CEE 3804 - Computer Applications

Mathematical Programming (LP) and Excel Solver

Dr. Antonio A. Trani
Professor of Civil and Environmental Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia
Fall 2013

Recall - Linear Programming

General Formulation

$$
\begin{array}{ll}
\text { Maximize } & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to: } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \text { for } i=1,2, \ldots, m \\
& x_{j} \geq 0 \text { for } j=1,2, \ldots, n
\end{array}
$$

Linear Programming

$$
\begin{gathered}
\sum_{j=1}^{n} c_{j_{j}} x_{j} \quad \text { Objective Function (OF) } \\
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { Functional Constraints (} m \text { of them) } \\
x_{j} \geq 0 \quad \text { Nonnegativity Conditions (} n \text { of these) } \\
x_{j} \text { are decision variables to be optimized (min or max) } \\
c_{j} \text { are costs associated with each decision variable }
\end{gathered}
$$

Linear Programming

$a_{i j}$ are the coefficients of the functional constraints
b_{i} are the amounts of the resources available (RHS)

LP Example (Construction)

During the construction of an off-shore airport in Japan the main contractor used two types of cargo barges to transport materials from a fill collection site to the artificial island built to accommodate the airport.

The types of cargo vessels have different cargo capacities and crew member requirements as shown in the table:

Vessel Type	Capacity (m- ton)	Crew required	Number available
Fuji	300	3	40
Haneda	500	2	60

Osaka Bay Model

According to company records there are 180 crew members in the payroll and all crew members are trained to either manage the "Haneda" or "Fuji" vessels.

Osaka Bay Model

Mathematical Formulation

Maximize $Z=300 x_{1}+500 x_{2}$
subject to: $3 x_{1}+2 x_{2} \leq 180$

$$
\begin{aligned}
& x_{1} \leq 40 \\
& x_{2} \leq 60 \\
& x_{1} \geq 0 \quad \text { and } x_{2} \geq 0
\end{aligned}
$$

Note: let x_{1} and x_{2} be the no. "Fuji" and "Haneda" vessels

Osaka Bay Problem (Graphical Solution) \boldsymbol{x}_{2}

Osaka Bay Problem (Graphical Solution)

Note: Optimal Solution $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=(20,60)$ vessels

Solution Using Excel Solver

- Solver is a Generalized Reduced Gradient (GRG2) nonlinear optimization code
- Developed by Leon Lasdon (UT Austin) and Allan Waren (Cleveland State University)
- Optimization in Excel uses the Solver add-in.
- Solver allows for one function to be minimized, maximized, or set equal to a specific value.
- Convergence criteria (convergence), integer constraint criteria (tolerance), and are accessible through the OPTIONS button.

Excel Solver

- Excel can solve simultaneous linear equations using matrix functions
- Excel can solve one nonlinear equation using Goal Seek or Solver
- Excel does not have direct capabilities of solving n multiple nonlinear equations in n unknowns, but sometimes the problem can be rearranged as a minimization function

Osaka Bay Problem in Excel

Optimization Problem for Osaka Bay

Decision Variables		
x1	20	Number of Ships Type 1
$x 2$	60	Number of Ships Type 2

```
Objective Function
300 x1 + 500 x2
3 6 0 0 0
Objective function Stuff to be solved
```

Constraint Equations		
	Formula	
$3 \times 1+2 \times 2<=180$	$180<=$	180
$\times 1<=40$	$20<=$	40
$\times 2<=60$	$60<=$	60
$x 1>=0$	$20>=$	0
$x 2>=0$	$60>=$	0

Osaka Bay Problem in Excel

Optimization Problem for Osaka Bay

Decision Variables	
x1	20
x2	60

Decision variables (what your control)

Number of Ships Type 1 Number of Ships Type 2

Objective Function
$300 \times 1+500 \times 2$
36000
Constraint Equations

$3 \times 1+2 \times 2<=180$	$180<=$	180
$\times 1<=40$	$20<=$	40
$\times 2<=60$	$60<=$	60
$x 1>=0$	$20>=$	0
$x 2>=0$	$60>=$	0

