arriving Passengers

Security Check Point Solutions

a) Utilization of the facility, ρ. Note that this is a multiple server case with infinite source.
$\rho=\lambda /(s \mu)=140 /(2 * 80)=0.90$
Other queueing parameters are found using the steadystate equations for a multi-server queueing system with infinite population are:

Idle probability $=0.052632$
Expected No. of customers in queue (Lq) $=7.6737$
Expected No. of customers in system (L) $=9.4737$
Average Waiting Time in Queue $=192 \mathrm{~s}$
Average Waiting Time in System $=237 \mathrm{~s}$
b) The solution to this part is done by trail and error (unless you have access to design charts used in queueing models. As a first trial lets assume that the number of x-ray machines is 3 ($s=3$).

Finding Po, $\quad P_{0}=\sum_{n=0}^{s-1} \frac{(\lambda / \mu)^{2}}{n!}+\frac{(\lambda / \mu)^{s}}{s!}\left(\frac{1}{1-(\lambda / s \mu)}\right)$
$\mathrm{Po}=.0097$ or less than 1% of the time the facility is idle
Find the waiting time in the queue,
$\boldsymbol{W q}=332 \mathrm{~s}$
Since this waiting time violates the desired two minute maximum it is suggested that we try a higher number of x-ray machines to expedite service (at the expense of
cost). The following figure illustrates the sensitivity of P_{o} and L_{q} as the number of servers is increased.

Note that four x-ray machines are needed to provide the desired average waiting time, Wq.

Sensitivity of Po with S

Note the variations in Po as S increases.

Sensitivity of L with S

Sensitivity of $L q$ with S

Sensitivity of $W q$ with S

This analysis demonstrates that 4 x -ray machines are needed to satisfy the 2-minute design constraint.

Sensitivity of W with S

Note how fast the waiting time function decreases with S

Security Check Point Results

c) The expected number of passengers in the system is (with $S=4$),

$$
L=\frac{\rho P_{0}\left(\frac{\lambda}{\mu}\right)^{s}}{s!(1-\rho)^{2}}+\frac{\lambda}{\mu}
$$

$L=4.04$ passengers in the system on the average design year day.
d) The utilization of the improved facility (i.e., four x-ray machines) is
$\rho=\lambda /(s \mu)=230 /(4 * 80)=\mathbf{0 . 7 2}$
e) The probability that more than four passengers wait for service is just the probability that more than eight passengers are in the queueing system, since four are being served and more than four wait.

$$
P(n>8)=1-\sum_{n=0}^{8} P_{n}
$$

where,

$$
\begin{array}{ll}
P_{n}=\frac{(\lambda / \mu)^{n}}{n!} P_{0} & \text { if } n \leq s \\
P_{n}=\frac{(\lambda / \mu)^{n}}{s!s^{n-s}} P_{0} & \text { if } n>s
\end{array}
$$

from where, $\mathrm{P}_{\mathrm{n}}>8$ is 0.0879 .
Note that this probability is low and therefore the facility seems properly designed to handle the majority of the expected traffic within the two-minute waiting time constraint.

PDF of Customers in System (L)

The PDF below illustrates the stochastic process resulting from poisson arrivals and neg. exponential service times

Deterministic Queue

Numerical Estimation of Queueing Parameters

Deterministic Queue Parameters

- The queue length, L_{t}, (i.e., state of the system) corresponds to the vertical distance between the cumulative demand and supply curves
- The waiting time, W_{t}, denoted by the horizontal distance between the two cumulative curves in the diagram is the individual waiting time of an entity arriving to the queue at time $t_{\text {in }}$
- The total delay is the area under bounded by the cumulative demand and supply curves
- The average delay time is the quotient of the total delay and the number of entities processed

State of System Definition

Define the state of the system as L_{t},
$L_{t}=\int_{0}^{t}\left(\lambda_{t}-\mu_{t}\right) d t$
L_{t} is the instantaneous queue length
λ_{t} is the arrival rate function (demand)
μ_{t} is the service rate function (supply)

Differential Equation Representation

Most continuous simulations can be expressed as a set of first order differential equations. The previous state equation for L_{t} implies:
$\overline{d L}^{d t}{ }^{t}=\left(\lambda_{t}-\mu_{t}\right)$
This equation can be solved numerically (integrating forward with respect to time) if expressed in finite difference form,
$L_{t}=L_{t-1}+\left(\lambda_{t}-\mu_{t}\right) \Delta t$

A Word About Integration Algorithms

Several techniques can be implemented to solve a set of first order differential equations:

Euler Method - Simplest representation of rate variables (assumes rate variables are constant throughout the integration step size)

Runge- Kutta Methods - Several variations exist of these methods (3rd, 4th, 5th order). Uses a weighted average rate to estimate state variables every integration step. More accurate but more demanding computationally.

