CEE 3804 - Computer Applications

Mathematical Programming (LP)

Dr. Antonio A. Trani

Professor of Civil and Environmental Engineering Virginia Tech

Blacksburg, Virginia

Fall 2023

Resource Allocation

Principles of Mathematical Programming

Mathematical programming is a general technique to solve resource allocation problems using optimization. Types of problems:

- Linear programming
- Integer programming
- Dynamic programming
- Decision analysis
- Network analysis and CPM

Mathematical Programming

Operations research was born with the increasing need to solve optimal resource allocation during WWII.

- Air Battle of Britain
- North Atlantic supply routing problems
- Optimal allocation of military convoys in Europe

Dantzig (1947) is credited with the first solutions to linear programming problems using the Simplex Method

Resource Allocation

Linear Programming Applications

- Allocation of products in the market
- Mixing problems
- Allocation of mobile resources in infrastructure construction (e.g., trucks, loaders, etc.)
- Crew scheduling problems
- Network flow models
- Pollution control and removal
- Estimation techniques

Linear Programming

General Formulation

$$
\begin{array}{ll}
\text { Maximize } & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to: } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \text { for } i=1,2, \ldots, m \\
& x_{j} \geq 0 \text { for } j=1,2, \ldots, n
\end{array}
$$

Linear Programming

Maximize $Z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$
Subject to:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& \ldots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m} \\
& \text { and } x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0
\end{aligned}
$$

Linear Programming

$$
\sum_{c=0, x}^{c, 0} \quad \text { Objective Function (OF) }
$$

\sum
Functional Constraints (m of them) $x_{j} \geq 0 \quad$ Nonnegativity Conditions (n of these)
x_{j} are decision variables to be optimized (min or max)
c_{j} are costs associated with each decision variable

Linear Programming

$a_{i j}$ are the coefficients of the functional constraints
b_{i} are the amounts of the resources available (RHS)
Some definitions
Feasible Solution (FS) - A solution that satisfies all functional constraints of the problem

Basic Feasible Solution (BFS)- A solution that needs to be further investigated to determine if optimal

Initial Basic Feasible Solution - a BFS used as starting point to solve the problem

LP Example (Construction)

During the construction of an off-shore airport in Japan the main contractor used two types of cargo barges to transport materials from a fill collection site to the artificial island built to accommodate the airport.

The types of cargo vessels have different cargo capacities and crew member requirements as shown in the table:

Vessel Type	Capacity (m- ton)	Crew required	Number available
Fuji	300	3	40
Haneda	500	2	60

Osaka Bay Model

According to company records there are 180 crew members in the payroll and all crew members are trained to either manage the "Haneda" or "Fuji" vessels.

Osaka Bay Model

Mathematical Formulation

Maximize $Z=300 x_{1}+500 x_{2}$
subject to: $3 x_{1}+2 x_{2} \leq 180$

$$
\begin{aligned}
& x_{1} \leq 40 \\
& x_{2} \leq 60 \\
& x_{1} \geq 0 \quad \text { and } \quad x_{2} \geq 0
\end{aligned}
$$

Note: let x_{1} and x_{2} be the no. "Fuji" and "Haneda" vessels

Osaka Bay LP Model

Maximize $\quad Z=300 x_{1}+500 x_{2}$
Solution:
a) Covert the problem to standard (canonical) form
subject to: $3 x_{1}+2 x_{2}+x_{3}=180$

$$
\begin{aligned}
& x_{1}+x_{4}=40 \\
& x_{2}+x_{5}=60 \\
& x_{1} \geq 0 \quad \text { and } x_{2} \geq 0
\end{aligned}
$$

Add a slack variable for each <= type constraint

Osaka Bay Problem (Graphical Solution) x_{2}

Osaka Bay Problem (Graphical Solution)
x_{2}

Note: Optimal Solution $\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=(20,60)$ vessels

Osaka Bay Problem (Simplex Method)

Arrange objective function in standard form to perform Simplex tableaus

$$
\begin{aligned}
& Z-300 x_{1}-500 x_{2}=0 \\
& \quad 3 x_{1}+2 x_{2}+x_{3}=180 \\
& x_{1}+x_{4}=40 \\
& x_{2}+x_{5}=60 \\
& x_{1} \geq 0 \quad, \quad x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0 \quad \text { and } x_{5} \geq 0
\end{aligned}
$$

Note: x_{3}, x_{4}, x_{5} are slack variables

Osaka Bay Example (Initial Tableau)

