Airport Runway Location and Orientation

Dr. Antonio Trani

with contributions by Julio Roa and Osama Alsalous Department of Civil and Environmental Engineering

Virginia Tech

The following factors should be considered in locating and orienting a runway:

• Wind

Virginia l'ech

- Airspace availability
- Environmental factors (noise, air and water quality)
- Obstructions to navigation
- Air traffic control visibility
- Wildlife hazards

Read Chapter 2 of FAA AC/150-5300-13a for more information about each topic.

Demonstrated Wind Conditions

Each aircraft has a uniquely stated maximum crosswind component (derived from flight test experiments)

- A Boeing 727-200 (approach group C) has a maximum demonstrated wind component of 35 knots
- A Cessna 172 (a single engine aircraft falling in approach speed group A) has a maximum demonstrated crosswind component of 17 knots

The challenge for the designer is to accommodate all of the aircraft using the facility in a reliable and reasonable manner

Wind is reported on an azimuthal basis as shown below

NOTE: Winds are reported with respect to the magnetic North (in ATC transmissions) but many times reported with respect to the true North in printed applications.

Design Criteria (FAA and ICAO)

virginia

- Read Chapter 2 of FAA AC 150/5300-13 or Aerodrome Design Manual (Volume 1 for ICAO standards)
- Employ the **most critical aircraft expected to operate** in the airfield (in this context the most critical is the largest
- Employ the most critical aircraft expected to operate in the airfield (in this context the most critical is the largest aircraft)
- Provide a runway (or runways) orientation that satisfies 95% coverage (i.e., crosswinds below a critical value) considering multiple year wind conditions
- If one runway does not meet the 95% criteria provide a second crosswind runway

FAA Crosswind Design Criteria

Recognizing that each aircraft has unique maximum demonstrated crosswind characteristics the FAA (and ICAO as well) set a low value for crosswind design criteria.

RDC	Allowable Crosswind Component
A-I and B-I *	10.5 knots
A-II and B-II	13 knots
A-III, B-III,	16 knots
C-I through D-III	
D-I through D-III	
A-IV and B-IV,	20 knots
C-IV through C-VI,	
D-IV through D-VI	
E-I through E-VI	20 knots

* Includes A-I and B-I small aircraft.

Source: Table 3.1 of FAA AC 150/5300-13A

ICAO has two aerodrome classifications shown in the table below.

	Code element 1		Code element	2
Code number (1)	CodeAeroplane referencenumberfield length(1)(2)		Wing span (4)	Outer main gear wheel span ^a (5)
1	Less than 800 m	А	Up to but not including 15 m	Up to but not including 4.5 m
2	800 m up to but not including 1 200 m	В	15 m up to but not including 24 m	4.5 m up to but not including 6 m
3	1 200 m up to but not including 1 800 m	С	24 m up to but not including 36 m	6 m up to but not including 9 m
4	1 800 m and over	D	36 m up to but not including 52 m	9 m up to but not including 14 m
		Е	52 m up to but not including 65 m	9 m up to but not including 14 m
		F	65 m up to but not including 80 m	14 m up to but not including 16 m

a. Distance between the outside edges of the main gear wheels.

ICAO Aerodrome Design and Operations (Volume 1)

ICAO Crosswind Design Criteria

Similar to the FAA criteria in many ways but simpler (only three design values - instead of four).

Runway Length (m.)	Design Crosswind Value (knots)
< 1,200	10.0
1,200 - 1,500	13.0
> 1,500	20.0

For airports that experience poor braking action with regular frequency use 13 knots instead of 20 knots.

Wind Data Needs for Airport Design

For mountainous terrain with data without wind data, the use of nearby stations is of questionable value

- Take one year of wind data if possible
- Several automated reporting systems exist at airports that can be used for this purpose
- AWOS Automated Weather Observation System
- The data available from NOAA usually includes 10-15 years (daily observations)
- Use 5-10 years of data for airport planning purposes (except when you are collecting the data yourself)

Sample Wind Data (Electronic Format)

