

Airport Pavement Notes CEE 4674: Airport Planning/Design

Dr. A.A.Trani Virginia Tech

Airport Planning and Design (A.A.Trani)

References for Airport Pavement Design

- FAA Advisory Circular 150/5320-6F: Airport Pavement Design and Evaluation
- FAA Advisory Circular 150/5370-10F Standards for Specifying Construction of Airports
- ICAO Aerodrome Design Manual, Part 3 (Montreal)
- Computer Programs:
 - FAARFIELD Flexible Iterative Elastic Layer Design
 - LEDFAA uses layered elastic theory based design (specifically pavements designed for the Boeing B-777 airplane).

Definitions

- Friction course
 - Provides a skid-resistance surface
- Structural course
 - Distributes the traffic loads to the base course
- Base course
 - Supports the structural course and distribute loads to the stabilization (subgrade) layer

Types of Pavements

- Flexible pavements
- Rigid pavements

Source: Encyclopedia Britannica

UrginiaTech

Flexible Pavements

- Multi-Layered system (3-4 layers)
 - Design life is usually 10-20 years
 - Higher maintenance cost
 - Relatively low flexural strength (high deformation of the sub-grade)
 - Better ride quality (no expansion joints)

Rigid Pavements

- Normally 2-3 layers
- Design life 30-40 years
- Lower maintenance cost
- Relatively high flexural strength (less deformation of sub-grade)
- Lower ride quality (due to expansion joints)

Example: Original Airport Pavement for Dulles International Airport (1962)

Legend

- 1. PCC Pavement, 15 inch depth
- 2. PCC Pavement, 12 inch depth
- 3. Aggregate Base, 9 inch depth
- 4. Bituminous Concrete

Source: Fuselier, Grubs and McQueen, ASCE 2008

Example: Original Airport Pavement for Dulles International Airport (1962) Design Assumptions

- Equivalent Single Wheel Load of 100,000 lbs.
- Using the Portland Cement Association (PCA) methodology
- Airplane whose gross load 500,000 lbs (with DC-8 gear configuration and a tire pressure of 200 psi was assumed equal to the 100,000 lbs equivalent single wheel load)
- The soil was classified as E-8, in accordance with the CA (FAA) soil classification system
- Portland cement concrete working modulus = 750 @ 28 days and 850 @ 90 days
- Effective Subgrade Modulus at top of aggregate subbase, k = 200 psi
- Factor of Safety 1.7 for Critical Areas and 1.25 for Non-critical Areas

Source: Fuselier, Grubs and McQueen, ASCE 2008

Reconstructed Airport Pavement for Dulles International Airport (2005)

Source: Fuselier, Grubs and McQueen, ASCE 2008

Uvirginia Tech

Pavement Thickness Increased Substantially from the Original Design

- Airbus A380-800 has a maximum takeoff weight of 570 metric tons (1.254 million pounds)
- The original design weight was 500,000 lb

Aircraft Weight Distribution on Multiple Landing Gear Struts

			V	NG		H PER STRUT (4)			
AIRPLANE MODEL	UNITS	MAX DESIGN TAXI WEIGHT	STATIC AT MOST FWD C.G.	STATIC + BRAKING 10 FT/SEC ² DECEL	STRUT AT MAX LOAD AT STATIC AFT C.G.	STEADY BRAKING 10 FT/SEC ² DECEL	AT INSTANTANEOUS BRAKING (μ = 0.8)		
777-200LR	LB	768,000	68,269	115,317	352,435	119,270	281,924		
	KG	348,358	30,966	52,307	159,862	54,100	127,879		
777-300ER	LB	777,000	59,019	98,480	359,207	120,668	287,333		
	KG	352,441	26,771	44,670	162,934	54,734	130,332		
777F	LB	768,800	81,367	128,464	352,495	119,395	281,949		
	KG	348,722	36,907	58,270	159,889	54,157	127,890		