BV	\mathbf{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\boldsymbol{4}}$	$\boldsymbol{x}_{\mathbf{5}}$	RHS
\mathbf{z}	$\mathbf{1}$	$\mathbf{- 3 0 0}$	$\mathbf{- 5 0 0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\boldsymbol{x}_{\mathbf{3}}$	0	3	2	1	0	0	180
$\boldsymbol{x}_{\mathbf{4}}$	0	1	0	0	1	0	40
$\boldsymbol{x}_{\mathbf{5}}$	0	0	1	0	0	1	60

$\mathrm{BV}=x_{3}, x_{4}, x_{5}$ and $\mathrm{NBV}=x_{1}, x_{2}$
BV = Basic Variable (non-zero) \quad NBV $=$ Non-basic variable (zero)

Simplex Method Procedure

- Examine the objective function in the current Tableau
- If the coefficients of the non-basic variables (i.e., those which are zero in the current solution) are negative, the value of the objective function can still be improved by introducing one of the NBVs to the solution set
- Select the most negative coefficient value of the NBV in the Z-row and introduce that NVB to the solution
- Allocate as much of the variable selected until the constraint equations limit the value of the NVB introduced

Simplex Method

$\mathbf{B V}$	\mathbf{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	\boldsymbol{x}_{3}	$\boldsymbol{x}_{\mathbf{4}}$	\boldsymbol{x}_{5}	RHS
\mathbf{z}	$\mathbf{1}$	$\mathbf{- 3 0 0}$	$\mathbf{- 5 0 0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
\boldsymbol{x}_{3}	0	3	2	1	0	0	180
$\boldsymbol{x}_{\mathbf{4}}$	0	1	0	0	1	0	40
x_{5}	0	0	1	0	0	1	60
$\mathrm{BV}=x_{3}, x_{4}, x_{5}$ and NBV $=x_{1}, x_{2}$							

Most negative coefficient in Z-row improves the value of Z the most X_{2} is selected as the NVB that will be introduced to the BV set in the next iteration

Select the column of variable x_{2} as "pivot" column for calculations in the next Tableau

Simplex Method

- Now we know x_{2} will be part of the solution in the next Tableau
- The question is which one of the BV variables ($\mathrm{x}_{3}, \mathrm{x}_{4}$ and x_{5}) will leave the solution (the so-called Basis)
- Examine the constraint equations to make that decision
- The variable that leaves the BV set is that one that first becomes zero when x_{2} is increased

Simplex Method: Check Constraints

- From the original constraint equations

$$
\begin{aligned}
& \text { Recall in the current solution } \\
& \mathbf{x}_{1} \text { is zero }
\end{aligned}
$$

Bottom Line: 3rd constraint equation limits the value of x_{2} the most. x_{5} leaves the solution and x_{2} becomes
a BV variable (non-zero)

Simplex Method: Check Constraints

- The selection of the leaving BV variable can be simplified using the ratio test

BV	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS	ratio
Z	1	-300	-500	0	0	0	0	
x_{3}	0	3	2	1	0	0	180	90
x_{4}	0	1	0	0	1	0	40	inf
x_{5}	0	0	1	0	0	1	60	60

Ratio of RHS of constraint equation and the coefficient
of the variable in pivot column (x_{2} in this table)

For row $x_{3}: 180 / 2=90$
For row $x_{4}: 40 / 0=$ infinity
For row $\mathrm{X}_{5}: 60 / \mathrm{l}=60$
Bottom Line: 3rd constraint equation limits the value of x_{2} the most. Select the pivot row as the row with the smallest ratio

Solution: $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(0,0,180,40,60)$

Osaka Bay Example (Initial Tableau)

BV	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS	ratio
Z	1	-300	-500	0	0	0	0	
x_{3}	0	3	2	1	0	0	180	90
x_{4}	0	1	0	0	1	0	40	inf
x_{5}	0	0	1	0	0	1	60	60

x_{2} improves the objective function more than x_{1}

Simplex Method: Pivot Row and Column

BV	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	-300	-500	0	0	0	0
x_{3}	0	3	2	1	0	0	180
x_{4}	0	1	0		1	0	40
x_{5}	0	0	1			1	60
$\mathrm{BV}=x_{3}, x_{4}, x_{5} \text { and } \mathrm{NBV}=x_{1}, x_{2}$							
Select the row of variable \times_{5} as "pivot" row for calculations in the next Tableau						Select the column of variable X_{2} as "pivot" column for calculations in the next Tableau	
In the next Tableau, x_{5} leaves the solution and x_{2} is now a non-zero variable (part of the solution)							