Example 5 - Airport Layout

This example assumes all service areas (ticket counters, security checks, etc.) to be equally spaced inside the airport terminal)

Mathematical Description of the Problem

$\lambda=1500$ for $0<t<1$
$\lambda=500$ for $t>1$
where, λ is the arrival function (demand function) and t is the time in hours. Estimate the following parameters:
-The maximum queue length, $L(t)_{\max }$
-The total delay to passengers, T_{d}
-The average length of queue, L
-The average waiting time, W
-The delay to a passenger arriving 30 minutes hour after the terminal closes for repairs

Problem Solution (I)

The demand function has been given explicitly in the statement of the problem. The supply function (μ)as stated in the problem is,
$\mu=1000$ if $t<2$
$\mu=1500$ if $t>2$
Plotting the demand and supply functions might help understanding the problem

Problem Solution (II)

Demand and supply functions for the sample problem Flow Rate (passengers/hr)

Problem Solution (III)

Sample table simulation using a spreadsheet approach

Simulation Time (hr)	State Variable $\left(\mathbf{L}_{\mathbf{t}}\right)$	Rate Variable $\left(\lambda_{\mathbf{t}}\right)$	Rate Variable $\left(\mu_{\mathbf{t}}\right)$	Sum of Rates $\left(\lambda_{\mathbf{t}}-\mu_{\mathbf{t}}\right)$	(Sum of Rates) $\Delta \mathbf{t}$
0	0.0	1500.0	1000.0	500.0	100.0
0.2	100.0	1500.0	1000.0	500.0	100.0
0.4	200.0	1500.0	1000.0	500.0	100.0
0.6	300.0	1500.0	1000.0	500.0	100.0
0.8	400.0	1500.0	1000.0	500.0	100.0
1.0	500.0	500.0	1000.0	-500.0	-100.0

Simulation Time $(\mathbf{h r})$	State Variable $\left(\mathbf{L}_{\mathbf{t}}\right)$	Rate Variable $\left(\lambda_{\mathbf{t}}\right)$	Rate Variable $\left(\mu_{\mathbf{t}}\right)$	Sum of Rates $\left(\lambda_{\mathbf{t}}-\mu_{\mathbf{t}}\right)$	(Sum of Rates) $\Delta \mathbf{t}$
1.2	400.0	500.0	1000.0	-500.0	-100.0
1.4	300.0	500.0	1000.0	-500.0	-100.0

This procedure uses Euler's Method to estimate state variables (i.e., rates λ_{t} and μ_{t} are assumed constant throughout every numerical integration interval).

Problem Solution (IV)

Cumulative flow plots can help visualize the problem

Problem Solution (V)

The average queue length (L) during the period of interest, we evaluate the total area under the cumulative curves (to find total delay)
$T_{d}=2[(1 / 2)(1500-1000)]=500$ passengers-hour
a) The maximum number of passengers in the queue, $L(t)$ max,
$L(t)_{\max }=1500-1000=500$ passengers at time $t=1.0$ hours

Find the average delay to a passenger (W)

Problem Solution (VI)

$$
W=\frac{T_{d}}{N_{d}}=15 \text { minutes }
$$

where, T_{d} is the total delay and N_{d} is the number of passengers that where delayed during the queueing incident.

$$
L=\frac{T_{d}}{t_{q}}=250 \text { passengers }
$$

where, T_{d} is the total delay and t_{d} is the time that the queue lasts.

Problem Solution (VII)

Now we can find the delay for a passenger entering the terminal 30 minutes after the partial terminal closure occurs. Note that at $\mathrm{t}=0.5$ hours 750 passengers have entered the terminal before the passenger in question. Thus we need to find the time when the supply function, $\mu(\mathrm{t})$, achieves a value of 750 so that the passenger "gets serviced". This occurs at,

$$
\mu(t+\Delta t)=\lambda(t)=750
$$

therefore Δ t is just 15 minutes (the passenger actually leaves the terminal at a time $t+\Delta$ t equal to 0.75 hours). This can be shown in the diagram on the next page.

Problem Solution (VIII)

Demand and supply functions for example problem

Handling Complex Time-Varying Behaviors

The methodology described in previous pages can be extended to understand complex airport time-varying behaviors.

Examination of the basic state equation,
$L_{t}=L_{t-1}+\left(\lambda_{t}-\mu_{t}\right) \Delta t$
reveals that as long as the arrival and service flow rates (i.e., λ_{t} and μ_{t} are known functions of time - regardless their mathematical complexity - the process of finding the state, L_{t}, is simple using numerical integration.