Note: At rest, ~91-95% of the aircraft weight is supported main landing gear

UrginiaTech

Landing Gear Arrangements (Tricycle)

Boeing 747-400

Beechcraft BE400

Airport Planning and Design (A.A.Trani)

Landing Gear Arrangements (Dual Tire Main Gear)

Embraer 190

Boeing 737-800

Airbus A319

Landing Gear Arrangements (Dual In-Tandem)

Boeing MD-10

Airbus A330-300

Airport Planning and Design (A.A.Trani)

Landing Gear Arrangements (Triple In-Tandem)

Boeing 777-200

UirginiaTech

Source: The Boeing Airplane Company

Boeing 777-300ER

Landing Gear Arrangements (Multiple Gears)

Boeing747-400 (2 x dual in-tandem)

Airbus A340-600

dual in-tandem)

UrginiaTech

Landing Gear Configurations and Dimensions

Boeing 717-200

	UNITS		717-200 HGW OPTION							
MAXIMUM DESIGN	LBS	111,000	1,000 115,000 117,000 119,000							
TAXI WEIGHT	KG	50,349	50,349 52,163 53,070 53,977							
WEIGHT ON MAIN GEAR	%	SEE SECTION 7.4								
NOSE GEAR TIRE SIZE	IN	26 x 6.6 TYPE VII 12 PR								
NOSE GEAR	PSI	118	118 122 124 127							
TIRE PRESSURE	KG/CM ²	8.30	0 8.58 8.72 8.93							
MAIN GEAR TIRE SIZE	IN	H41 x 15.0 – 19 24 PR								
MAIN GEAR	PSI	152	158	164						
TIRE PRESSURE	KG/CM ²	10.69	11.53							

Airport Planning and Design (A.A.Trani)

Pavement Design Methods

- Flexible Pavement Requirements U.S.Army Corps of Engineers Method (S-77-1) and FAA Design Method (CBR Method)
- Flexible Pavement Requirements LCN Method
- Rigid Pavement Requirements Portland Cement Association Design Method
- Flexible Iterative Elastic Layer Design (FAA using FAARFIELD model)

Sample Airport Pavement Charts

http://www.boeing.com/commercial/airports

Airport Planning and Design (A.A.Trani)

UirginiaTech Sample Airport Pavement Charts **Boeing 777-300ER** 242 FT 4 IN (73.86 M) **Dimensions in** 4 FT 6 IN (25.76 M) **Airport Design Document** 8 FT 2.5 IN (26.89 M) 도도 20 FT 4 IN. III 31 FT 6.5 IN THAY PACIFIC (9.61 M) 159 FT 1.4 IN (48.50 M) 61 FT 1.4 IN (49.11 M) -20 FT 4 IN (6.20 M) 000 0 000 -----02 FT 5.3 IN (31.22 M) 19 FT 4 IN (5.89 M) - 239 FT 9 IN (73.08 M 212 FT 7 IN (64.80 M) 70 FT 7.5 II Boeing 777-300ER Taking Off at Chicago SCALE 13 FT O IN METER O'Hare Airport 36 FT 0 IN FFFT 10.97

http://www.boeing.com/commercial/airports

Airport Planning and Design (A.A.Trani)

California Bearing Ratio (CBR)

- A measure of the load-bearing capacity (or strength) of natural soil
- Strength of soil compared to crushed California limestone (assumed to have a CBR value of 100)
- CBR is a standard described in ASTM Standard D1883-05 (for laboratory samples)
- D4429 (for soils in the field)
- AASHTOTI93

Check out information in : http:// www.pavementinteractive.org/california-bearing-ratio/

Sample Airport Pavement Charts

Flexible Pavement Design Chart

U.S. Army Corps of Engineers Design Method (S-77-1):

Source: 777-200LR / -300ER / -Freighter Airplane Characteristics for Airport Planning

Flexible Pavement Thickness (inches)

UrginiaTech

Source: 777-200LR / -300ER / -Freighter Airplane Characteristics for Airport Planning

