

Basics on INM

- Developed by FAA Office of Energy and Environment and EPA
- The initial versions of INM was developed in FORTRAN and ported to the PC in 1982
- Newest version is 7.0 (runs on Windows XP or Vista OS)
- The model includes a good database (101 aircraft currently) to analyze civilian airports
- A similar model has been developed by the human factors group at Wright Patterson AFB to predict noise contours around military bases (NOISEMAP 6.1)

Justification for INM

- After 1969 every transportation project (including airport upgrades and plans) require a detailed environmental study
- The only way to convey information to communities around an airport is to compute potential noise levels before constructing a facility
- Noise prediction is a tedious process for real airports as there are too many aircraft and tracks that need to be analyzed in determining the noise at a point on the ground

Inputs to INM

- Airport characteristics (runways, orientation, etc.)
- Approach and departure profiles
 - + Procedural (aerodynamic based profiles)
 - + Fixed point profiles
- Flight tracks
 - + Approach
 - + Departure
 - + Touch-and-go
 - + Circling
 - + Overflights

Inputs to INM

- Flight operations
 - + Numbers of aircraft assigned to each track
 - + Percent aircraft assigned to each track
 - + Runup operations (engine test operations)
- Noise Metric

+ Select among DNL, CNEL, NEF, TNEL, and 12 others.

INM Output

- Noise contours (contours of equal values of a noise metric like DNL)
- Complex metric population point calculations (i.e. DNL level at a specific city block)
- Population living within a given complex noise metric (i.e., how many people live within DNL 55 contour)

Detailed Procedures for INM

- 1) Open a New Case Study from the File menu
- 2) Select the airport in question in the Setup Window
- 3) Verify all runway data (including altitudes and displaced thresholds)
- 4) Go to the Aircraft Window to select all the aircraft to be modeled in your case study
- 5) Apply aircraft substitutions as needed
- 6) Select the noise metric to be used in the computational procedure (from Setup Metrics menu)

Procedures (II)

- 7) Add a Case from Setup-Cases menu
- 8) Define aircraft approach and departure tracks from the Tracks menu (select Input Graphics)
- 9) Define aircraft operations using the Acft menu (select Flight Ops...)
- 10) Run the case study using the Run menu
- Define the Grid Setup and Grid parameters used

11) Under Run Options (Run menu) select the noise metric desired and commit record

Procedures (III)

12) To view the output create an output scenario from the Output menu (select Output Setup)

• If your plot is incomplete increase the grid size and modify the grid coordinates appropriately to increase the siae of the grid

NOTE: When entering data in INM always COMMIT records otherwise data is not saved

INM 7 Menus

- Like many Windows applications INM has many pulldown menus to execute tasks (shown below)
- Each menu will be explained in detail later

Pull-down menus

INM 7.0 Menus

- File and Edit pull-down menus
- Use File to create new studies, save them and import/ export operations
- Use Edit to add, commit, cut and paste records File

Edit

INM 7.0 Menus (ACFT, OPS, RUN) Define all aircraft and Noise-Distance-Power curves in INM. Also define flight operations (**Ops** Menu) Acft Ops Run Output Acft Aircraft Substitutions Noise Identifiers Noise Curves Run Noise Graph... Ops Profile Identifiers Run Output Window Procedural Profiles Ops Run Output Window Hч Fixed-Point Profiles Grid : up... Airport Operations... Profile Graphs... Run Options Group Percents... Flight Operations... Flap Coeffs Run Start... View Calculated Flights... Jet Coeffs Prop Coeffs Runup Operations... General Coeffs

	Study Screen
The s	study screen allows you to find predefined airports
	Study Setup [ROANOKE]
	Units English Created 20-Apr-98 21:10
	Description
	Origin of Coordinates Latitude 37.325468 Longitude -79.975428 Elevation (ft) 1176.0

What if the Airport is not Contained in INM Database?