			Hourly O	bservatio	ns of Wind	Speed (k	nots)		
Direction	0-3	4-6	7-10	11-16	17-21	22-27	28-33	34-40	> 41
10°	137	929	846	970	149	17	2	2	0
20°	171	894	608	436	42	6	2	0	0
30°	131	749	441	248	14	1	2	0	0
40°	129	603	339	163	13	0	1	2	0
50°	116	645	347	203	22	1	0	0	0
60°	89	616	273	149	12	1	0	0	0
70°	119	668	289	163	11	1	0	0	0
80°	129	725	310	175	27	1	0	0	0
90°	113	748	311	185	31	2	1	2	0
100°	102	860	378	229	27	5	0	0	0
110°	116	802	494	353	47	1	1	0	0
120°	177	1060	781	625	98	14	1	0	0
130°	147	1444	1133	1092	178	19	5	0	0
140°	176	2002	1485	1619	314	22	0	0	0
150°	176	2354	2024	2330	521	68	3	0	0
160°	195	2455	2134	3288	920	114	1	0	0

weather stations at airports (including ATIS information) is reported with reference to the magnetic north

III Virginia Tech

- Aviation weather reports such as Meteorological Aerodrome Reports (METAR) and Terminal Area Forecasts (TAF) are referenced to true North
- Winds Aloft, etc. are given with reference to true North
- Check the source of the wind data to make sure your analysis is accurate

Virginia Tech Montgomery Executive Airport Automated Weather Observing System (AWOS)

"Magnetic variation, is the angle on the horizontal plane between magnetic north (the direction the north end of a magnetized compass needle points, corresponding to the direction of the Earth's magnetic field lines) and the true north." (Wikipedia)

Source: Wikipedia

Source: Wikipedia

Wind Rose Analysis

Virginia lech

- A clever way to portray all wind data in a graphical template
- Used to estimate the percent of time wind coverage satisfies a threshold crosswind value
- The wind rose is just a graphical way to decompose wind vector data
- The wind rose is populated with percentages derived from wind observations
- Wind rose is part of the data provided in the Airport Layout Plan (ALP)

Wind Rose Template

The Wind Rose contains the percent of the time the wind blows from a narrow set of azimuthal directions and within a range of wind speeds

UirginiaTech

Rectangular template indicates critical cross wind strength (16 knots shown)

Sample Wind Rose with Data

Wind Rose Coverage (Single Runway)

20 knot crosswind (99.73%)

UrginiaTech

10 knot crosswind (92.98%)

Principle of Why the Wind Rose Works

- The wind rose is a clever way to decompose wind vectors
- The Wind Rose determines the cross wind component for a given wind direction and speed
- If the "wedge" of wind is covered by the rectangular template, the cross wind is below the critical crosswind used to draw the rectangle

Principle of Why the Wind Rose Works

Average wind vector:

- a) 25-35 degrees
- b) 11-16 knots

crosswind magnitude is: W_c = (13.5 knots) sin (38 deg) = 8.31 knots

Crosswind component of average wind vector is contained by the 10 knot rectangular boundary (hence covered)

Wind Data Sources

Obtaining Wind Data for Wind Rose Analysis

Source	Data	Website
cli-MATE	Integrated site with wind data and wind rose analysis	https://mrcc.purdue.edu/CLIMATE/ welcome.jsp
Federal Aviation Administration Airport Data Information Portal (ADIP)	Nice integrated site with wind data and wind rose analysis Wind data every 10 degrees of azimuth (36 bins)	<u>https://adip.faa.gov/agis/portal/</u> <u>#/portal</u>
Iowa State University Mesonet Site	Integrated site with wind data and wind rose analysis Wind data every 10 degrees of azimuth (36 bins)	<u>https://</u> <u>mesonet.agron.iastate.edu/</u> <u>agweather/</u>

Obtaining Wind Data from cli-MATE

- 1. Go to https://mrcc.purdue.edu/CLIMATE/welcome.jsp
- 2. You need to register to use this site (free)
- 3. Select wind rose panel

VirginiaTech

vent the Future

4. Data is maintained by the Midwestern Regional Climate Center's

UrginiaTech

Graphic Interface to Obtain Wind Data from cli-MATE

Select the Wind Summary Type Wanted and the Number of Compass Points

UirginiaTech

nvent the Future

Wind Rose (Example for Midway Airport)

UirginiaTech

Table Depiction of Wind Rose Data

CHICAGO MIDWAY AP (IL) - Wind Frequency Table (percentage)

Latitude : 41 7861	Start Date : Jan 1 1990	Sub Interval Wi	ndows
Longitude : -87.7522	End Date : Jan. 29, 2023	Start End	t
Elevation : 612 ft.	# of Days : 12082 of 12082	Date Jan. 1 De	c. 31
Element : Mean Wind Speed	# obs : poss : 277518 of 289224	Hour 0 23	

(Greater than or equal to initial interval value and Less than ending interval value.)