Simplex Method : Matrix Operations

- Developing the next Tableau requires a few linear algebra manipulations:
- Zero out the coefficient of the Z-row for the pivot column chosen
- Zero out all coefficients in the pivot row except for the coefficient at the intersection of the pivot row and pivot column
- Do repeated linear algebra row operations to zero out every coefficient in the pivot column

Simplex Method : Matrix Operations

- Example: to zero out the coefficient (-500) in the Zrow of the pivot column
- Multiply the entire row representing the 3rd constraint equation (x_{5} row) in the Tableau by 500 and add to the Z-row

Simplex Method : Matrix Operations

- To zero out the coefficient (2) in the x_{3} row of the pivot column
- Multiply the entire row representing the 3rd constraint equation (x_{5} row) in the Tableau by -2 and add to x_{3} row

Simplex Method : Matrix Operations

- The coefficient of row $x 4$ is already zero so no further matrix algebra computations are needed
- The new Tableau is now ready to be assembled

BV	\mathbf{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\boldsymbol{4}}$	$\boldsymbol{x}_{\mathbf{5}}$	RHS
\mathbf{z}	$\mathbf{1}$	$\mathbf{- 3 0 0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{5 0 0}$	$\mathbf{3 0 , 0 0 0}$
$\boldsymbol{x}_{\mathbf{3}}$	0	3	0	1	0	-2	60
$\boldsymbol{x}_{\mathbf{4}}$	0	1	0	0	1	0	40
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	60

Leaving BV $=x_{5}:$ New $\mathrm{BV}=x_{2}$

Osaka Bay Example (Second Tableau)

BV	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS	ratio
z	1	-300	0	0	0	500	30,000	20
x_{3}	0	3	0	1	0	-2	60	
x_{4}	0	1	0	0	1	0	40	40
x_{2}	0	0	1	0	0	1	60	inf

x_{1} improves the objective function the maximum

Simplex Method: Check for Optimality

 Conditions- Examine the objective function (Z-row) in the current Tableau
- If the coefficients of the non-basic variables (i.e., those which are zero in the current solution) are negative, the value of the objective function can still be improved by introducing one of the NBVs to the solution set
- Since the coefficient of $x 1$ is negative, we conclude that the solution can be improved if we introduce $x 1$ to the BV set
- Repeat the steps in the previous slides

Simplex Method: Iterations

BV	\mathbf{z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\mathbf{4}}$	\boldsymbol{x}_{5}	RHS
\mathbf{z}	$\mathbf{1}$	$\mathbf{- 3 0 0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{5 0 0}$	$\mathbf{3 0 , 0 0 0}$
$\boldsymbol{x}_{\mathbf{3}}$	0	3	0	1	0	-2	60
$\boldsymbol{x}_{\mathbf{4}}$	0	1	0	0	1	0	40
$\boldsymbol{x}_{\mathbf{2}}$	0	0	1	0	0	1	60

> Most negative coefficient in Z-row improves the value of Z the most x_{1} is selected as the NVB that will be introduced to the $B V$ set in the next iteration

Select the column of variable XI as "pivot" column for calculations in the next Tableau

Simplex Method : Matrix Operations

- Select pivot row by taking the ratio test (smallest ratio)
- Row $x 3$ is selected as the pivot row
- Multiply the entire $x 3$ row by $1 / 3$ to make the coefficient of the intersection cell unity

Simplex Method : Matrix Operations

- Multiply pivot row by 300 and add to Z-row to zero out the (-300) coefficient in the pivot column
- Repeat the elimination for other rows in the pivot column

BV	Z	x	x_{2}	x_{3}	X_{4}	X5	RHS	
Z	1	-300	0	0	0	500	30000	
X_{3}	0	1	0	1/3	0	-2/3	20	
X_{4}	0	1	0	0	1	0	40	
X5	0	0	1	0	0	1	60	
x_{3} row $\times(300)+\mathrm{Z}$ row				\downarrow				
	B	Z	x 1	x	x_{3}	X_{4}	X5	RHS
	Z	1	0	0	100	0	300	36000

Leaving BV $=x_{3}:$ New $B V=x_{1}$
Osaka Bay Example (Final Tableau)

BV	\mathbf{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\mathbf{4}}$	$\boldsymbol{x}_{\mathbf{5}}$	RHS
\mathbf{z}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 0 0}$	$\mathbf{0}$	$\mathbf{3 0 0}$	$\mathbf{3 6 , 0 0 0}$
$\boldsymbol{x}_{\boldsymbol{1}}$	0	1	0	$1 / 3$	0	$-2 / 3$	20
$\boldsymbol{x}_{\boldsymbol{4}}$	0	0	0	$-1 / 3$	1	$2 / 3$	20
$\boldsymbol{x}_{\boldsymbol{2}}$	0	0	1	0	0	1	60