People Conveyance Systems

People Conveyance Systems

- At airports it is necessary to implement people conveyance systems such as electrical escalators, moving sidewalks (or power walks), and Automated People Movers (APM)
- The general goals of these systems are:
- Reduce connection times
- Changes in vertical flows (2-level terminals)
- Reduce the actual walking distances for passengers
- Improve the level of service (indirectly the image of the airport)
- Move large volumes of passengers per unit of time

Electrical Escalator Capacities

Electrical escalators come in various widths and tread speeds. Shown below are some standard escalators used in the US.

Table 7. Typical Characteristics of Electrical Escalators (Fruin).

Width at Hip $\mathbf{m m}(\mathbf{i n})$	Width at Tread $\mathbf{m m}(\mathbf{i n})$	Theoretical Capacity (pr/hr)	Practical Capacity (pr/hr)
$813(32)$	$610(24)$	5,000	$2,040^{\mathrm{a}}$
		6,700	$2,700^{\mathrm{b}}$
$1219(48)$	$1016(40)$	8,000	4,080
		10,700	5,400

a. $90 \mathrm{ft} / \mathrm{min}$ linear speed
b. $120 \mathrm{ft} / \mathrm{min}$ linear speed

Electrical Escalator Examples

Moving Sidewalks

- Mechanical-electrical systems used to reduce walking distance at many airports
- Share similar performance characteristics with electrical escalators
- Given the horizontal disposition of movinf sidewalks add 10% to the practical capacity of an escalator

Moving Sidewalks Examples

More Examples

APM Fundamentals

Automated People Mover (APM) Systems:

1. Fully automated
2. No drivers
3. Operating on a guideway
4. Exclusive right-of-way
5. Expensive (40-80 Million per mile)
6. Link between airport terminal activities
7. Link to other transportation modes (i.e., mass transit)

APM Background

Tampa International Airport

- In 1971
- First APM system

City of Miami

- In 1986
- First DPM in the United States

Today, more than 20 airports (44 worldwide) have APM systems in the United States including:

- SEATAC, Atlanta, Chicago, Dallas-Forth Worth, Denver, Orlando, etc.

Automated People Mover References

- Airport Cooperative Research Program (ACRP)

ACRP REPORT 37

Guidebook for Planning and Implementing Automated People Mover Systems at Airports

LEA+ELLIOTT
Dulles, Virginia
with

KIMLEY-HORN AND ASSOCIATES, INC.
Houston, Texas

APM Configurations

Single-Lane Shuttle

Single-Lane Shuttle with Bypass

Double-Lane Shuttle

Single-Lane Loop

APM Configurations (cont.)

Double-Lane Loop

Pinched Loop with Turnbacks

Airside Automated People Movers

Airport	Year Opened	Alignment Configuration	APM Function ${ }^{1}$	Length (miles) ${ }^{2}$
Tampa	1971	Shuttles	O/D	$0.7{ }^{3}$
Seattle	1973	Shuttle \& Loops	O/D	1.7^{3}
Miami	1980	Shuttle	O/D	0.4
Atlanta	1980	Pinched Loop	Transfer	1.0
Orlando	1981	Shuttles	O/D	1.5^{3}
Las Vegas	1985, 1998	Shuttles	O/D	0.2, 0.6
Singapore	1990, 2006	Shuttles	Transfer	$0.7{ }^{3}$
London (Stan)	1991	Pinched Loop	O/D	0.4
Tokyo	1992	Shuttles	Transfer	0.2
Pittsburgh	1992	Shuttle	Transfer	0.4
Cincinnati	1994	Shuttle	Transfer	0.2
Frankfurt	1994	Pinched Loop	Transfer	1.0
Osaka Kansai	1994	Shuttle	Transfer	0.7
Denver	1995	Pinched Loop	Transfer	1.2
Kuala Lumpur	1998	Shuttle	O/D	0.8
Hong Kong	1998	Pinched Loop	Transfer	0.8
Houston	1999	Pinched Loop	Transfer	0.7
Rome	1999	Shuttle	O/D	0.4
Detroit	2002	Shuttle	Transfer	0.7
Zurich	2003	Shuttle	O/D	0.7
Taipei	2003	Shuttle	O/D	0.8
Minn/St. Paul	2002	Shuttle	Transfer	0.5
Dallas/Fort Worth	1974, 2005	Loops	Transfer	4.9
Madrid	2006	Pinched Loop	Transfer	1.7
Paris-CDG	2007	Shuttle	O/D	0.4
Mexico City	2007	Shuttle	O/D	1.9
London LHR	2008	Shuttle	O/D	0.4
Beijing	2008	Pinched Loop	O/D	1.2
Seoul	2008	Shuttle	O/D	0.6
Washington Dulles	2010	Pinched Loop	Transfer	1.9

