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Virginia Tech

 

Resource Allocation

 

Principles of 

 

Mathematical Programming

 

Mathematical programming is a general technique to solve 
resource allocation problems using optimization. Types of 
problems:

 

• 

 

Linear programming

 

• 

 

Integer programming

 

• 

 

Dynamic programming

 

• 

 

Decision analysis

 

• 

 

Network analysis and CPM
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Mathematical Programming
Operations research was born with the increasing need to 
solve optimal resource allocation during WWII.

• Air Battle of Britain

• North Atlantic supply routing problems

• Optimal allocation of military convoys in Europe

Dantzig (1947) is credited with the first solutions to linear 
programming problems using the Simplex Method

https://en.wikipedia.org/wiki/George_Dantzig
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Resource Allocation
Linear Programming Applications

• Allocation of products in the market

• Mixing problems

• Allocation of mobile resources in infrastructure
construction (e.g., trucks, loaders, etc.)

• Crew scheduling problems

• Network flow models

• Pollution control and removal

• Estimation techniques
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Linear Programming
General Formulation

Maximize 

subject to:  for 

 for 

cj
j 1=

n

∑ xj

aij
j 1=

n

∑ xj bi≤ i 1 2 … m, , ,=

xj 0≥ j 1 2 … n, , ,=
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Linear Programming

Maximize 

Subject to:

...

and 

Z c1x1 c2x2 … cnxn+ + +=

a11x1 a12x2 … a1nxn+ + + b1≤

a21x1 a22x2 … a2nxn+ + + b2≤

am1x1 am2x2 … amnxn+ + + bm≤

x1 0 x2 0 … xn 0≥, ,≥,≥
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Linear Programming

 Objective Function (OF) 

  Functional Constraints (m of them)

  Nonnegativity Conditions (n of these)

 are decision variables to be optimized (min or max)

 are costs associated with each decision variable

cj

j 1=

n

∑ xj

aij

j 1=

n

∑ xj bi≤

xj 0≥

xj

cj
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Linear Programming

 are the coefficients of the functional constraints

 are the amounts of the resources available (RHS)

Some definitions

Feasible Solution (FS) - A solution that satisfies all 
functional constraints of the problem

Basic Feasible Solution (BFS)- A solution that  needs to be 
further investigated to determine if optimal

Initial Basic Feasible Solution - a BFS used as starting point 
to solve the problem

aij

bi
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LP Example (Construction)
During the construction of an off-shore airport in Japan the main 
contractor used two types of cargo barges to transport materials 
from a fill collection site to the artificial island built to 
accommodate the airport.

The types of cargo vessels have different cargo capacities and 
crew member requirements as shown in the table: 

Vessel Type Capacity (m-
ton) Crew required Number 

available

Fuji 300 3 40

Haneda 500 2 60
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Osaka Bay Model
According to company records there are 180 crew members 
in the payroll and all crew members are trained to either 
manage the “Haneda” or “Fuji” vessels. 

Osaka

Airport
Kansai

Bridge
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Osaka Bay Model
Mathematical Formulation

Maximize 

subject to: 

 and 

Note: let  and  be the no. “Fuji” and “Haneda” 
vessels

Z 300x1 500x2+=

3x1 2x2+ 180≤

x1 40≤

x2 60≤

x1 0≥ x2 0≥

x1 x2
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Osaka Bay LP Model
Maximize 

Solution:

a) Covert the problem to standard (canonical) form

subject to: 

 and 

Z 300x1 500x2+=

3x1 2x2 x3+ + 180=

x1 x4+ 40=

x2 x5+ 60=

x1 0≥ x2 0≥

Add a slack variable 
for each <= type 
constraint

vuela-adm
Highlight

vuela-adm
Highlight

vuela-adm
Highlight

vuela-adm
Highlight
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Osaka Bay Problem (Graphical Solution)
x2

x1

30

40

20

10

50

60

10 20 4030 50 60

Feasible
Region

(40,30)

(20,60)

Corner Points

3x1 + 2x2 = 180
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Osaka Bay Problem (Graphical Solution)
x2

x1

30

40

20

10

50

60

10 20 4030 50 60

(40,30)

(20,60)