Note: All NVB coefficients are positive or zero in tableau

Optimal Solution: $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, x_{3}, x_{4}, x_{5}\right)=(\mathbf{2 0 , 6 0}, 0,20,0)$
Virginia
[IIITech

Osaka Bay Model (Revised)

Mathematical Formulation

Maximize $\quad Z=300 x_{1}+500 x_{2}$
subject to: $\quad 3 x_{1}+2 x_{2}=180$
Revised Constraint

$$
\begin{aligned}
& x_{1} \leq 40 \\
& x_{2} \leq 60 \\
& x_{1} \geq 0 \quad \text { and } x_{2} \geq 0
\end{aligned}
$$

Note: let x_{1} and x_{2} be the no. "Fuji" and "Haneda" vessels

Osaka Bay Model (Revised)

Maximize $\quad Z=300 x_{1}+500 x_{2}$
a) Covert the problem in standard form
subject to: $\quad 3 x_{1}+2 x_{2}=180$

$$
\begin{aligned}
& x_{1}+x_{3}=40 \\
& x_{2}+x_{4}=60 \\
& x_{1} \geq 0 \quad, \quad x_{2} \geq 0, x_{3} \geq 0 \text { and } x_{4} \geq 0
\end{aligned}
$$

- Note: Problem lacks an intuitive IBFS (see first constraint)
- Note that setting $x_{1}=0$ and $x_{2}=0$ produces finite integer values for x_{3} and $x_{4}(40$ and 60, respectively) but fails to provide and adequate solution for constraint (1).
- This requires a reformulation step where another variable is added to the problem to identify an IBFS
- Add an artificial variable to the first constraint to solve the problem
- Adding an artificial variable in the constraint equation requires the addition of a large penalty to the objective function (z) to avoid this artificial variable being part of the solution

Osaka Bay Problem (Revised Graphical Sol.)
x_{2}

Osaka Bay Model (Revised)

Maximize $\quad Z=300 x_{1}+500 x_{2}$
a) Add an artificial variable to the initial "equal to" constraint
subject to: $\quad 3 x_{1}+2 x_{2}+\bar{x}_{5}=180$

$$
\begin{aligned}
& x_{1}+x_{3}=40 \\
& x_{2}+x_{4}=60 \\
& x_{1} \geq 0 \quad, \quad x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0 \text { and } x_{5} \geq 0
\end{aligned}
$$ (NVB).

Revised Solution (Big-M Method)

Revise the objective function to drive artificial variable to zero in the optimal solution. M is a large positive number.

Maximize $\quad Z=300 x_{1}+500 x_{2}-M x_{5}$
subject to: $\quad 3 x_{1}+2 x_{2}+\bar{x}_{5}=180$

$$
\begin{aligned}
& x_{1}+x_{3}=40 \\
& x_{2}+x_{4}=60 \\
& x_{1} \geq 0 \quad, \quad x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0 \quad \text { and } x_{5} \geq 0
\end{aligned}
$$

Osaka Bay LP (Expanded Feasible Region)

Revised Solution (Big-M Method)

Rearrange the OF and constraints before solving
Maximize $\quad Z-300 x_{1}-500 x_{2}+M x_{5}=0$
subject to: $\quad x_{1}+x_{3}=40$

$$
\begin{aligned}
& x_{2}+x_{4}=60 \\
& \quad 3 x_{1}+2 x_{2}+\bar{x}_{5}=180 \\
& x_{1} \geq 0 \quad, \quad x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0 \text { and } x_{5} \geq 0
\end{aligned}
$$

Note: the "Big M" (or a large penalty) is added to each artificial variable in OF. x_{3} and x_{4} are slack variables, x_{5} is an artificial variable.

Revised Osaka Bay LP (Initial Tableau)

$\mathbf{B V}$	\mathbf{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\boldsymbol{2}}$	$\boldsymbol{x}_{\boldsymbol{3}}$	$\boldsymbol{x}_{\boldsymbol{4}}$	x_{5}	RHS
\mathbf{z}	$\mathbf{1}$	$\mathbf{- 3 0 0}$	$\mathbf{- 5 0 0}$	$\mathbf{0}$	$\mathbf{0}$	\mathbf{M}	$\mathbf{0}$
$\boldsymbol{x}_{\mathbf{3}}$	0	1	0	1	0	0	40
$\boldsymbol{x}_{\boldsymbol{4}}$	0	0	1	0	1	0	60
$\boldsymbol{x}_{\mathbf{5}}$	0	3	2	0	0	1	180