Example: Quick Design Estimate

Boeing 777-300ER MTOW - 718,414 lb CBR Subbase - 25 **CBR Subgrade - 8** 20 year design

U.S.Army Corps of Engineers **Design Method** (S-77-I):

Source: 777-200LR / -300ER / -Freighter Airplane Characteristics for Airport Planning UVirginia Tech

Example: Quick Design Estimate

Flexible Pavement Boeing 777-300ER CBR Subbase - 25 CBR Subgrade - 8

20 year design

U.S. Army Corps of Engineers Design Method (S-77-1):

Source: 777-200LR / -300ER / -Freighter Airplane Characteristics for Airport Planning

Airport Planning and Design (A.A.Trani)

III Virginia Tech

Example: Quick Design Estimate

Flexible Pavement

Boeing 777-300ER CBR Subbase - 25 CBR Subgrade - 8 20 year design

U.S. Army Corps of Engineers Design Method (S-77-1)

Source: 777-200LR / -300ER / -Freighter Airplane Characteristics for Airport Planning

UirginiaTech Sample Airport Pavement Charts **Rigid Pavement Design Chart** Subgrade Strength Pavement Thickness (inches) (psi) Modulus Portland Cement (lb/cu.inch) Allowable Working Stress Association **Design Method** Weight on Main Landing Gear Source:

Source: 777-200LR / -300ER / -Freighter Airplane Characteristics for Airport Planning

777-200LR / -300ER / -Freighter Airplane Characteristics for Airport Planning

Airport Planning and Design (A.A.Trani)

Computer Model FAARFIELD v. 1.42

- Companion software to FAA AC 150/5320-6F Airport Pavement Design and Evaluation
- FAARFIELD 1.42 uses the NIKE3D, a 3D finite-element program developed by the U.S. Dept. of Energy Lawrence Livermore National Laboratory (LLNL)
- Employs the Cumulative Damage Factor (CDF) to estimate the contribution of each aircraft for the design of the pavement
- No critical aircraft is used like in the old method
- Pass to Coverage Ratio (P/C) expressed as the number of passes required to apply a full load to a unit area

Computer Model FAARFIELD v. 1.42 Sample Material Specifications

Layer	Materials
Flexible Surface Course	P-401 Plant Mix Bituminous Pavement P-403 Plant Mix Bituminous Pavement (Base, Leveling)
Flexible Base Course	P-209 Crushed Aggregate Base Course P-219 Recycled Concrete Aggregate Base Course
Rigid Base Course	P-301 Soil-Cement Base Course P-304 Cement-Treated Base Course P-306 Econocrete Base Course
Rigid Surface Course	P-501 Portland Cement Concrete Pavement

source: Brill, D., Standards for Specifying Construction of Airports, 2013

Computer Model FAARFIELD v. 1.42

Example Problem (F. Salado, 2017)

- Design a Rigid Pavement for a Boeing 777-300ER
 - Pavement Type: Rigid
 - Tires: 220 psi
 - Subgrade Strength (K): 150 lb/in³
 - Aircraft Maximum Takeoff Weight: 774,600 lb
 - 1200 annual passes
 - 2% growth factor in number of passes
 - 20 year design condition

Steps in the Solution (F. Salado)

- Select the design life of 20 years
- For aircraft with MTOW > 100,000 lb, a stabilized base layer below the Portland Cement Concrete (PCC) is required
- HMA P-401 was selected as stabilized base material as recommended from FAA with a thickness of 12 in.
- Material P-209 was selected for crushed aggregate (10 inches)
- The subgrade K value is 150 lb/in³ with an Elastic Modulus of 12.5 psi.