Range 0 10 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 Total 20 30 50 60 70 80 (knots) 3 - 3 0.3 0.3 0.2 0.2 0.3 0.3 0.5 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.4 0.5 0.7 0.6 0.7 0.8 0.8 0.6 0.5 0.5 0.5 0.6 0.5 0.5 0.6 0.4 0.4 0.3 0.2 0.3 15.5 0.6 0.7 0.7 0.8 0.8 0.8 1.2 1.0 1.1 1.1 0.9 0.7 0.5 0.5 0.6 0.6 0.7 1.0 1.2 1.4 1.7 1.8 1.6 1.2 1.3 1.2 1.0 1.2 1.1 1.1 1.1 0.9 0.8 0.7 0.5 0.6 34.7 6 - 9 0.3 0.4 0.4 0.5 0.5 0.5 0.8 0.5 0.4 0.4 0.3 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.5 0.6 0.9 0.9 0.8 0.6 0.7 0.7 0.6 0.7 0.6 0.6 0.5 0.4 0.4 0.4 0.3 0.2 16.7 9 - 12 0.3 0.4 0.5 0.6 0.6 0.5 0.6 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.4 0.7 1.0 1.0 0.8 0.6 0.7 0.7 0.7 0.8 0.7 0.7 0.5 0.4 0.4 0.4 0.3 0.3 16.6 15 - 18 21 - 24 24 -Total(%) 1.7 1.9 2.2 2.5 2.4 2.3 3.3 2.3 2.1 2.2 1.8 1.3 1.2 1.1 1.3 1.2 1.5 2.2 2.9 3.6 4.8 4.9 4.3 3.1 3.6 3.5 3.2 3.8 3.3 3.2 2.9 2.3 2.0 2.0 1.5 1.5 90.7 Calm (<3) 9.3

Ave Speed 9.5 10.2 10.6 10.8 10.1 9.9 9.6 9.3 8.8 8.4 8.0 7.8 7.9 8.0 8.4 8.1 8.2 8.7 8.9 9.6 10.1 9.8 9.6 9.5 10.0 10.3 10.7 10.5 10.2 9.9 9.4 9.4 9.6 10.0 9.9 9.3 8.7

Iowa State Mesonet Data

Iowa State University Mesonet Data

IOWA STATE UNIVERSITY	Search		Q						
	CONTACT US	DISCLAIMER	APPS						
Areas ~ Apps ~ Areas ~ Datasets ~ Info ~ Networks ~ NWS Data ~ Services ~ Webcams ~									
IEM Homepage / IEM Ag Weather/Climate Information									
The IEM website contains data from many different observation networks. While you may know what you are looking for, fig data is tricky. This table is an attempt to help you locate the data / product you need. Please do contact us with your quest IEM's most popular applications:I Automated Data Plotting	guring out whic ions!	ch network has	this						

Website: https://mesonet.agron.iastate.edu/agweather/

- Allows customization of the wind rose data
- Worldwide data from various automated weather sensors (ASOS and AWOS networks)
- Provides graphical and table outputs that needs further interpretation for airport design use

Iowa State University Mesonet Data

Website: https://mesonet.agron.iastate.edu/agweather/

Virginia Tech - Air Transportation Systems Laboratory

Steps to Obtain Mesonet Data

Wind Rose Data Pulaski/River Valley Airport

IOWA STATE UN		Search		Q	
			CONTACT US	DISCLAIMER	APPS
IEM 🖌 🕷 🗸 Apps 🗸 Are	eas < Datasets < Info < Networks < NWS Dat	a < Services < Webcams <	Select the	to	
IEM Site Information	1			la	
The IEM collects information front network. This application provious	om many sites. These sites are organized into netw des some metadata and site specific applications	vorks based on their geography and/or you may find useful.	the organization	who administer	rs the
Select By Network:	Virginia ASOS	•	Swite	ch Network	
Select By Station:	[PSK] DUBLIN/NEW RIV VLLY [1948-]	•	Se	elect Station	
Or select site from this map by	clicking on the yellow dot and then clicking the 'S	elect Station' button above. Select Station' button above. S	ect the on (airport)		