$\mathrm{BV}=x_{3}, x_{4}, x_{5}$ and $\mathrm{NBV}=x_{1}, x_{2}$
Solution: $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(0,0,40,60,180)$

Revised Osaka Bay LP (Initial Tableau)

BV	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	-3M-300	-2M-500	0	0	0	-180 M 40
x_{3}	0	1	0	1	0	0	
x_{4}	0	0	1	0	1	0	60
x_{5}	0	3	2	0	0	1	180

x_{l} improves the objective function the maximum

$$
\text { Leaving } \mathrm{BV}=x_{3}: \text { New } \mathrm{BV}=x_{1}
$$

Virginia
[IIIT Tech

Revised Osaka Bay LP (2nd Tableau)

$\mathbf{B V}$	\mathbf{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\mathbf{4}}$	x_{5}	$\mathbf{R H S}$
\mathbf{z}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{- 2 M - 5 0 0}$	$\mathbf{3 M}+\mathbf{3 0 0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{- 6 0 M}+$ $\mathbf{1 2 0 0 0}$
$\boldsymbol{x}_{\boldsymbol{1}}$	0	1	0	1	0	0	40
$\boldsymbol{x}_{\mathbf{4}}$	0	0	1	0	1	0	60
\boldsymbol{x}_{5}	0	0	2	-3	0	1	60
3							

x_{2} improves the objective function the maximum. Leaving $\mathrm{BV}=x_{5}$: New $\mathrm{BV}=x_{2}$

Revised Osaka Bay LP (3rd Tableau)

BV	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
Z	1	0	0	-450	M+250	0	27000
x_{1}	0	1	0	1	0	0	40
x_{4}	0	0	0	3/2	1	-1/2	30
x_{2}	0	0	1	-3/2	0	1/2	30

x_{3} improves the objective function the maximum. Leaving $\mathrm{BV}=x_{4}:$ New $\mathrm{BV}=x_{3}$

Revised Osaka Bay LP (Final Tableau)

BV	\mathbf{z}	$\boldsymbol{x}_{\boldsymbol{1}}$	$\boldsymbol{x}_{\boldsymbol{2}}$	$\boldsymbol{x}_{\boldsymbol{3}}$	$\boldsymbol{x}_{\mathbf{4}}$	x_{5}	RHS
\mathbf{z}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3 0 0}$	$\mathbf{M}+\mathbf{1 0 0}$	$\mathbf{3 6 0 0 0}$
$\boldsymbol{x}_{\boldsymbol{1}}$	0	1	0	0	$-2 / 3$	$1 / 3$	20
$\boldsymbol{x}_{\mathbf{3}}$	0	0	0	1	$2 / 3$	$-1 / 3$	20
$\boldsymbol{x}_{\boldsymbol{2}}$	0	0	1	0	$-1 / 2$	$1 / 2$	60

Note: All NVB coefficients are positive or zero in tableau
Optimal Solution: $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, x_{3}, x_{4}, x_{5}\right)=(\mathbf{2 0 , 6 0}, 20,0,0)$

Simplex Method Anomalies

a) Ties for leaving BV - break without arbitration
b) Ties for entering BV - break without arbitration
c) Zero coefficient of NBV in OF (final tableau) - Implies multiple optimal solutions
d) No leaving BV - implies unbounded solution

Steps in the Simplex Method

I) Initialization Step

- Introduce slack variables
- Select original variables of the problems as part of the NBV
- Select slacks as BV
II) Stopping Rule
- The solution is optimal if every coefficient in the OF is nonnegative
- Coefficients of OF measure the rates of change of the OF as any other variable increases from zero
III) Iterative Step
- Determine the entering NBV (pivot column)
- Determine the leaving BV (from BV set) as the first variable to go to zero without violating constraints
- Perform row operations to make coefficients of BV unity in their respective rows
- Eliminate new BV coefficients (from pivot column) from other equations performing row operations

Linear Programming Strategies Using the Simplex Method

-Identify the problem
-Formulate the problem using LP

- Solve the problem using LP
-Test the model (correlation and sensitivity analysis)
-Establish controls over the model
-Implementation
-Model re-evaluation

LP Formulations

Type of Constraint	How to handle
$3 x_{1}+2 x_{2} \leq 180$	Add a slack variable
$3 x_{1}+2 x_{2}=180$	Add an artificial variable
$3 x_{1}+2 x_{2} \geq 180$	Add a penalty to OF (BigM)
	Add a negative slack and a positive artificial variable

