Assignment 7: Airport Geometric Design Standards

Date Due: October 30, 2023 Instructor: Trani

Problem 1

A new airport is designed with two satellite terminal buildings as shown in Figure 1. The buildings are designed to accommodate aircraft up to the size of a **Boeing 787-10** and the Airbus **A350-1000**.

a) Find the dimensions A through R in Figure 1. Make sure that your design allows pilots entering the gate position to maneuver with steering angles no more than 50 degrees. Assume the service roads have 12-foot wide lanes.

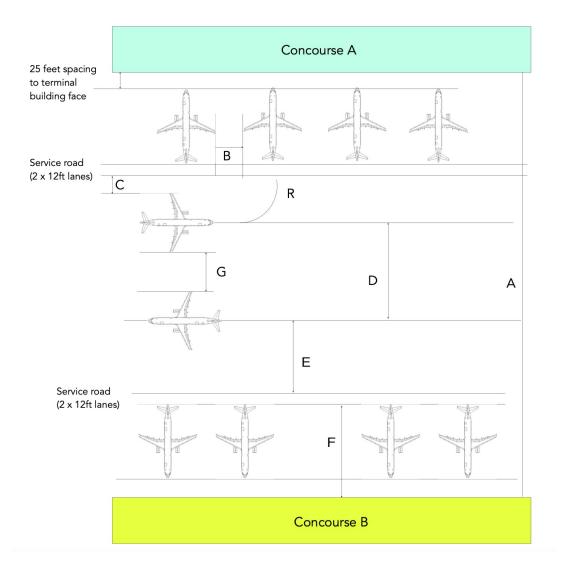
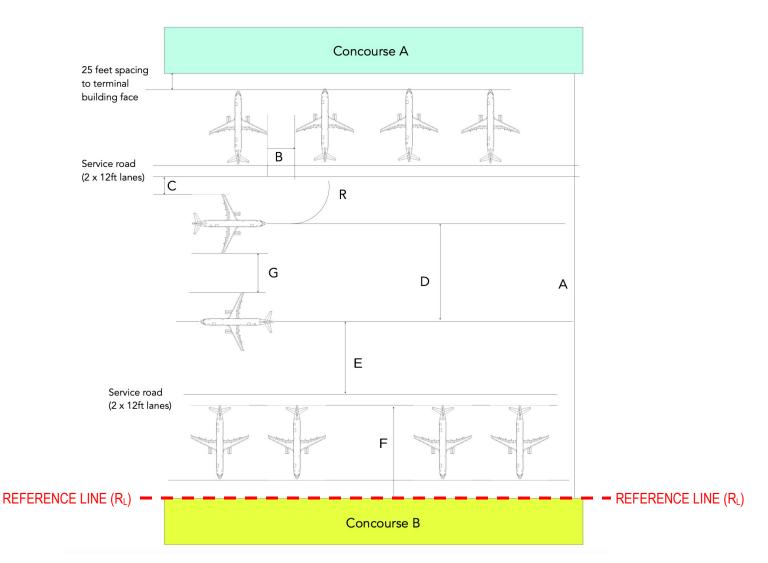



Figure 1. Airport Dual-Taxilane Configuration for Problem 1.

Based on its longer length and wider wingspan, the Airbus A350-1000 (A35K) is the critical aircraft

A35K: Length (L): 242.1 ft Wingspan (W): 212.4 ft Approach speed: 154 kts Tail Height: 57.1 ft CMG: 111.8 ft MGW: 42.1 ft

Therefore, AAC D | ADG V | TDG 6

Beginning at the reference line in the annotated figure above:

F = 25 ft + Aircraft Length = 0 ft + 25 ft + 242.1 ft = 267.1 ft

E = 135 ft (required separation for ADG-V aircraft from taxilane centerline to fixed or moveable object, per Table 4-1)

D = 242 ft (required separation for ADG-V aircraft from taxilane centerline to parallel taxilane centerline, per Table 4-1)

G = 28 ft (Separation for ADG-V aircraft from wingtip to wingtip, per Table 4-1)