UrginiaTech

Wind Rose Data forNew River Valley Airport

Snapz Pro X

Virginia Tech - Air Transportation Systems Laboratory

WirginiaTech

Custom Wind Rose Data (PSK Airport)

* Custom Wind Roses

🛗 Data Calendar 🛛 🌢 Satellite Cloud Product

uct 🛛 📥 Download

Custom Wind Rose Plots

This application attempts to generate a wind rose for a time period of your choice. Please be patient when submitting this form, as it may take up to a few minutes to generate the plot due to the large amount of data that this application processes. You can limit the dataset from which the windrose is derived in three ways:

- 1. By only including observations from a specific hour
- 2. By only including observations from a specific month

You can a	lso, optionall				it uala	
represent	s the last valu	y, prescribe six wind a ue to infinity.	speed bins	, in from Ja 2000	anuary	The first bin from zero to your value is assumed to be calm values. The last bin Specify the
Select S	tart/End Tir	ne:				desired wind
(Times are	e in America/I	New_York time zone)				speed bins
Start:	Year 2000 ✓	Month January V	Day	Hour 12 AM 🗸	Minute	 1. Limit to Hour of Start Time 2. Limit to Month of Start Time 3. Limit to Range of hours given by start and end time Optional: Hard code the frequency axis limit to 100% Optional. User provided wind speed bins 0 - 3 - 5 - 10.6 - 16 - 20.1 - 27 + Values between 0 and the first bin are counted as calm.
End:	2020 ~	December ➤ End data ir December	וי 2020	11 PM ∨	0 ~	Display Units: knots (KTS) Direction Bins: 36 V Image Format: PNG Image (.PNG) Image DPI: 100 Submit Submit

Virginia Tech - Air Transportation Systems Laboratory

Custom Wind Rose Data (PSK Airport)

Virginia Tech - Air Transportation Systems Laboratory

UirginiaTech

Summary Raw Wind Rose Data (PSK Airport)