Osaka Bay Problem in Excel

Optimization Problem for Osaka Bay

Decision Variables		
x1	20	Number of Ships Type 1
$\times 2$	60	Number of Ships Type 2

Objective Function
$300 \times 1+500 \times 2$
36000
Constraint equations (limits to the problem)

```
Constraint Equations
```

```
Formula
```

```
Formula
```

$3 \times 1+2 \times 2<=180$
$x 1<=40$
$20<=$
180
40
$x 2<=60$
$x 1>=0$
$x 2>=0$
$60>=$

$180<=$	180
$20<=$	40
$60<=$	60
$20>=$	0
$60>$	0

Solver Panel in Excel

Solver Panel in Excel

Solver Parameters

Solver Panel in Excel

Objective function
Solver Parameters

Solver Panel in Excel

Solver Panel in Excel

Decision variables

Solver Panel in Excel

Constraint equations

Solver Options Panel Excel

Excel Solver Limits Report

- Provides information about the limits of decision variables

Virginia

Excel Solver Sensitivity Report

- Provides information about shadow prices of decision variables

\bigcirc	A		B	C	D	E	
1	Microsoft Excel 10.1 Sensitivity Report Worksheet: [osaka_bay2.xIs]Sheet1 Report Created: 3/10/2003 5:47:49 AM Adjustable Cells						
2							
3							
4							
5							
6							
7	Cell			Name	Final	Reduced	
8				Value	Gradient		
9		\$8\$5	\$5 $\times 1$			20	0
10		\$日\$6	\$6 \times		60	0	
11	Constraints						
12							
13	Cell			Name	Final	Lagrange	
14				Value	Multiplier		
15	\$B\$18 $\times 2>=0$ Formula				60	0	
16	\$B\$15 $\times 1<40$ Formula				20	0	
17	\$B\$16 $\times 2<60$ Formula				60	300	
18	\$B $\$ 17 \times 1>=0$ Formula				20	0	
19	\$ $\$$ \$14 $3 \times 1+2 \times 2<=180$ Formula				180	100	
30							

Unconstrained Optimization Problems

- Common in engineering applications
- Can be solved using Excel solver as well
- The idea is to write an equation (linear or nonlinear) and then use solver to iterate the variable (or variables) to solve the problem

Simple One Dimensional Unconstrained Optimization

- Given the quadratic equation

$$
y=2 x^{2}-20 x+18
$$

- Find the minima of the equation for all values of x

Solution:

- Lets try the Excel Solver

Plot of Equation to be Solved

Excel Solver Procedure

minima_example.xls
Finding the Minima of a function
Guess value of ${ }^{\mathrm{E}} \mathrm{K}^{\mathrm{K}}$
Function $y=2^{*} x^{\wedge} 2-20^{*} x+18$

Excel Solver Panel

Solver Parameters

Excel Solver Procedure

Finding the Roots of y Using Excel Solver

- Easily change the minimimzation problem into a root finder by changing the character of the operation in Excel Solver

Example for Class Practice

- Minimization example (mixing problem)
- Airline fleet assignment problem

Minimization LP Example

A construction site requires a minimum of $10,000 \mathrm{cu}$. meters of sand and gravel mixture. The mixture must contain no less than 5,000 cu. meters of sand and no more than $6,000 \mathrm{cu}$. meters of gravel.

Materials may be obtained from two sites: 30% of sand and 70% gravel from site 1 at a delivery cost of $\$ 5.00$ per cu. meter and 60% sand and 40% gravel from site 2 at a delivery cost of $\$ 7.00$ per cu. meter.
a) Formulate the problem as a Linear Programming problem
b) Solve using Excel Solver

Application to Water Pollution

Water Pollution Management

The following are pollution loadings due to five sources:
Note: Pollution removal schemes vary in cost dramatically.