Corner Points

z = 36,000
z = 30,000

z = 27,000

Note: Optimal Solution (x1, x2) = (20,60) vessels
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Osaka Bay Problem (Simplex Method)
Arrange objective function in standard form to perform 
Simplex tableaus

 , , ,  and 

Z 300x1 500– x2– 0=

3x1 2x2 x3+ + 180=

x1 x4+ 40=

x2 x5+ 60=

x1 0≥ x2 0≥ x3 0≥ x4 0≥ x5 0≥
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Note: x3, x4, x5 are slack variables
Osaka Bay Example (Initial Tableau)

BV = x3, x4, x5 and NBV = x1, x2

BV z x1 x2 x3 x4 x5 RHS

z 1 -300 -500 0 0 0 0

x3 0 3 2 1 0 0 180

x4 0 1 0 0 1 0 40

x5 0 0 1 0 0 1 60

BV = Basic Variable (non-zero) NBV = Non-basic variable (zero)

vuela-adm
Highlight

vuela-adm
Highlight



(A.A. Trani)

Simplex Method Procedure

• Examine the objective function in the current Tableau

• If the coefficients of the non-basic variables (i.e., those
which are zero in the current solution) are negative, the
value of the objective function can still be improved by
introducing one of the NBVs to the solution set

• Select the most negative coefficient value of the NBV
in the Z-row and introduce that NVB to the solution

• Allocate as much of the variable selected until the
constraint equations limit the value of the NVB
introduced

16a of 60



(A.A. Trani)

Simplex Method

Most negative
coefficient in Z-row

improves the value of Z the most
x2 is selected as the NVB that

will be introduced to the BV set
in the next iteration

Select the column of variable
x2 as “pivot” column for

calculations in the next Tableau

16b of 60



(A.A. Trani)

Simplex Method

• Now we know x2 will be part of the solution in the  next
Tableau

• The question is which one of the BV variables (x3, x4
and x5) will leave the solution (the so-called Basis)

• Examine the constraint equations to make that
decision

• The variable that leaves the BV set is that one that
first becomes zero when x2 is increased

16c of 60



(A.A. Trani)

Simplex Method: Check Constraints

• From the original constraint equations

x2 can be as high as 90
before the constraint is 

violated

Recall in the current solution
x1 is zero

x2 is not part of this constraint, x2 
can be made as large as you want

x2 can be as high as 60
before the constraint is violated

Bottom Line: 3rd constraint equation limits the value 
of x2 the most. x5 leaves the solution and x2 becomes 

a BV variable (non-zero)
16d of 60

vuela-adm
Highlight



(A.A. Trani)

Simplex Method: Check Constraints
• The selection of the leaving BV variable can be

simplified using the ratio test
Ratio of RHS of constraint

equation and the 
coefficient

of the variable in pivot 
column (x2 in this

table) 

For row x3 : 180/2 = 90
For row x4 : 40/0 = infinity
For row x5 : 60/1 = 60

Bottom Line: 3rd constraint equation limits the value of 
x2 the most. Select the pivot row as the row with the 

smallest ratio
16e of 60
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Solution: (x1, x2,x3, x4, x5) = (0,0,180,40,60)

Osaka Bay Example (Initial Tableau)

x2 improves the objective function more than x1

BV z x1 x2 x3 x4 x5 RHS ratio

z 1 -300 -500 0 0 0 0

x3 0 3 2 1 0 0 180 90

x4 0 1 0 0 1 0 40 inf

x5 0 0 1 0 0 1 60 60



Simplex Method: Pivot Row and Column

Select the row of variable x5 
as “pivot” row for calculations 

in the next Tableau

Select the column of variable
x2 as “pivot” column for

calculations in the next Tableau

In the next Tableau, x5 leaves the solution and x2 is 
now a non-zero variable (part of the solution)

(A.A. Trani) 17a of 60



(A.A. Trani)

Simplex Method : Matrix Operations

• Developing the next Tableau requires a few linear 
algebra manipulations:

• Zero out the coefficient of the Z-row for the pivot 
column chosen

• Zero out all coefficients in the pivot row except for 
the coefficient at the intersection of the pivot row 
and pivot column

• Do repeated linear algebra row operations to zero 
out every coefficient in the pivot column

17b of 60



(A.A. Trani)