UrginiaTech

Example Problem (F. Salado, 2017)

Layer	Type Thickness Modulus		Poisson's	Strength	
		IN	psi	Ratio	R,psi
1 (top)	PCC Surface	18.12	4,000,000	0.15	650
2	P-401/ P-403 St (flex)	12.00	400,000	0.35	0
3	P-209 Crushed Aggregate	10.00	41,684	0.35	0
4	Subgrade	0.00	12,544	0.40	0
(bottom)					

Airport Planning and Design (A.A.Trani)

ACN Reporting System

• ACN = Aircraft Classification Number

- Single number expressing the relative effect of an aircraft on a pavement for a specified subgrade strength (ICAO)
- ACN values are reported for flexible and rigid pavements
- Flexible pavements have four subgrade categories:
 - High Strength CBR 15
 - Medium Strength CBR 10
 - C. Low Strength CBR 6
 - Ultra Low Strength CBR 3

ACN Reporting System

• ACN = Aircraft Classification Number

- Single number expressing the relative effect of an aircraft on a pavement for a specified subgrade strength (ICAO)
- ACN values are reported for flexible and rigid pavements
- **Rigid pavements** have four subgrade categories:
 - High Strength Subgrade k = 150 MN/m³ (550 lb/in³)
 - Medium Strength Subgrade k = 80 MN/m³ (300 lb/in³)
 - Low Strength Subgrade k = 40 MN/m³ (150 lb/in³)
 - Ultra Low Strength Subgrade k = 20 MN/m³ (75 lb/in³)

ACN Reporting System: Boeing 747-400F

				AC	CN FOR RIGII SUBGRADE	D PAVEM S – MN/m	ENT 3	ACN	CN FOR FLEXIBLE PAVEMENT SUBGRADES – CBR			
AIRCRAFT TYPE	MAXIMUM TAXI WEIGHT/ MINIMUM WT (1) LB (KG)	LOAD ON ONE MAIN GEAR LEG (%)	TIRE PRESSURE PSI (MPa)	HIGH 150	MEDIUM 80	LOW 40	ULTRA LOW 20	HIGH 15	MEDIUM 10	LOW 6	ULTRA LOW 3	
747-400,	877,000(397,800)	23.33	200(1.38)	53	62	74	85	53	59	73	94	
-400F	395,000(179,200)			19	21	25	29	20	21	23	30	
747-400ER,	913,000(414,130)	23.40	230 (1.58)	59	69	81	92	57	63	78	100	
-400 ER	362,400(164,400)			19	20	23	27	18	19	21	26	

Airport Planning and Design (A.A.Trani)

ACN Reporting System Values (source: Wikipedia)

Aircraft Classification Numb	bers	(ACNS)
------------------------------	------	--------

	Weight	Tire	Flexible pavement sub-grades CBR%				Rigid pavement sub-grades k (MPa/m ³)			
Aircraft	Maximum	Pressure	High	Medium	Low	Very low	High	Medium	Low	Ultra low
	(kN)	(MPa)	Α	В	С	D	Α	В	С	D
			15	10	6	3	150	80	40	20
A330-200 (Configuration 1)	2,137	1.34	57	62	72	98	48	56	66	78
A330-200 (Configuration 2)	2,264	1.42	62	67	78	106	53	61	73	85
A330-300 (Configuration 1)	2,088	1.31	55	60	70	94	46	54	64	75
A330-300 (Configuration 2)	2,137	1.33	57	61	71	96	47	55	65	77
A330-300 (Configuration 3)	2,264	1.42	62	68	79	107	54	62	74	86
A380-800 (6 Wheel Main Gear)	5,514	1.47	56	62	75	106	<mark>55</mark>	67	88	110
A380-800 (4 Wheel Wing Gear)	5,514	1.47	62	68	80	108	55	64	76	88
B737-800	777	1.47	44	46	51	56	51	53	55	57
B737-900	777	1.47	44	46	51	56	51	53	55	57
B737-BBJ	763	1.47	43	45	50	55	50	52	54	56
B747-400, 400F, 400M	3,905	1.38	53	59	73	94	53	62	74	85
B747-400D (Domestic)	2,729	1.04	36	39	47	65	30	36	43	51
B747-400ER	4,061	1.58	57	63	78	100	59	69	81	92
B747-SP	3,127	1.26	45	50	61	81	40	48	58	67
B777-300	2,945	1.48	53	59	72	100	54	68	88	108
B777-300ER	3,345	1.52	64	71	89	120	66	85	109	131