Type of Constraint

$$
\begin{aligned}
& 3 x_{1}+2 x_{2} \leq 180 \\
& 3 x_{1}+2 x_{2}=180
\end{aligned}
$$

$$
3 x_{1}+2 x_{2} \geq 180
$$

How to handle
Add a slack variable
Add an artificial variable
Add a penalty to OF (BigM)

Add a negative slack and a positive artificial variable

LP (Handling Constraints)

Type of Constraint

$$
\begin{aligned}
& 3 x_{1}+2 x_{2} \leq 180 \\
& 3 x_{1}+2 x_{2}=180
\end{aligned}
$$

Equivalent Form

$$
3 x_{1}+2 x_{2} \geq 180
$$

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+x_{3}=180 \\
& 3 x_{1}+2 x_{2}+x_{3}=180 \\
& z=c_{1} x_{1}+c_{2} x_{2}-M x_{3} \\
& 3 x_{1}+2 x_{2}-x_{3}+x_{4}=180 \\
& z=c_{1} x_{1}+c_{2} x_{2}-M x_{4}
\end{aligned}
$$

Note: M is a large positive number

Theory Behind Linear Programming (per Hillier and Lieberman)

General Formulation

$$
\begin{array}{ll}
\text { Maximize } & Z=\sum_{j=1}^{n} c_{\mu} x_{j} \\
\text { subject to: } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
& x_{j} \geq 0 \text { for } j=1,2, \ldots, n
\end{array}
$$

General LP Formulation (Matrix Form)

Maximize $Z=c x$
subject to: $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$

$$
x \geq 0 \quad \text { where: }
$$

c is the vector containing the coefficients of the O.F.,
A is the matrix containing all coefficients of the functional constraints,
b is the column vector for RHS coefficients,
x is the vector of decision variables
note that: $\boldsymbol{c}=\left[\begin{array}{lll}c_{1} & c_{2} & \ldots \\ c_{n}\end{array}\right]$
$\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{n}\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{n}\end{array}\right], \mathbf{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ and matrix \boldsymbol{A}
$A=\left[\begin{array}{llll}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ a_{m 1} & a_{m 2} \ldots & a_{m n}\end{array}\right]$

Theory Behind the Simplex Method

Addition of slack variables to the problem yields:
$\boldsymbol{x}_{s}=\left[\begin{array}{l}x_{n+1} \\ x_{n+2} \\ x_{n+m}\end{array}\right]$ where \boldsymbol{x}_{s} is a vector of slack variables (m)
New augmented constraints become,

$$
\left[\begin{array}{lll}
A & I
\end{array}\right]\left[\begin{array}{c}
x \\
x_{s}
\end{array}\right]=b \text { and }\left[\begin{array}{l}
x \\
x_{s}
\end{array}\right] \geq 0
$$

Note: I is an $m \times m$ identity matrix.

Theory Behind the Simplex Method

Basic Feasible Solution. From the system,
$\left[\begin{array}{lll}A & I\end{array}\right]\left[\begin{array}{l}x \\ x_{s}\end{array}\right]=\boldsymbol{b}$ n Nonbasic Variables (NBV) from the set,
$\left[\begin{array}{l}x \\ x_{s}\end{array}\right]$ are set to be equal to zero.
This leaves a set of m equations and m unknowns.
These unknowns correspond to the set of basic variables

Theory Behind the Simplex Method

Let the set of basic variables be called x_{B} and the matrix containing the coefficients of the functional constraints be called A (basis matrix) so that,
$A \boldsymbol{x}_{B}=\boldsymbol{b}$
$\boldsymbol{x}_{B}=\left[\begin{array}{c}x_{B 1} \\ x_{B 2} \\ x_{B m}\end{array}\right]$
The vector \boldsymbol{x}_{B} is called vector of basic variables.

Theory Behind the Simplex Method

The idea behind each basic feasible solution in the Simplex Algorithm is to eliminate NBV from the set,
$\left[\begin{array}{l}x \\ x_{s}\end{array}\right]$
and
$\bar{A}=\left|\begin{array}{cccc}\bar{a}_{11} & \bar{a}_{12} & \bar{a}_{1 m} & \bar{a}_{1} \\ \bar{a}_{21} & \bar{a}_{22} & \bar{a}_{2 m} \\ \bar{a} & \bar{a} & \bar{a}\end{array}\right|$ the basis matrix (a square matrix).