Simplex Method : Matrix Operations

• Example: to zero out the coefficient (-500) in the Z-
row of the pivot column

• Multiply the entire row representing the 3rd
constraint equation (x5 row) in the Tableau by 500
and add to the Z-row

x 500 + Z-row

17c of 60



(A.A. Trani)

Simplex Method : Matrix Operations

• To zero out the coefficient (2) in the x3 row of the
pivot column

• Multiply the entire row representing the 3rd
constraint equation (x5 row) in the Tableau by -2
and add to x3 row

x (-2)+ x3 row

17d of 60



(A.A. Trani)

Simplex Method : Matrix Operations

• The coefficient of row x4 is already zero so no
further matrix algebra computations are needed

• The new Tableau is now ready to be assembled

17e of 60
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Leaving BV  =  x5 : New BV = x2

Osaka Bay Example (Second Tableau)

x1 improves the objective function the maximum

BV z x1 x2 x3 x4 x5 RHS ratio

z 1 -300 0 0 0 500 30,000

x3 0 3 0 1 0 -2 60 20

x4 0 1 0 0 1 0 40 40

x2 0 0 1 0 0 1 60 inf



(A.A. Trani)

Simplex Method: Check for Optimality 
Conditions

• Examine the objective function (Z-row) in the current
Tableau

• If the coefficients of the non-basic variables (i.e., those
which are zero in the current solution) are negative, the
value of the objective function can still be improved by
introducing one of the NBVs to the solution set

• Since the coefficient of x1 is negative, we conclude that
the solution can be improved if we introduce x1 to the
BV set

• Repeat the steps in the previous slides

18a of 60



(A.A. Trani)

Simplex Method: Iterations

Most negative
coefficient in Z-row

improves the value of Z the most
x1 is selected as the NVB that

will be introduced to the BV set
in the next iteration

Select the column of variable
x1 as “pivot” column for

calculations in the next Tableau

18b of 60



(A.A. Trani)

Simplex Method : Matrix Operations
• Select pivot row by taking the ratio test (smallest ratio)

• Row x3 is selected as the pivot row

• Multiply the entire x3 row by 1/3  to make the coefficient of
the intersection cell unity

BV z x1 x2 x3 x4 x5 RHS

x3 0 1 0 1/3 0 -2/3 20
18c of 60



(A.A. Trani)

Simplex Method : Matrix Operations
• Multiply pivot row by 300 and add to Z-row to zero out the

(-300) coefficient in the pivot column

• Repeat the elimination for other rows in the pivot column

BV Z x1 x2 x3 x4 x5 RHS

Z 1 -300 0 0 0 500 30000

x3 0 1 0 1/3 0 -2/3 20

x4 0 1 0 0 1 0 40

x5 0 0 1 0 0 1 60

x3 row x (300)+ Z row

BV Z x1 x2 x3 x4 x5 RHS

Z 1 0 0 100 0 300 36000
18d of 60
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Leaving BV  =  x3 : New BV = x1

Osaka Bay Example (Final Tableau)

Note: All NVB coefficients are positive or zero in tableau 

BV z x1 x2 x3 x4 x5 RHS

z 1 0 0 100 0 300 36,000

x1 0 1 0 1/3 0 -2/3 20

x4 0 0 0 -1/3 1 2/3 20

x2 0 0 1 0 0 1 60
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Optimal Solution: (x1, x2,x3, x4, x5) = (20,60,0,20,0)
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Osaka Bay Model (Revised)
Mathematical Formulation

Maximize 

subject to: 

 and 

Note: let  and  be the no. “Fuji” and “Haneda” 
vessels

Z 300x1 500x2+=

3x1 2x2+ 180= Revised Constraint

x1 40≤

x2 60≤

x1 0≥ x2 0≥

x1 x2
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Osaka Bay Model (Revised)
Maximize 

a) Covert the problem in standard form

subject to: 

 , ,  and  

• Note: Problem lacks an intuitive IBFS (see first
constraint)

Z 300x1 500x2+=

3x1 2x2+ 180=

x1 x3+ 40=

x2 x4+ 60=

x1 0≥ x2 0≥ x3 0≥ x4 0≥
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• Note that setting  and  produces
finite integer values for  and  (40 and 60, 
respectively) but fails to provide and adequate solution 
for constraint (1).