- Define manually the runway end points
- INM will do the rest
- Runway ends are defined as latitude and longitude points
- Always check the latitute and longitude points of the runway selected. INM could have errors and thus it is your responsibility to check the inputs.

Defining Tracks in INM

Three ways to do it:

- Interactive tracks (called P-tracks)
- Vector tracks (V-tracks)
- Tracks using radar data

Interactive tracks are defined using the computer mouse and only represent straight line segments. Use vector tracks are defined by arcs and straight line segments

Only interactive (p-tracks) can be dispersed to show more realistic flight path deviations.

Summary of Tracks in INM

Both procedures are acceptable in practice

Interactive tracks can be dispersed to show more realistic flight paths

Interactive tracks require many straight segments to represent a realistic aircraft turn

Vector tracks generally produce i better lookingî contours (not necessarily more accurate)

Select the Analysis to be Carried Out

INM 7.0 has more than a dozen noise metrics built-in

LAEQ LAEQD LAEQN LAEQN LAEQN LAEQN LAMAX NEF PNLTM SEL TALA TAPNL WECPNL Night Multiplier 10.00 Night Multiplier 10.00	DNL EPNL	
AMAX NEF PNLTM SEL TALA TAPNL WECPNL	LAEQ LAEQD	Type Exposure
SEL Evening Multiplier 1.00 TALA Night Multiplier 10.00 WECPNL 10 log (Time) 49.37	LAMAX NEF PNLTM	Parameters Day Multiplier 1.00
WECPNL 10 log (Time) 49.37	SEL TALA TAPNL	Evening Multiplier 1.00
	WECPNL	10 log (Time) 49.37

Runway End Definition Once an airport is defined runways can be edited interactively 🔀 Runway Ends - I 06 Runway 24 15 **24** 33 0.4436 X (nmi) 0.5300 Y (nmi) 1151.3 Elevation MSL (ft) **Displaced Thresholds** 790 Approach (ft) 0 Takeoff (ft) Glide Slope (+deg) 3.0 50.0 Thresh. Crossing Height (ft) Change in Headwind (%) 0.0

Aircraft Definition Window

This window allows you to define the aircraft to be included in your study

Noise Cases

INM allows you to define various cases in a single run

Cases can be defined to understand individual noise contours of specific aircraft modeled

For example, below we show two cases defined as:

- + vlj_citation_bravo
- + single_engine_piston
- Each case represents two aircraft populations that will be executed individually
- Each case should have a corresponding output

Lases	
single_engine_piston vli_citation_bravo	Case ID (30 characters or less) Created single_engine_piston 27-Apr-05 21:45
	Description
	Airport Parameters
	Pressure (mm-Hg) 759.97
	Modify NPD Curves
	Headwind (km/h) 14.8

Aircraft Operations Windows

Define aircraft operations in the flight operations window

Z Flight Operation	- [BASELINE]
	Aircraft 727015
	Runway 06 💌
DEP-S2-DEP1	Operation DEP
	Profile S2 💌
	Track DEP1 💌
	Number of Flights
	Day 10.0000
	Evening 20.0000
	Night 20.0000

Flight Operations (View)

