Geometric Design: Part 2 **Ramps and Tight Spaces**

Dr. Antonio Trani Department of Civil and Environmental Engineering Virginia Tech

Consider the Vehicle

- Aircraft have limited capabilities to maneuver on the ground
- Tricycle landing gears

🛄 Virginia Tech

- Steering capabilities
- Limited space near gates and parking aprons

Sample Design

Sample Design

UirginiaTech

Turning Aircraft in Tight Spaces

Nose gear "tiller"

 Pilots use two forms of steering control:

UrginiaTech

- Rudder pedals (provide limited turning capability)
- "Tiller" control for ground maneuvering

source: http://www.reddit.com/r/aviation/comments/2tq7pi/airbus_a350_xwb_cockpit/

Example: Boeing 737-800 Nose wheel turning radius (R3)

is 73.6 feet when steering angle													
is 45 degrees												1	
5											STEE	RING GLÉ	
											1	\leftarrow	
												-	
													R3
	R1		R2		R3		R4		R5		F	86	
STEERING ANGLE	INNER GEAR		OUTER		NOSE GEAR		WING		NOSE		TAIL		R5 —
(DEGREES)	FT	М	FT	М	FT	М	FT	М	FT	М	FT	М	
30	77.5	23.6	100.6	30.7	103.7	31.6	149.1	45.4	110.1	33.6	129.8	39.6	
35	61.9	18.9	85.0	25.9	90.6	27.6	133.6	4.07	97.9	29.8	116.6	35.5	
40	497	15.2	72.8	22.2	80.9	94 7	121.6	37.1	89.2	27.2	106.7	32.5	
45	39.8	12.1	62.9	19.2	73.6	22.4	111.9	34.1	82.7	25.2	99.0	30.2	
50	31.6	9.6	54.7	16.7	68.0	20.7	103.8	31.6	77.8	23.7	92.9	28.3	
55	24.4	7.4	47.5	14.5	63.7	19.43	96.8	29.5	74.1	22.6	87.9	26.8	
60	18.1	5.5	41.2	12.6	60.3	18.4	90.6	27.6	71.3	21.7	83.8	25.5	
65	12.4	3.8	35.8	10.8	57.7	17.6	85.1	25.9	69.1	21.1	80.3	24.5	
70	7.2	2.2	30.3	9.2	55.6	17.0	80.0	24.4	67.4	20.6	77.3	23.6	
78 (MAX)	-0.6	-0.2	22.5	6.9	53.5	16.3	72.5	22.1	65.7	20.0	73.3	22.3	

Boeing 737-800 (winglets) using 45 degree steering angle

Aircraft Turning Envelopes

Horonjeff Turning Approximation Method

Track in distance (Distance from centerline to geometric center of main gear)

Graphical method to estimate the path of aircraft main gear.

- 1) Extend a line from current position to new position (make sure nose gear tracks centerline)
- 2) Re-draw landing gear including main gears along the line drawn in step (1)
- 3) Continue doing this until the turn is completed

Boeing 747-400

Aircraft Turning Envelopes

Notes:

- Generous space for aircraft to taxi into the gate (without over-steering)
- Aircraft shown
 (Boeing 737-800) are
 not the critical
 aircraft for the gate
 positions shown

Limited Spaces Near Gates (ORD)

Detail: Centerline Marks to Gates (ORD)

Limited Spaces Near Gates

Limited Spaces Near Gates

Parking a Heavy Jet to an Apron Position

Parking a Heavy Jet with Over-steering

Parking a Heavy Jet with Over-steering

Harth of V TUT

Pilot steers the nose gear back to guiding centerline

Fuselage Angle

Nose Gear Angle

Steering Angle

Pilot steers the nose gear back to guiding centerline

Fuselage Angle

Nose Gear Angle

Steering Angle

Observe the Nose Gear

Nose gear returns to centerline Small Steering Angle

Target Position

Air Transportation Systems Laboratory

Fuselage Angle

Nose Gear Angle

Steering Angle

Very Small Steering Angle

Target Position

Contractive's Contraction

Air Transportation Systems Laboratory

CALL N

Main gear is equidistant from centerline

MARINALI

Boeing 767-300 "Chalk" position

Target Position

们在西方