ACN Reporting System (source: Wikipedia)

Aircraft Classification Numbers (ACNs)

	Weight	Tire	Flexible pavement sub-grades CBR%				Rigid pavement sub-grades k (MPa/m ³)			
Aircraft	Maximum	Pressure	High	Medium	Low	Very low	High	Medium	Low	Ultra low
	(kN)	(MPa)	Α	В	С	D	Α	В	С	D
			15	10	6	3	150	80	40	20
B787-8	2,240	1.57	60	66	81	106	61	71	84	96
BAC-111 Series 400	390	0.97	23	24	27	29	25	27	28	29
BAC-111 Series 475	440	0.57	23	28	29	32	26	28	29	31
BAC-111 Series 500	467	1.1	29	31	33	35	33	34	35	36
BAe-146-100	376	0.84	18	20	23	26	20	22	24	25
BAe-146-200	416	0.97	22	23	26	29	24	26	27	29
BAe-146-300	436	1.1	24	25	28	31	27	28	30	31
Bae-ATP	232	0.85	12	13	14	16	13	14	15	16
Beech 1900C, 1900D	76	0.67	3	4	4	5	4	4	5	5
Beech 2000 Starship	65	0.54	2	3	4	4	3	4	4	4
Beech Jet 400, 400A	73	0.86	6	7	7	7	6	6	6	6
Beech King Air 100, 200 Series	56	0.73	2	3	3	4	3	3	3	4
Beech King Air 300, 300C, 350, 350C	67	0.73	3	3	4	4	4	4	4	4
Bombardier 415 (Canadair CL-215, 415)	196	0.53	12	14	17	17	14	14	15	15
Bombardier BD-700, Global Express, XRS	437	1.15	26	28	31	32	30	31	32	33
Bombardier Challenger 300	168	1.21	9	9	11	12	11	11	12	12
Bombardier Challenger 800	237	1.12	13	14	16	17	16	16	17	18
Bombardier Challenger CL 600, 601, 604	215	1.21	12	13	15	16	15	15	16	16
Bombardier CRJ100, CRJ200, CRJ440	237	1.12	13	14	16	17	16	16	17	18
Bombardier CRJ700 Series	335	1.06	18	18	21	24	20	21	22	23
Bombardier CRJ900 Series	377	1.06	21	21	24	27	23	24	26	27
Bombardier Dash 8 Q100, Q200 Series	162	0.9	8	8	9	11	9	9	10	10

WirginiaTech

Operation Conditions

- ICAO recognizes that:
 - Aircraft can safely operate on a pavement if their ACN is less than or equal to the pavement load bearing capacity or Pavement Classification Number (PCN)
- An aircraft having an ACN equal to or less than the PCN can operate without weight restrictions on a pavement (Wikipedia)
- PCN is published in an Aeronautical Information Publication (AIP) (Wikipedia)

Publication (AIP)

Pavement Classification Number (PCN)

Published in the Aeronautical Information

Published in Airnav

Runway 10C/28C

Chicago ORD Airport Data

10801 x 200 ft. / 3292	2 x 61 r	n
concrete/grooved, in	exceller	nt condition
PCN 96 /R/C/W/T		
Single wheel:	75.0	
Double wheel:	135.0	
Double tandem:	375.0	
Dual double tandem:	902.0	
	10801 x 200 ft. / 3292 concrete/grooved, in o PCN 96 /R/C/W/T Single wheel: Double wheel: Double tandem: Dual double tandem:	10801 x 200 ft. / 3292 x 61 m concrete/grooved, in exceller PCN 96 /R/C/W/T Single wheel: 75.0 Double wheel: 135.0 Double tandem: 375.0 Dual double tandem: 902.0

UrginiaTech