Landside Automated People Movers

Airport	Year Opened	Alignment Configuration	Service To	Length (miles) ${ }^{1}$
Houston	1981	Loop	Terminals	1.0^{2}
London Gatwick	1987	Shuttle	Terminals, Intermodal	0.7
Tampa	1990	Pinched Loop	Parking, Car Rental	0.6
Paris-Orly	1991	Pinched Loop	Terminals, Intermodal	4.5
Chicago	1993	Pinched Loop	Terminals, Parking, Intermodal	2.7
Newark	1996	Pinched Loop	Terminals, Parking, Intermodal, Car Rental	3.2
Minneapolis/St. Paul	2001	Shuttle	Parking, Intermodal, Car Rental	0.2
Dusseldorf	2002	Pinched Loop	Parking, Intermodal	1.6
New York-JFK	2003	Pinched Loop	Terminals, Parking, Intermodal, Car Rental	8.1
Birmingham (UK)	2003	Shuttle	Intermodal	0.4
San Francisco	2003	Loops	Parking, Intermodal, Car Rental	2.8
Singapore Changi	1990/2006	Shuttles	Terminals	0.8
Toronto	2006	Shuttle	Terminals, Parking	0.9
Paris-CDG	2007	Pinched Loop	Terminals, Parking, Intermodal	2.1
Atlanta	2009	Pinched Loop	Terminal, Car Rental, and Convention Center	1.4

source:ACRP Report 37 (2010)

APM Capacity Estimation

The basic equation for APM capacity usually predicated in terms of a minimum headway, $h_{\text {min }}$
$h_{\text {min }}$ is usually dictated by APM station capacity since stops at stations would require between $30-45$ seconds of stopped time under demanding flow conditions
$h_{\text {min }}$ should be the least of station headway and guideway headway (this last one dictated by safety considerations) to make sure two TUs do not collide even if the leading TU stops instantaneously - brick wall analogy

APM Capacity Analysis

$C=\frac{3600 C_{v} n}{h_{\text {min }}}$
where:
C is the hourly capacity of the APM system (passengers per hour)
C_{v} is the capacity of each vehicle (passengers per vehicle)
n is the number of vehicles per transit unit (in the APM)
and $h_{\text {min }}$ is the minimum headway (seconds)

APM Capacity Fundamental Equations (Matlab Code)

\% Computation of APM capacity based on headway
\% A. Trani (March 2000)
\% Input parameters
$\mathrm{Cv} \quad=40 ; \%$ Capacity per vehicle
$\mathrm{n} \quad=3 ; \%$ Number of vehicles per TU
hlow $=45 ; \%$ Low headway (seconds)
hhigh $=240 ; \%$ High headway (seconds)
$\mathrm{nn} \quad=15 ; \%$ points on capacity curve

> interval = round((hhigh-hlow)/nn);
$\mathrm{i}=1: 1: \mathrm{nn}$
$\mathrm{h}(\mathrm{i})=$ hlow + interval * (i-1);
$\mathrm{C}(\mathrm{i})=3600 * \mathrm{n} * \mathrm{Cv} . / \mathrm{h}(\mathrm{i})$;
$\operatorname{plot}(\mathrm{h}, \mathrm{C})$
xlabel('Headway (s)')
ylabel('Capacity (pr/hr)')
grid

Sample APM Capacity Curve

Assumptions: $\mathrm{n}=3$ vehicles/TU, $\mathrm{Cv}=40 \mathrm{pr} /$ vehicle

Automated People Movers: Capacity

source: Lea + Elliott, Inc. and ACRP Report 37 (2010)

Automated People Movers : Database

source: Lea + Elliott, Inc. and ACRP Report 37 (2010)

Automated People Movers: Capacities

source: Lea + Elliott, Inc. and ACRP Report 37 (2010)

APM Requirements Analysis

- Level of Service Analysis
- APM Demand Analysis
- Capacity Analysis
- Flow Analysis
- Energy Consumption Analysis

References

1) Lin, Y. A Simulation Model of an Automated People Mover at Airports. M.S. Thesis. Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.
2) Kulkarni, M. Development of a Landside Terminal Simulation Model. M.S. Thesis. Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.
3) Fruin, J.J. Designing for Pedestrians. in Public Transportation Systems. Hoel and Gray: Editors. John Wiley and Sons, New York, 1993.
4) IATA. Airport Development Reference Manual: 8th Edition. International Airline Transport Association, Montreal, 1995.