# Windrose Da	ta Table	(Percent)	Frequency)	for DUBLIN	/NEW RIV V	LLY (PSK)		•	•
# Observation	s Used/M1	ssing/Tota	al: 495534/	5852/50138	6 /New York				
# 01 Jan 2000	12:07 AM		2020 10:55	PM Americ	a/New_IOFK	14 15 1	c 17 10	10 20 21 22	
# Hour Limite	r: (0, 1,	2, 3, 4,	5, 0, /, 8	, 9, 10, 1	1, 12, 13,	14, 15, 1	0, 1/, 18,	19, 20, 21, 22)	
# Month Limit	er: All 1	ncluded							FAA defines calm
# wind Speed	Units: Kn	OTS							
# Generated 2	9 Sep 202	1 00:05 0	rC, contact	: akrnerze	lastate.ed	u			winds to be less than
# First value	an table	IS CALM		0 15 0 10	0 00 0 01	0.00.0	27 01		
Direction,		.0 4.9, :	0 415	.0 15.9,10	0.0 20.9,21	.0 26.9,	27.0+		3 knots
355-004 ,	33.5,	0.417,	0.415,	0.021,	0.001,	0.000,	0.000		
005-014 ,	,	0.340,	0.252,	0.010,	0.000,	0.000,	0.000		
015-024 ,	,	0.279,	0.1/7,	0.007,	0.000,	0.000,	0.000		22 E 0/ of the time of
025-034 ,	,	0.314,	0.167,	0.005,	0.000,	0.000,	0.000		33.5% of the time at
035-044 ,	,	0.391,	0.208,	0.015,	0.000,	0.000,	0.000		DSK windo ara calm
045-054 ,	,	0.433,	0.311,	0.030,	0.001,	0.000,	0.000		FOR WINUS are call
055-064 ,	,	0.515,	0.521,	0.065,	0.002,	0.001,	0.000		
065-074 ,	,	0.645,	0.872,	0.100,	0.003,	0.000,	0.000		
075-084 ,	,	0.755,	1.158,	0.142,	0.007,	0.000,	0.000		
085-094 ,	,	0.689,	0.813,	0.081,	0.003,	0.000,	0.000		
095-104 ,	,	0.567,	0.640,	0.060,	0.003,	0.000,	0.000		
105-114 ,	,	0.407,	0.564,	0.074,	0.002,	0.000,	0.000		
115-124 ,	,	0.348,	0.420,	0.058,	0.001,	0.000,	0.000		
125-134 ,	,	0.298,	0.268,	0.028,	0.001,	0.000,	0.000		
135-144 ,	,	0.256,	0.172,	0.009,	0.000,	0.000,	0.000	Pe	ercent winds
145-154 ,	,	0.244,	0.182,	0.018,	0.001,	0.000,	0.000		
155-164 ,	,	0.274,	0.262,	0.041,	0.001,	0.000,	0.000	fro	m an azimuth
165-174 ,	,	0.356,	0.464,	0.118,	0.005,	0.000,	0.000		
175-184 ,	,	0.426,	0.655,	0.256,	0.020,	0.001,	0.000	an	d wind speed
185-194 ,	,	0.580,	0.958,	0.368,	0.036,	0.003,	0.000		
195-204 ,	,	0.720,	1.039,	0.345,	0.044,	0.004,	0.000	rai	nge
205-214 ,	,	0.955,	1.300,	0.293,	0.029,	0.002,	0.000		
215-224 ,	,	0.978,	1.469,	0.382,	0.025,	0.003,	0.000		
225-234 ,	,	0.972,	1.523,	0.460,	0.067,	0.009,	0.001		
235-244 ,	,	0.944,	1.622,	0.542,	0.112,	0.022,	0.002		
245-254 ,	,	0.856,	1.401,	0.535,	0.131,	0.030,	0.002		
255-264 ,	,	0.911,	1.534,	0.710,	0.148,	0.034,	0.003		
265-274 ,	,	0.949,	1.731,	1.143,	0.244,	0.043,	0.004		
275-284 ,	,	0.854,	1.769,	1.484,	0.349,	0.072,	0.010	More	e than 501,000
285-294 ,	,	0.674,	1.565,	1.574,	0.442,	0.096,	0.014	ahaa	
295-304 ,	,	0.563,	1.314,	1.367,	0.412,	0.100,	0.014	ODSE	ervations used in
305-314 ,	,	0.564,	1.173,	0.879,	0.245,	0.059,	0.006	than	wind roop (20
315-324 ,	,	0.586,	1.231,	0.489,	0.072,	0.013,	0.002	line v	
325-334 ,	,	0.559,	1.042,	0.302,	0.021,	0.002,	0.000	Voor	
335-344 ,	,	0.554,	0.788,	0.143,	0.003,	0.001,	0.000	year	5/
345-354 ,	,	0.501,	0.640,	0.067,	0.001,	0.000,	0.000		

Import the Summary Raw Data to Excel

	A	В	С	D	E	F	G	Н	
1	Direction (deg)	Calm	3.0 - 4.9	5.0 - 9.9	10.0- 15.9	16.0-20.9	21.0- 26.9	27.0+	
2	355-004	33.5	0.417	0.415	0.021	0.001	0	0	
3	005-014		0.34	0.252	0.01	0	0	0	_
4	015-024		0.279	0.177	0.007	0	0	0	
5	025-034		0.314	0.167	0.005	0	0	0	
6	035-044		0.391	0.208	0.015	0	0	0	
7	045-054		0.433	0.311	0.03	0.001	0	0	
8	055-064		0.515	0.521	0.065	0.002	0.001	0	
9	065-074		0.645	0.872	0.1	0.003	0	0	
10	075-084		0.755	1.158	0.142	0.007	0	0	
11	085-094		0.689	0.813	0.081	0.003	0	0	
12	095-104		0.567	0.64	0.06	0.003	0	0	
13	105-114		0.407	0.564	0.074	0.002	0	0	
14	115-124		0.348	0.42	0.058	0.001	0	0	
15	125-134		0.298	0.268	0.028	0.001	0	0	
16	135-144		0.256	0.172	0.009	0	0	0	
17	145-154		0.244	0.182	0.018	0.001	0	0	
18	155-164		0.274	0.262	0.041	0.001	0	0	
19	165-174		0.356	0.464	0.118	0.005	0	0	
	А	В	С	D	E	F	G	Н	
1	Direction (deg)	Calm	3.0 - 4.9	5.0 - 9.9	10.0-15.9	16.0-20.9	21.0-26.9	27.0+	