• This requires a reformulation step where another
variable is added to the problem to identify an IBFS

• Add an artificial variable to the first constraint to solve
the problem

• Adding an artificial variable in the constraint equation
requires the addition of a large penalty to the objective
function (z) to avoid this artificial variable being part of
the solution

x1 0= x2 0=

x3 x4
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Osaka Bay Problem (Revised Graphical Sol.)
x2

x1

30

40

20

10

50

60

10 20 4030 50
10

60

Feasible
Region

(40,30)

(20,60)

z = 36,000
z = 30,000

z = 27,000

3x1 + 2x2 = 180
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Osaka Bay Model (Revised)
Maximize 

a) Add an artificial variable to the initial “equal to”
constraint

subject to: 

 , , ,  and 

Z 300x1 500x2+=

3x1 2x2 x5+ + 180=

x1 x3+ 40=

x2 x4+ 60=

x1 0≥ x2 0≥ x3 0≥ x4 0≥ x5 0≥
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IBFS is now evident with   and   being zero 
(NVB).

Revised Solution (Big-M Method)

Revise the objective function to drive artificial variable to 
zero in the optimal solution. M is a large positive number.

Maximize 

subject to: 

 , , ,  and 

x1 x2

Z 300x1 500x2 Mx5–+=

3x1 2x2 x5+ + 180=

x1 x3+ 40=

x2 x4+ 60=

x1 0≥ x2 0≥ x3 0≥ x4 0≥ x5 0≥
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Osaka Bay LP (Expanded Feasible Region)
x2

x1

30

40

20

10

50

60

10 20 4030 50 60

New Feasible
Region

(40,30)

(20,60)

z = 36,000

IBFS

Original Feasible
Region

3x1 + 2x2 = 180
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Revised Solution (Big-M Method)

Rearrange the OF and constraints before solving

Maximize 

subject to:  

 , , ,  and 

Z 300– x1 500x2– Mx5+ 0=

x1 x3+ 40=

x2 x4+ 60=

3x1 2x2 x5+ + 180=

x1 0≥ x2 0≥ x3 0≥ x4 0≥ x5 0≥
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Note: the “Big M” (or a large penalty) is added to 
each artificial variable in OF.  and  are slack 
variables,  is an artificial variable. 

x3 x4

x5
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Revised Osaka Bay LP (Initial Tableau)

BV = x3, x4,  and NBV = x1, x2

Solution: (x1, x2,x3, x4, ) = (0,0,40,60,180)

BV z x1 x2 x3 x4 RHS

z 1 -300 -500 0 0 M 0

x3 0 1 0 1 0 0 40

x4 0 0 1 0 1 0 60

x5 0 3 2 0 0 1 180

x5

x5

x5
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Revised Osaka Bay LP (Initial Tableau)

x1 improves the objective function the maximum

BV z x1 x2 x3 x4 RHS

z 1 -3M-300 -2M-500 0 0 0 -
180M

x3 0 1 0 1 0 0 40 40

x4 0 0 1 0 1 0 60 inf

x5 0 3 2 0 0 1 180 60

x5
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Leaving BV  =  x3 : New BV = x1
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Revised Osaka Bay LP (2nd Tableau )

x2 improves the objective function the maximum. Leaving 

BV  =   : New BV = x2

BV z x1 x2 x3 x4 RHS

z 1 0 -2M-500 3M+300 0 0 -60M+
12000

x1 0 1 0 1 0 0 40 inf

x4 0 0 1 0 1 0 60 60

x5 0 0 2 -3 0 1 60 30

x5

x5
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Revised Osaka Bay LP (3rd Tableau )

x3 improves the objective function the maximum. Leaving 
BV  =  x4 : New BV = x3

BV z x1 x2 x3 x4 RHS

z 1 0 0 -450 M+250 0  27000

x1 0 1 0 1 0 0 40 40

x4 0 0 0 3/2 1 -1/2 30 20

x2 0 0 1 -3/2 0 1/2 30 no

x5
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Revised Osaka Bay LP (Final Tableau )

Note: All NVB coefficients are positive or zero in tableau 

Optimal Solution: (x1, x2,x3, x4, ) = (20,60,20,0,0)