Source	Pollution Loading $(\mathbf{k g} / \mathbf{y r})$	Unit Cost of Removal $(\$ \$ \mathbf{k g})$
River A	18,868	1.2
River B	20,816	1.0
River C	37,072	0.8
Airport	28,200	2.2
City	12,650	123.3

Water Pollution Management

It is desired to reduce the total pollution discharge to the lake to $70,000 \mathrm{~kg} / \mathrm{yr}$. Therefore the target pollution reduction is $117,606-70,000=47,606 \mathrm{~kg} / \mathrm{yr}$.

Solution:

Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}$ be the pollution reduction values expected in ($\mathrm{kg} / \mathrm{yr}$). The costs of unit reduction of pollution are given in the previous table.

The total pollution reduction from all sources should be at least equal to the target reduction of $47,606 \mathrm{~kg}$.

LP Applications - Water Pollution Management

The reductions for each source cannot be greater than the present pollution levels. Mathematically,
$x_{1} \leq 18868$ constraint for River A
$x_{2} \leq 20816$ constraint for River B
$x_{3} \leq 37072$ constraint for River C
$x_{4} \leq 28200$ airport constraint
$x_{5} \leq 12650$ city constraint

Water Pollution Management

The reductions at each source should also be non negative.
Using this information we characterize the problem as follows:
$\operatorname{Min} z=1.2 x_{1}+1.0 x_{2}+0.8 x_{3}+2.2 x_{4}+123.3 x_{5}$
s.t. $x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \geq 47606$

$$
\begin{aligned}
& x_{1} \leq 18868 \\
& x_{2} \leq 20816 \\
& x_{3} \leq 37072
\end{aligned}
$$

Virginia
(IIITech

Water Resource Management

Rewrite the objective function as follows:
$\operatorname{Max} \quad-z+1.2 x_{1}+1.0 x_{2}+0.8 x_{3}+2.2 x_{4}+123.3 x_{5}+M x_{12}$
st. $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}-x_{6}+x_{12}=47606$

$$
\begin{aligned}
& x_{1}+x_{7}=18868 \\
& x_{2}+x_{8}=20816 \\
& x_{3}+x_{9}=37072 \\
& x_{4}+x_{10}=28200 \\
& x_{5}+x_{11}=12650
\end{aligned}
$$

Solution in Matlab (Input File)

\% Example: Enter the data:
minmax $=1 ; \%$ minimizing problem
$a=\left[\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & -1 & 0 & 0 & 0 & 0\end{array} 01\right.$
100000100000
010000010000
001000001000
000100000100
000010000010]
b=[47606 1886820816370722820012650$]$ '
c=[-1.2 -1. -. 8 -2.2 -123.3 0000000 -999]
bas=[12 78910 11]

Try it in Excel Solver!

Airline Scheduling Problem

A small airline would like to use mathematical programming to schedule its flights to maximize profit.

The following map shows the city pairs to be operated.

Airline Scheduling Problem

The airline has decided to purchase two types of aircraft to satisfy its needs: 1) the Embraer 145, a 45 -seat regional jet, and 2) the Avro RJ-100, a four-engine 100 seater aircraft (see the following figure).

Avro RJ-100

Aircraft Characteristics

The table has pertinent characteristics of these aircraft

Aircraft	EMB-145	Avro RJ-100
Seating capacity $-n_{k}$	50	100
Block speed (knots) $-v_{k}$	400	425
Operating cost (\$/hr) $-c_{k}$	1,850	3,800
Maximum aircraft utiliza- tion (hr/day)$U_{k}-13.0$	12.0	

a. The aircraft utilization represents the maximum number of hours an aircraft is in actual use with the engines running (in airline parlance this is the sum of all daily block times). Turnaround times at the airport are not part of the utilization variable as defined here.

Nomenclature

Define the following sets of decision variables:
No. of acft. of type k in fleet $=A_{k}$
No. flights assigned from i to j using aircraft of type $k=N_{i j k}$
Minimum flight frequency between i and $j=\left(N_{i j}\right)_{\text {min }}$

Based on expected load factors, the tentative fares [illech between origin and destination pairs are indicated in the following table.