Percent winds from an azimuth and wind speed range

UrginiaTech

Verify the total is 100%

	Α	В	С	D	E	F	G	Н	I	
1	Direction (deg)	Calm	3.0 - 4.9	5.0 - 9.9	10.0- 15.9	16.0-20.9	21.0-26.9	27.0+		
33	305-314		0.564	1.173	0.879	0.245	0.059	0.006		
34	315-324		0.586	1.231	0.489	0.072	0.013	0.002		
35	325-334		0.559	1.042	0.302	0.021	0.002	0		
36	335-344		0.554	0.788	0.143	0.003	0.001	0		
37	345-354		0.501	0.64	0.067	0.001	0	0		
38									•	
39	Totals	33.50	20.67	30.62	12.22	2.43	0.50	0.06	100.0)(

Virginia Tech - Air Transportation Systems Laboratory
Creating your own Wind Rose Analysis

- Download the NCDC or Mesonet data per our instructions
- Use the Autocad DXF or DWG file provided to construct a wind rose
- Fill in the NCDC wind summary data into the Autocad wind rose template
- Setup up a rectangular coverage element to estimate the percent of time crosswinds are not covered
- Calculate the wind coverage from the wind rose by adding all sectors covered by the crosswind rectangle

Populate the Wind Rose for PSK Airport

Virginia Tech - Air Transportation Systems Laboratory

UirginiaTech

Airnav Runway Data for PSK Airport

Runway 6/24

PSK Wind Rose (RDC C-II)

UirginiaTech

According to the analysis:

99.17% coverage with a single runway oriented 52 and 232 degrees from true North

PSK satisfies the 95% critical crosswind conditions for 16 knots crosswind

> Use your CAD skills to solve the wind rose problem if the FAA site is not available

Count the percent of time operations are not covered by the 16 knot rectangle

PSK Wind Rose (RDC B-II)

UirginiaTech

According to the analysis:

97.27% coverage with a single runway oriented 52 and 232 degrees from true North

PSK satisfies the 95% critical crosswind conditions for 13 knots crosswind

> Use your CAD skills to solve the wind rose problem if the FAA site is not available

Count the percent of time operations are not covered by the 13 knot rectangle

PSK All Weather Wind Rose with no Tailwind

PSK All Weather Wind Rose with 5-knots Tailwind

PSK All Weather Wind Rose with no Tailwind Allowance

PSK All Weather Wind Rose with no Tailwind Allowance

Conclusions of the Analysis

- A single runway at PSK airport satisfies the 95% critical crosswind coverage requirement
- Runway 24 is favored at PSK airport based on wind conditions
 - 80.52% of time runway 24 can be used with zero tailwind allowance
 - 95.67% of time runway 24 can be used with a 5knot tailwind allowance
- Runway 06 can be used 54.1% of the time with no tailwind allowance

Chicago ORD Wind Data (All Weather)

ORD hourly observations (30 years)

Winds from the West, Southwest, and Northeast are more dominant at ORD

Favors West flow for East/ West parallels and Southwest flow for crosswind runways (22R and 22L)

Source: Iowa State University https:// mesonet.agron.iastate .edu/sites/ windrose.phtml? network=IL ASOS&st ation=ORD

ORD Nighttime Wind Rose

Nighttime winds are lighter at ORD

117,478 nighttime hourly observations (30 years of data)

Winds from the West and Southwest are more dominant at ORD

Favors West flow for East/ West parallels and Southwest flow for crosswind runways (22R and 22L)

> Source: Iowa State University Mesonet Database

FAA Airport Data and Information Portal (ADIP)

Soliciting Access to Airport Tools (FAA)

more information.