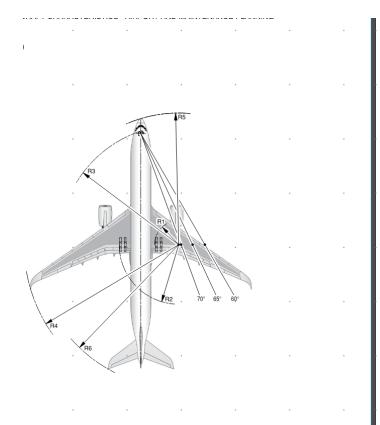
Alternatively,

G = D – Aircraft Wingspan / 2 – Aircraft Wingspan / 2

- = D Aircraft Wingspan
- = 242 ft 212.4 ft

= 29.6 ft

C = 30 ft (required separation for TDG-6 aircraft from wingtip to taxiway shoulder, per Table 4-2)


Alternatively,

C = E – Aircraft Wingspan / 2 = 135 ft – 212.4 ft / 2 = 28.8 ft

A = 25 + Aircraft Length + (2 x 12) + E + D + Aircraft Wingspan / 2 + C + (2 x 12) + Aircraft Length + 25 = 25 ft + 242.1 ft + 24 ft + 135 ft + 242 ft + 212.4 ft / 2 + 30 ft + 24 ft + 242.1 ft + 25 ft = 1095.4 ft

B = 25 ft (required separation for ADG-V aircraft from wingtip to wingtip, per Table 5-1)

R = 163 ft

**ON A/C A350-1000											
A350-1000 TURNING RADII											
	TYPE OF TURN -	STEERING ANGLE (deg)	EFFECTIVE STEERING ANGLE (deg)		R1 RMLG	R2 LMLG	R NI		R4 WING	R5 NOSE	R6 TAIL
	2	20	14.7	m ft	119.4 392	130.2 427	2 12 3.6 4 22		156.8 514	129.3 424	138.2 453
	2	25	19.8	m ft	85.9 282	96.6 317	9	.4 6	123.3 405	97.6 320	106.2 348
	2	30	24.2	m ft	67.9 223	78.6 258		.8 2	105.5 346	81.3 267	89.5 294
	2	35	28.5	m	55.5 182	66.2 217	6	.6 25	93.2 306	70.4	78.3
	2	40	33.3	m ft	45.1	55.8 183	5	.6 96	82.9 272	61.8 203	69.3 227
	2	45	37.4	m	38.1	48.8		.9	76.1	56.4 185	63.5 208
	2	50	41.4	m	32.5	43.2	49.6 163		70.5	52.3	59.0 194
	2	55	45.6	m	27.4	38.2 125	45.9		65.6 215	48.9	55.2 181
	2	60	49.2	m	23.7	34.4	43.3		61.9	46.5	52.4
	2 .	65	- 52.6 -	ft m	78 20.5	113 31.2	41.2		203 58.8	153 44.7	172 50.2
	2	70	56.0	ft m	67 17.5	102 28.3	135 39.5		193 55.9	147 43.1	165 48.2
	2	75 (MAX)	63.7	ft m	58 11.7	93 22.4	130 36.5		183 50.3	141 40.4	158 44.6
				ft	38	74	12		165	133	146
	1 .	50	- 45.4 -	m ft	27.7 91	38.4 126	46.0 151		65.8 216	49.0 161	55.3 182
	1	55	51.2	m ft	21.7 71	32.5 107	42.0 138		60.0 197	45.4 149	51.1 167
	1	60	56.1	m ft	17.5 57	28.2 92	39.5 129		55.9 183	43.1 141	48.2 158
	1.	65	. 60.6 .	m ft	13.9 46	24.7 81	37		52.4 172	41.4 136	46.0 151
	1	70	65.4	m ft	10.5 34	21.2 70	36		49.1 161	40.0 131	44.0 144
	1	75 (MAX)	68.7	m ft	8.3 27	19.0 62	35.1 115		47.0 154	39.2 129	42.8 140
								-			

NOTE: ABOVE 50°, AIRLINES MAY USE TYPE 1 OR TYPE 2 TURNS DEPENDING ON THE SITUATION. TYPE 1 TURNS USE: ASYMMETRIC THRUST DURING THE WHOLE TURN; AND DIFFERENTIAL BRAKING TO INITIATE THE TURN ONLY. TYPE 2 TURNS USE: SYMMETRIC THRUST DURING THE WHOLE TURN; AND NO DIFFERENTIAL BRAKING AT ALL.