Theory Behind the Simplex Method

From simple matrix algebra (solve for \boldsymbol{x}_{B}) from,

$$
\begin{aligned}
& \overline{\boldsymbol{A}} \boldsymbol{x}_{B}=\boldsymbol{b} \\
& (\overline{\boldsymbol{A}})^{-1} \overline{\boldsymbol{A}} \boldsymbol{x}_{B}=(\overline{\boldsymbol{A}})^{-1} \boldsymbol{b} \\
& \boldsymbol{x}_{B}=(\overline{\boldsymbol{A}})^{-1} \boldsymbol{b}
\end{aligned}
$$

if c_{B} is the vector of the coefficients of the objective function this brings us to the following value of the objective function:

$$
Z=\boldsymbol{c}_{B} \boldsymbol{x}_{B}=(\overline{\boldsymbol{A}})^{-1} \boldsymbol{b}
$$

Theory Behind the Simplex Method

The original set of equations to start the Simplex Method is,
$\left[\begin{array}{ccc}1 & -\boldsymbol{c} & \boldsymbol{o} \\ \boldsymbol{o} & \boldsymbol{A} & I\end{array}\right]\left[\begin{array}{l}Z \\ \boldsymbol{x} \\ \boldsymbol{x}_{\mathrm{s}}\end{array}\right]=\left[\begin{array}{l}\mathbf{0} \\ \boldsymbol{b}\end{array}\right]$
after each iteration in the Simplex Method,
$\boldsymbol{x}_{B}=(\boldsymbol{A})^{-1} \boldsymbol{b}$
and $Z=\boldsymbol{c}_{B} \boldsymbol{x}_{B}=(\boldsymbol{A})^{-1} \boldsymbol{b}$
The RHS of the new set of equations becomes,

Theory Behind the Simplex Method

$$
\begin{aligned}
& {\left[\begin{array}{l}
Z \\
\boldsymbol{x}_{B}
\end{array}\right]=\left[\begin{array}{cc}
1 & \boldsymbol{c}_{B}(\bar{A})^{-1} \\
\mathbf{0} & (\bar{A})^{-1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{0} \\
\boldsymbol{b}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{c}_{B}(\bar{A})^{-1} b \\
(\bar{A})^{-1} b
\end{array}\right]} \\
& {\left[\begin{array}{cc}
1 & \boldsymbol{c}_{B}(\bar{A})^{-1} \\
\mathbf{0} & (\bar{A})^{-1}
\end{array}\right]\left[\begin{array}{lll}
1 & -\boldsymbol{c} & \boldsymbol{o} \\
\boldsymbol{o} & \boldsymbol{A} & I
\end{array}\right]=\left[\begin{array}{ccc}
1 & \boldsymbol{c}_{B}(\bar{A})^{-1}-\boldsymbol{c} & \boldsymbol{c}_{B}(\bar{A})^{-1} \\
\boldsymbol{o} & (\bar{A})^{-1} \boldsymbol{A} & (\bar{A})^{-1}
\end{array}\right]}
\end{aligned}
$$

After any iteration,

$$
\left[\begin{array}{ccc}
1 & \boldsymbol{c}_{B}(\bar{A})^{-1}-\boldsymbol{c} & \boldsymbol{c}_{B}(\bar{A})^{-1} \\
\boldsymbol{o} & (\bar{A})^{-1} \boldsymbol{A} & (\bar{A})^{-1}
\end{array}\right]\left[\begin{array}{l}
Z \\
\boldsymbol{x} \\
\boldsymbol{x}_{\mathrm{s}}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{c}_{B}(\bar{A})^{-1} b \\
(\bar{A})^{-1} b
\end{array}\right]
$$

In tableau format this becomes,

Theory of the Simplex Method

Iteration	$\mathbf{B V}$	\mathbf{Z}	Original Variables	Slack Variables	RHS	
0	\mathbf{Z}	1	$-\boldsymbol{c}$	$\mathbf{0}$	0	
	\boldsymbol{x}_{B}	$\mathbf{0}$	\boldsymbol{A}	\boldsymbol{I}	\boldsymbol{b}	
Any	\mathbf{Z}	1	$\boldsymbol{c}_{B}(\bar{A})^{-1}-\boldsymbol{c}$	$\boldsymbol{c}_{B}(\bar{A})^{-1}$	$\boldsymbol{c}_{B}(\bar{A})^{-1} b$	
		\boldsymbol{x}_{B}	$\mathbf{0}$	$(\overline{\boldsymbol{A}})^{-1} \boldsymbol{A}$	$(\bar{A})^{-1}$	$(\bar{A})^{-1} b$

Numerical Example

To illustrate the use of the revised simplex method consider the Osaka Bay example:

Maximize $\quad Z=300 x_{1}+500 x_{2}$
subject to: $3 x_{1}+2 x_{2} \leq 180$

$$
\begin{aligned}
& x_{1} \leq 40 \\
& x_{2} \leq 60 \\
& x_{1} \geq 0 \quad \text { and } x_{2} \geq 0
\end{aligned}
$$