ADIP

htt

	* Email	vuela@vt.edu			
	* First Name	Antonio			
	Middle Name	Middle Name			
	* Last Name	Trani			
	* Position	Professor			
	* Phone	Phone Number	()	Ext	٩
		Phone is required			
	* Organization	Organization			
	* Street 1	Street Address			
DS	://adip.faa.gov/	/agis/public/#/	registra	ation	

Virginia Tech - Air Transportation Systems Laboratory

WirginiaTech

FAA ADIP Portal Tool

https://adip.faa.gov/agis/portal/#/portal

WirginiaTech

FAA ADIP Wind Rose Tool

	😭 Portal Home 🛛 🔶 Fa	acility Dashboar	d									
	All Weather Windrose											
	New All Weather Windrose New IFR Windrose New VFR Windrose Open Windrose Save Windrose											
	Upload Wind Data File View Report View Windrose Download as DXF Download as SVG Go to Previous Page Go to Search Page											
No of Runwavs:												
Ri												
Runway Orientation:												
				Crossw	vind Compone	ent:	0	Calcu	late			
				Tailwi	nd Compone	nt:	0					
Note: Use a 60 knot tailwind to indicate runway is bi-directional.												
					Wind C	Covera	ge: 24.19%					
Hourly Observations of Wind Speed (knots)												
	Direction	0-3 4	-6	7-10	11-16	17-21	1 22 [.]	-27	28-33	34-40	>41	Total
	10°	807	654	20	4	0	0		0	0	0	1485
	20°	627	534	15	0	0	0		0	0	0	1176
	30°	539	497	7	8	2	0		0	0	0	1053
	https:/	/adip	.faa	.gov	/agis	/p	orta	al/#	‡/po	rtal		

FAA ADIP Portal Tool

WirginiaTech

Wind Data for SAN DIEGO INTERNATIONAL AIRPO

Airport ICAO Identifier	State	USAF	WBAN	Station Name	Available Years
KSAN	CA	722900	23188	SAN DIEGO INTERNATIONAL AIRPO	2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020

Note: If 10 years of data is not available for this Airport, data that is available will be downloaded.

Wind Data Type	Generate Windrose					
All Weather 🗸	Click Here					

The following files are also available for download ALL_WEATHER_722900.PRN, IFR_722900.PRN and VFR_722900.PRN

San Diego Data

Runway 9/27

Wind is reported Dimensions: 9400 x 200 ft. / 2865 x 61 m using True Heading Surface: asphalt/concrete/grooved, in excellent condition Weight bearing capacity: PCN 75 /F/A/W/T Runway edge lights: high intensity Operational restrictions: CLSD TUE-SAT 0000-0500 LOCAL. **RUNWAY 9 RUNWAY 27** Latitude: 32-44.227355N 32-43.800143N 117-10.498363W Longitude: 117-12.261402W Elevation: 13.7 ft. 16.4 ft. Traffic pattern: left right Runway heading: 095 magnetic, 106 true 275 magnetic, 286 true Displaced threshold: 1000 ft. 1810 ft. Declared distances: TORA:8280 TODA:9401 ASDA:8280 TORA:9401 TODA:9401 LDA:7280 ASDA:9401 LDA:7591 Markings: precision, in good condition precision, in good condition Visual slope indicator: 4-light PAPI on left (3.30 degrees glide path) 4-light PAPI on right (3.50 degrees glide path) PAPI UNUSBL BYD 5 DEG L & R OF CNTLN. RVR equipment: touchdown, rollout touchdown, rollout Approach lights: MALSR: 1,400 foot medium intensity MALS: 1,400 foot medium approach lighting system with runway intensity approach lighting

https://www.airnav.com/airport/KSAN

Virginia Tech - Air Transportation Systems Laboratory

Remember:

San Diego results with no Tailwind

San Diego results with 5 knot Tailwind

San Diego All Weather Wind Rose with no Tailwind

San Diego All Weather Wind Rose with 5 knot Tailwind

San Diego All Weather Wind Rose with 60 knot Tailwind (bidirectional)

Virginia Tech - Air Transportation Systems Laboratory

UirginiaTech

Example Problem: Using Abilene Texas Municipal Airport Wind Data

Example: Abilene Municipal Airport

- Suppose we would like to know the wind situation for the existing airport
- The idea is to estimate the percent of time each runway can be used

Assume:

Critical aircraft for 17R/35L = D-III Critical aircraft for 04/22 = B-II

DFN:ALL_WEATHER_722660

Develop a Wind Rose analysis for Abilene **Municipal** airport

🛄 Virginia Tech

Invent the Future

- Collect data from NCDC web site
- Use FAA Java toolbox

ABI airport wind data 10 year period (2004 to 2013)