BV z x1 x2 x3 x4 RHS

z 1 0 0 0 300 M+100 36000

x1 0 1 0 0 -2/3 1/3 20

x3 0 0 0 1 2/3 -1/3 20

x2 0 0 1 0 -1/2 1/2 60

x5

x5
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Simplex Method Anomalies
a) Ties for leaving BV - break without arbitration

b) Ties for entering BV - break without arbitration

c) Zero coefficient of NBV in OF (final tableau) - Implies
multiple optimal solutions

d) No leaving BV - implies unbounded solution
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Steps in the Simplex Method
I) Initialization Step

• Introduce slack variables

• Select original variables of the problems as part of the 
NBV

• Select slacks as BV

II) Stopping Rule

• The solution is optimal if every coefficient in the OF is 
nonnegative
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• Coefficients of OF measure the rates of change of
the OF as any other variable increases from zero

III) Iterative Step

• Determine the entering NBV (pivot column)

• Determine the leaving BV (from BV set) as the first
variable to go to zero without violating constraints

• Perform row operations to make coefficients of BV
unity in their respective rows

• Eliminate new BV coefficients (from pivot column)
from other equations performing row operations
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Linear Programming Strategies 
Using the Simplex Method

•Identify the problem

•Formulate the problem using LP

•Solve the problem using LP

•Test the model (correlation and sensitivity analysis)

•Establish controls over the model

•Implementation

•Model re-evaluation
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LP Formulations 

Type of Constraint How to handle

Add a slack variable

Add an artificial variable

Add a penalty to OF 
(BigM)

Add a negative slack and a 
positive artificial variable

3x1 2x2+ 180≤

3x1 2x2+ 180=

3x1 2x2+ 180≥
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 LP (Handling Constraints)

Note: M is a large positive number

Type of Constraint Equivalent Form

3x1 2x2+ 180≤ 3x1 2x2 x3+ + 180=

3x1 2x2+ 180= 3x1 2x2 x3+ + 180=

z c1x1= c2x2 Mx3–+

3x1 2x2+ 180≥ 3x1 2x2 x3– x4+ + 180=

z c1x1= c2x2 Mx4–+
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Theory Behind Linear 
Programming (per Hillier and 

Lieberman) 
General Formulation

Maximize 

subject to:  for i=1,2, ..., m

  for j=1,2,...,n

Z cj

j 1=

n

∑ xj=

aij

j 1=

n

∑ xj bi≤

xj 0≥
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General LP Formulation (Matrix 
Form)

Maximize 

subject to:  

    where:

 is the vector containing the coefficients of the O.F.,

  is the matrix containing all coefficients of the 
functional constraints, 

 is the column vector for RHS coefficients,

Z cx=

Ax b=

x 0≥

c

A

b
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 is the vector of decision variables

note that: 

,  ,  and matrix 

x

c c1 c2… cn
=

x
x1

x2

xn

= b
b1

b2

bn

= 0
0
0
0

= A

A
a11 a12… a1n

a21 a22… a2n

am1 am2… amn

=
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Theory Behind the Simplex Method
Addition of slack variables to the problem yields:

 where  is a vector of slack variables (m)

New augmented constraints become,

 and  

Note:  is an  identity matrix.

xs

xn 1+

xn 2+

xn m+

= xs

A I
x

xs

b= x

xs

0≥

I m m×
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Theory Behind the Simplex Method
Basic Feasible Solution. From the system,

 n Nonbasic Variables (NBV) from the set,

 are set to be equal to zero. 

This leaves a set of  equations and   unknowns.

These unknowns correspond to the set of basic variables

A I
x

xs

b=

x

xs

m m
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Theory Behind the Simplex Method
Let the set of basic variables be called  and the 
matrix containing the coefficients of the functional 
constraints be called  (basis matrix) so that,

The vector  is called vector of basic variables.

xB

A

AxB b=

xB

xB1

xB2

xBm

=

xB
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Theory Behind the Simplex Method
The idea behind each basic feasible solution in the 
Simplex Algorithm is to eliminate NBV from the set,

and 

 the basis matrix (a square matrix).