Note: let x_{1} and x_{2} be the no. "Fuji" and "Haneda" vessels
note that: $\quad c=\left[\left[\begin{array}{ll}300 & 500\end{array}\right]\right] \quad$ coefficients of real variables
$\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}180 \\ 40 \\ 60\end{array}\right], \mathbf{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ and matrix \boldsymbol{A}
$A=\left[\begin{array}{lllll}3 & 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right]$

Theory Behind the Simplex Method

Addition of slack variables to the problem yields:
$\boldsymbol{x}_{s}=\left[\begin{array}{l}x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ where \boldsymbol{x}_{s} is a vector of slack variables
Executing the procedure for the Simplex Method Iteration 0 :

$$
\boldsymbol{x}_{B}=\left[\begin{array}{l}
x_{3} \\
x_{4} \\
x_{\mathrm{s}}
\end{array}\right],(\overline{\boldsymbol{A}})^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and }\left[\begin{array}{l}
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
180 \\
40 \\
60
\end{array}\right]=\left[\begin{array}{c}
180 \\
40 \\
60
\end{array}\right]
$$

also known,
$\boldsymbol{c}_{B}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ and hence $Z=\boldsymbol{c}_{B} \boldsymbol{x}_{B}=(\boldsymbol{A})^{-1} \boldsymbol{b}$ or
$Z=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\left[\begin{array}{c}180 \\ 40 \\ 60\end{array}\right]=0$
Iteration 1: (refer to 2nd tableau in Simplex)
Note: substitute values for $\overline{\boldsymbol{A}}$ using columns for x_{3}, x_{4} and x_{2} in the original A matrix.

$$
\begin{aligned}
& \boldsymbol{x}_{B}=\left[\begin{array}{l}
x_{3} \\
x_{4} \\
x_{2}
\end{array}\right], \overline{\boldsymbol{A}}=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \overline{\boldsymbol{A}}^{-1}=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } \\
& {\left[\begin{array}{l}
x_{3} \\
x_{4} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
180 \\
40 \\
60
\end{array}\right]=\left[\begin{array}{c}
60 \\
40 \\
60
\end{array}\right]}
\end{aligned}
$$

also known,
$\boldsymbol{c}_{B}=\left[\begin{array}{lll}0 & 0 & 500\end{array}\right]$ and hence $Z=\boldsymbol{c}_{B} \boldsymbol{x}_{B}=(\boldsymbol{A})^{-1} \boldsymbol{b}$ or
$Z=\left[\begin{array}{lll}0 & 0 & 500\end{array}\right]\left[\begin{array}{l}60 \\ 40 \\ 60\end{array}\right]=30000$

Iteration 2: (refer to 3rd tableau in Simplex)
Note: substitute values for $\overline{\boldsymbol{A}}$ using columns for x_{1}, x_{4} and x_{2} in the original A matrix.
$\boldsymbol{x}_{B}=\left[\begin{array}{l}x_{1} \\ x_{4} \\ x_{2}\end{array}\right], \overline{\boldsymbol{A}}=\left[\begin{array}{lll}3 & 0 & 2 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \overline{\boldsymbol{A}}^{-1}=\left[\begin{array}{ccc}\frac{1}{3} & 0 & -\frac{2}{3} \\ -\frac{1}{3} & 1 & \frac{2}{3} \\ 0 & 0 & 1\end{array}\right]$ and

$$
\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{3} & 0 & -\frac{2}{3} \\
-\frac{1}{3} & 1 & \frac{2}{3} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
60 \\
40 \\
60
\end{array}\right]=\left[\begin{array}{l}
20 \\
20 \\
60
\end{array}\right]
$$

also known,
[IIITech
$\boldsymbol{c}_{B}=\left[\begin{array}{lll}300 & 0 & 500\end{array}\right]$ and hence $Z=\boldsymbol{c}_{B} \boldsymbol{x}_{B}=(\boldsymbol{A})^{-1} \boldsymbol{b}$ or
$Z=\left[\begin{array}{lll}300 & 0 & 500\end{array}\right]\left[\begin{array}{l}20 \\ 20 \\ 60\end{array}\right]=36000$ Optimal Solution

Linear Programming Programs

Several computer programs are available to solve LP problems:
-LINDO - Linear INteractive Discrete Optimizer
-GAMS - also solves non linear problems
-MINUS
-Matlab Toolbox - Optimization toolbox (from Mathworks)
-QSB - LP, DP, IP and other routines available (good for students)