FAA Wind Rose Java Tool

UirginiaTech

30°

	Note: Use a 60 knot tailwind to indicate runway is bi-directional.											
	Wind Cox	erage:	99 37%				Percent wind					
	wind coverage.			55.57 %					coverage (all ruwways)			
	Hourly Observations of Wind Speed (knots)											
Direction	0-3	4-6	7-10	11-16	17-21	22-27	28-33	34-40	> 41	Total		
10°	137	929	846	970	149	17	2	2	0	3052		
20°	171	894	608	436	42	6	2	0	0	2159		
30°	131	749	441	248	14	1	2	0	0	1586		

Some relevant questions:

- 1. What percent of the time can runways 35L and 35R be used?
- 2. What percent of time can the full runway 17R/35L be used?
 - In the analysis, assume a 5 knot tailwind component is allowed for the operations.

1. What percent of the time can runways 35L and 35R be used for landings and departures?

UirginiaTech

1. Estimate the percent of the time runways 35L and 35R be used.

UirginiaTech

What percent of time can the full runway 17R/35L be used?

When Do I use a 60 knot Tailwind?

 When you want to know the percent of time a runway is used from both runway ends (bi-direccional analysis), use an artificially high value of tailwind (60 knots)

 Calculates in one step the percent of time the runway is usable from both approaches.
Abilene Municipal Airport

Using two runway orientations 17/35 and 04/22 (bi-directional analysis)

Here we calculate the wind coverage for two runway orientations at Abilene Municipal airport

UrginiaTech

Note: we include two runways in the FAA Java tool

New All Weather Windrose | New IFR Windrose | New VFl Upload Wind Data File | View Report | View Windrose |

Calculate

Title: Abile		ne Municipal	
Num Runways:	2 \$	Runway 1	Runway 2
Runway Orientation:		360.0	52.0
Crosswind Component:		16.0	13.0
Tailwind Component:		60.0	60.0
		Note: Use a 60	knot tailwind to inc
Wind Cove	erage:	99.37%	

Air Transportation Systems Laboratory

Explanation About Tailwind Allowances

Aircraft are expected to land and takeoff against the wind

- Under some conditions, pilots are allowed to operate with a small tailwind component
- The amount of tailwind allowed in commercial operations varies from airline to airline but is seldom more than 8 knots (relatively small winds)

Implications of taking off with tailwinds

longer runway length

Implications of landing with tailwinds

- Faster approach speeds (i.e., ground speed)
- Longer landing runway requirements

Reasons for Tailwind Allowances

- Pilots may prefer to use a higher precision approach by taking a small tailwind component while landing
 - Busan (Korea) accident (http://aviation-safety.net/database/ record.php?id=20020415-0)
 - Pilots landing at Kingston, Jamaica prefer runway 12 because it has an ILS approach (runway 30 does not have a precision approach)
- For Design of Runway Orientation;
 - Use 5 knots of tailwind to estimate the percent of time a runway end is used

Pusan, Korea

Air Transportation Systems Laboratory

Wind Rose Workflow Example

Air Transportation Systems Laboratory

Wind Rose Workflow Example

- Design the optimal runway orientation for an airport using FAA airport design code B-II
- Solution:

Step 1:

- Determine the design crosswind component
- B-II requires 13 knots of cross wind component (see FAA AC 150/5300-13a)

Example Problem (cont.)

Step 2:

VirginiaTech

- Obtain the wind data from any one of the three sources described in the handout
- This step requires that you estimate the percent coverage for each runway orientation

Step 3:

- Find the new coverage for each new runway orientation (say every 1 to 5 degrees)
- Create a plot with coverage vs runway orientation

Step 4:

Select the runway orientation that provides the highest coverage

 Find the new coverage for each new runway orientation (say every 1 to 5 degrees)

Air Transportation Systems Laboratory

Example Problem (cont.)

Example Problem (cont.)

Step 5:

/1rg1n1a

- Check if the coverage meets the 95% criteria required by FAA and ICAO
- If the 95% crosswind coverage is met you are done
- Otherwise add a second (crosswind) runway repeating steps 1-4 until the 95% criteria is achieved
- If a second runway is needed, first optimize the runway orientation of the primary runway
 - Then perform the best runway orientation of the second runway