Flight operations can be viewed as a table

Zase Operations - [BASELINE]											
ACFT	OP	PF	S	RWY	TRACK	SUB	GROUP	DAY	EVE	NIGHT	
727015	A	S	1	24	APP1	0	COM	27.3200	27.3200	27.3200	
727015	A	S	1	24	APP1	1	COM	21.8800	21.8800	21.8800	
727015	A	S	1	24	APP1	2	COM	21.8800	21.8800	21.8800	
727015	A	S	1	24	APP1	3	COM	10.9400	10.9400	10.9400	
727015	A	S	1	24	APP1	4	COM	10.9400	10.9400	10.9400	
727015	A	s	1	24	APP1	5	COM	3.1300	3.1300	3.1300	
727015	A	S	1	24	APP1	6	COM	3.1300	3.1300	3.1300	
727015	A	S	1	24	APP1	- 7	COM	0.3900	0.3900	0.3900	
727015	A	S	1	24	APP1	8	COM	0.3900	0.3900	0.3900	
727015	A	S	1	33	APP2	0	COM	100.0000	100.0000	100.0000	
727015	D	S	2	06	DEP1	0	COM	2.7320	5.4640	5.4640	
727015	D	S	2	06	DEP1	1	COM	2.1880	4.3760	4.3760	
727015	D	S	2	06	DEP1	2	COM	2.1880	4.3760	4.3760	
727Q15	D	S	2	06	DEP1	3	COM	1.0940	2.1880	2.1880	
727Q15	D	S	2	06	DEP1	4	COM	1.0940	2.1880	2.1880	
727Q15	D	S	2	06	DEP1	5	COM	0.3130	0.6260	0.6260	
727015	D	S	2	06	DEP1	6	COM	0.3130	0.6260	0.6260	
727015	D	S	2	06	DEP1	- 7	COM	0.0390	0.0780	0.0780	
727015	D	ន	2	06	DEP1	8	COM	0.0390	0.0780	0.0780	

Noise Groups

Define explicit groups of aircraft in the modeling process

Noise Curves		
	Noise 2CF650	•
EPNL · 10000 EPNL · 25000 EPNL · 40000 LAMAX · 10000 LAMAX · 25000 LAMAX · 25000 LAMAX · 25000 SEL · 10000 SEL · 25000 SEL · 40000	Curve Type Noise Type Thrust Setting (pounds) Noise Levels 200 ft 106.2	Normal EPNL 10000 4000 ft 75.0
	400 ft 101.1 630 ft 97.2	6300 ft 68.0 10000 ft 61.4
	1000 ft 92.5	16000 ft 53.4
	2000 ft 84.2	25000 ft 43.3

Aircraft Vertical Profiles Aircraft profiles can be viewed interactively Profile Speed: BASELINE - 727Q15 - DEP - 06 1/1000 S1 S2 300 250 S3 S4 200 Airspeed(knt) 150 100 S5 50 0 20 40 80 100 120 60 140 160 180 0 Distance (1000 ft)

Another Aircraft Profile Sample

This plot shows distance vs. altitude flown with B727

	Grid Setup
Specifies the size	and detail of the computational grid INE Grid Id Grid Id Grid Origin X (nmi) 20.0000 Y (nmi) 20.0000 Distance Between Points I (nmi) 40.0000 J (nmi) 40.0000
	I 2 J 2 Grid Rotation Angle (deg) 0.0

	Ru	in Options	
This screen	ı lets you sj	pecify the ou	tput and metric used
BASELINE	Case Run Type Noise Metric TA Threshold (dB) □ Do Terrain ☑ Do Contours Refinement Tolerance Low Cutoff High Cutoff □ Do Population F □ Do Location Population F	BASELINE SingleMetric DNL 85.0 6 1.00 55.0 85.0 Points pints pints 21-Apr-98 05:14	Grid Do Standard Grids Do Detailed Grids Standard Metrics DNL NEF CNEL WECPNL LAEQ EPNL LAEQ EPNL LAEQN TAPNL SEL LAMAX TALA Duration 00:01:20

Run Options (cont.)

- The refinement level increases the number of interpolating points needed to calculate the contour lines. Use 10-13 refinement levels to achieve good results (e.g., well-defined contours). An example of two results using two refinement levels is shown in the next page.
- The tolerance also controls the interpolation algorithm to generate contours. Units are decibels. Smaller tolerance levels (say 0.5) produce better contours
- Terrain analysis if important if hilly or mountainous areas around the airport are expected to affect the size and shape of the noise contours.

37 of 44

38 of 44

40 of 44

Overflights and Touch and Go Operations

- INM can model overflights (flights whose destination or origin is not the airport in question)
- Touch and Go operations are typical of flight training
- INM can model touch and go operations
- Other special operations on the ground:
 - + Run up operations running an aviation engine on the ground to test the engine