City pair designator	Origin- Destination	Average one- way fare (\$/seat)
ROA-CVG	Roanoke to Cincinnati	175.00
ROA-LGA	Roanoke to La Guardia	230.00
ROA-ATL	Roanoke to Atlanta	200.00

Problem \# 1 Formulation

1) Write a mathematical programming formulation to solve the ASP-1 Problem with the following constraints:

Maximize Profit
subject to:

- aircraft availability constraint
- demand fulfillment constraint
- minimum frequency constraint

Problem \# 2 ASP-1 Solution

1) Solve problem ASP-1 under the following numerical assumptions:
a) Maximize profit solving for the fleet size and frequency assignment without a minimum frequency constraint. Find the number of aircraft of each type and the number of flights between each origin-destination pair to satisfy the two basic constraints (demand and supply constraints).
b) Repeat part (a) if the minimum number of flights in the arc ROA-ATL is 8 per day (8 more from ATL-ROA) to establish a shuttle system between these city pairs.

Vehicle Scheduling Problem

Formulation of the problem.
Maximize Profit
subject to: (possible types of constraints)
a) aircraft availability constraint
b) demand fulfillment constraint
c) Minimum frequency constraint
d) Landing restriction constraint

Vehicle Scheduling Problem

Profit Function

$\mathrm{P}=$ Revenue - Cost
Revenue Function
Revenue $=\sum_{(i, j)} \lambda_{i j} f_{i j}$
where: $\lambda_{i j}$ is the demand from i to j (daily demand)
$f_{i j}$ is the average fare flying from i to j

Vehicle Scheduling Problem

Cost function

let $N_{i j k}$ be the flight frequency from i to j using aircraft type k
let $C_{i j k}$ be the total cost per flight from i to j using aircraft k

Cost $=\sum_{\langle i, j)} \sum_{k} N_{i j k} C_{i j k}$
then the profit function becomes,

$$
\text { Profit }=\quad \sum_{i, j}^{\lambda_{i j} f_{i j}-\sum_{i, j} \sum_{i} N_{i j K} C_{i j k}}
$$

Vehicle Scheduling Problem

Demand fulfillment constraint

Supply of seats offered > Demand for service

$$
\begin{array}{ll}
\sum_{k} n_{k} N_{i j k} \geq \lambda_{i j} & \text { for all }(i, j) \text { city pairs or alternatively } \\
\sum_{i}^{(l f) n_{k} N_{i j k} \geq \lambda_{i j}} \quad \text { for all }(i, j) \text { city pairs }
\end{array}
$$

If is the load factor desired in the operation (0.8-0.85)
Note: airlines actually overbook flights so they usually factor a target load factor in their schedules to account for some slack

Vehicle Scheduling Problem

Aircraft availability constraint

(block time) (no. of flights) < (utilization)(no. of aircraft)
$\sum_{(i, j)} t_{i j k} N_{i j k} \leq U_{k} A_{k}$
one constraint equation for every k aircraft type

Vehicle Scheduling Problem

Minimum frequency constraint

No. of flights between i and $\mathrm{j}>$ Minimum number of desired flights
$\sum_{k} N_{i j k} \geq\left(N_{i j}\right)_{\text {min }}$ for all (i, j) city pairs
Note: Airlines use this strategy to gain market share in highly traveled markets

Vehicle Scheduling Problem

Maximize Profit $=\quad \sum_{i, j} \lambda_{i j} f_{i j}-\sum_{i, j} \sum_{k} N_{i j k} C_{i j k}$
subject to
$\sum_{k} n_{k} N_{i j k} \geq \lambda_{i j}$ for all (i, j) city pairs
$\sum_{i, j} t_{i j k} N_{i j k} \leq U_{k} A_{k}$ for every k aircraft type
$\sum_{k} N_{i j k} \geq\left(N_{i j}\right)_{\text {min }}$ for all (i, j) city pairs