Theory Behind the Simplex Method

x

xs

A
a11 a12… a1m

a21 a22… a2m

am1 am2 amm

=
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From simple matrix algebra (solve for ) from,

if  is the vector of the coefficients of the objective 
function this brings us to the following value of the 
objective function:

xB

AxB b=

A( )
1–

AxB A( )
1–

b=

xB A( )
1–

b=

cB

Z cBxB A( )
1–

b= =
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Theory Behind the Simplex Method
The original set of equations to start the Simplex 
Method is,

after each iteration in the Simplex Method,

and  

The RHS of the new set of equations becomes,

1 c– o

o A I

Z

x

xs

0
b

=

xB A( )
1–

b=

Z cBxB A( )
1–

b= =
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Theory Behind the Simplex Method

After any iteration,

In tableau format this becomes,

Z

xB

1 cB A( )
1–

0 A( )
1–

0
b

cB A( )
1–

b

A( )
1–

b
= =

1 cB A( )
1–

0 A( )
1–

1 c– o

o A I

1 cB A( )
1–

c– cB A( )
1–

o A( )
1–

A A( )
1–

=

1 cB A( )
1–

c– cB A( )
1–

o A( )
1–

A A( )
1–

Z

x

xs

cB A( )
1–

b

A( )
1–

b
=
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Theory of the Simplex Method

Iteration BV Z Original 
Variables

Slack 
Variables RHS

0 Z 1 0 0

0

Any Z 1

0

c–

xB A I b

cB A( )
1–

c– cB A( )
1–

cB A( )
1–

b

xB A( )
1–

A A( )
1–

A( )
1–

b
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Numerical Example
To illustrate the use of the revised simplex method 
consider the Osaka Bay example:

Maximize 

subject to: 

 and 

Z 300x1 500x2+=

3x1 2x2+ 180≤

x1 40≤

x2 60≤

x1 0≥ x2 0≥
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Note: let  and  be the no. “Fuji” and 
“Haneda” vessels

note that:  coefficients of real variables

,  ,  and matrix 

x1 x2

c 300 500=

x x1

x2

= b
180
40
60

= 0
0
0
0

= A

A
3 2 1 0 0
1 0 0 1 0
0 1 0 0 1

=
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Theory Behind the Simplex Method
Addition of slack variables to the problem yields:

 where  is a vector of slack variables

Executing the procedure for the Simplex Method 

Iteration 0:

 ,  and 

xs

x3

x4

x5

= xs

xB

x3

x4

x5

= A( )
1–

1 0 0
0 1 0
0 0 1

=
x3

x4

x5

1 0 0
0 1 0
0 0 1

180
40
60

180
40
60

= =
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also known,

 and hence  or

Iteration 1: (refer to 2nd tableau in Simplex)

Note: substitute values for  using columns for ,  
and  in the original  matrix.

cB 0 0 0= Z cBxB A( )
1–

b= =

Z 0 0 0
180
40
60

0= =

A x3 x4

x2 A
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 ,   and 

also known,

 and hence  or

xB

x3

x4

x2

= A
1 0 2
0 1 0
0 0 1

= A
1–

1 0 2–

0 1 0
0 0 1

=

x3

x4

x2

1 0 2–

0 1 0
0 0 1

180
40
60

60
40
60

= =

cB 0 0 500= Z cBxB A( )
1–

b= =

Z 0 0 500
60
40
60

30000= =
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Iteration 2: (refer to 3rd tableau in Simplex)

Note: substitute values for  using columns for ,  
and  in the original  matrix.

 ,   and

 

A x1 x4

x2 A

xB

x1

x4

x2

= A
3 0 2
1 1 0
0 0 1

= A
1–

1
3
--- 0 2

3
---–

1
3
---– 1 2

3
---

0 0 1

=

x1

x4

x2

1
3
--- 0 2

3
---–

1
3
---– 1 2

3
---

0 0 1

60
40
60

20
20
60

= =
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also known,

 and hence  or

 Optimal Solution 

cB 300 0 500= Z cBxB A( )
1–

b= =

Z 300 0 500
20
20
60

36000= =
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Linear Programming Programs
Several computer programs are available to solve LP 
problems:

•LINDO - Linear INteractive Discrete Optimizer

•GAMS - also solves non linear problems

•MINUS

•Matlab Toolbox - Optimization toolbox (from 
Mathworks)

•QSB - LP, DP, IP and other routines available (good for 
students)
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