Numerical Integration and Differentiation

CEE3804: Computer Apps for Civil and Environmental Engineering

Newton Cotes Integration Formulas

 Replace function or tabulated data to be integrated with a simpler, easy to integrate approximating function

$$I = \int_{a}^{b} f(x) \, dx \approx \int_{a}^{b} f_n(x) \, dx$$

where f_n(x) is a polynomial of form

$$f_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Trapezoid Rule

• Newton-Cotes with n = 1

$$I = \int_{a}^{b} f(x) \, dx \approx \int_{a}^{b} f_1(x) \, dx$$

• where

$$f_1(x) = f(a) + \frac{f(b) - f(a)}{b - a} (x - a)$$

Graphical depiction of the trapezoidal rule.

Trapezoid Rule, continued

Substituting and integrating

$$I = (b-a)\frac{f(a) + f(b)}{2}$$

- This is termed the trapezoid rule
- For all Newton-Cotes
 - I = width * average height
 - where the average height varies with n

The approximation of an integral by the area under three straight-line segments.

Chapra

Trapezoid Rule, Comments

- Easy to implement
- Works with function or tabulated data
- For equally spaced data with n equally spaced points, formula can be simplified to

 Trapezoid has relatively poor accuracy compared to other techniques. Accuracy increases as use more points (i.e. delta x smaller)

Simpson's 1/3 Rule

- Set n= 2 in Newton-Cotes
- Pass parabola (quadratic) through 3 points
- Simple formula if even number of subintervals (i.e. <u>number of data points is odd</u>) and the data points are equally spaced

$$I = \int_{a}^{b} y \, dx = \frac{1}{3} \left(y_1 + 4y_2 + 2y_3 + 4y_4 + 2y_5 + \dots + 2y_{n-2} + 4y_{n-1} + y_n \right) \Delta x$$

• Termed Simpson's 1/3 Rule

[0] Graphical depiction of Simpson's 1/3 rule: it consists of taking the area under a parabola connecting three points. (b) Graphical depiction of Simpson's 3/8 rule: it consists of taking the area under a cubic equation connecting four points.

Source: Chapra

The approximation of an integral by the area under (a) a single straight line and (b) a single parabola.

Source: Chapra

Figure 7-5 Simpson's Rule for Integration

Source: Ayyub

Simpson's 3/8 Rule

• If <u>even number of points</u> and odd number of segments, can use Simpson's 3/8 Rule

$$I = \frac{3}{8} (y_1 + 3y_2 + 3y_3 + y_4) \Delta x$$

 3/8 rule is harder to apply than 1/3 rule because it needs 4 points instead of 3. Most common use is in conjunction with 1/3 rule. For odd number of segments, use 3/8 rule on last 3 segments, 1/3 rule on remaining

фавце 21.2	Newton-Cotes closed integration formulas. The formulas are presented in the format of Eq. (21.5) so that the weighting of the data points to estimate the average height is apparent. The step size is given by $h = (b - c)/n$.
87	

Segments (n)	Points	Name	Formula	Truncation Error
L	2	Trapezoidal rule	$(b-o)\frac{f(x_0)+f(x_1)}{2}$	$= 1/12\rangle h^{3fm}\xi\rangle$
2	3	Simpson's 1/3 rule	$ b - a \frac{f(x_0) + 4f(x_1) + f(x_2)}{6}$	– [1790)/ ⁵ (^[4] [ξ]
3	4	Simpson's 378 rule	$1b - o[\frac{f(x_0) \div 3f(x_1) \div 3f(x_2) \div f(x_3)}{8}]$	— 3/80) ^{55 14} ह।
4	5	Boole's rule	$(b - o) \frac{7l(x_0) + 32l(x_1) + 12l(x_2) + 32l(x_3) + 7l(x_4)}{90}$	- 187945) ^{52/00} (\$)
, ک ۱	ó		$\frac{19f(x_0) + 75f(x_1) + 50f(x_2) + 50f(x_3) + 75f(x_4) + 19f(x_5)}{288}$	- (275/12,096)# ^{7/%} %

.....

Overall Unequal spaced data

- Unequal trapezoid will always work, but can improve accuracy if any equally spaced segments are evaluated with Simpson's rule
 - If 2 adjacent segments are unequal, use trapezoid
 - if 2 adjacent segments are equal, use Simpson's 1/3
 - if 3 adjacent segments are equal, use Simpson's 3/8
 - if 4 adjacent segments are equal, use Simpson's 1/3 on first 2, remove the 1st segment from consideration, and continue

Use of the trapezoidal rule to determine the integral of unevenly spaced data. N shaded segments could be evaluated with Simpson's rule to attain higher accurc

Numerical Differentiation

Numerical Differentiation First Derivatives

Difference	Equation	Error
Forward	$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$	O(h)
Backward	$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$	O(h)
Central	$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$	O(h ²)

Central more accurate than forward or backward, but requires more calculations

Numerical Differentiation Accurate First Derivatives

Difference	Equation	Error
Forward	$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h}$	O(h ²)
Backward	$f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h}$	O(h ²)
Central	$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h}$	O(h ⁴)

Numerical Differentiation Second Derivatives

Second Derivative (central)

Difference	Equation	Error
standard	$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2}$	O(h ²)
more accurate	$f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i-1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2}$	O(h ⁴)

Example of Numerical Integration

Taken from Cottf	fried	ing napozio			
Taken nom Golli	neu				
t (sec) v (vo	lts)	delta t	avg v	area	Image: second se
0	0	0.005	6	0.03	
0.005	12	0.005	15.5	0.0775	Voltage over time
0.01	19	0.01	24.5	0.245	voltage over time
0.02	30	0.01	34	0.34	
0.03	38	0.01	41.5	0.415	60
0.04	45	0.01	47	0.47	50
0.05	49	0.01	49.5	0.495	50 -
0.06	50	0.01	49.5	0.495	40 -
0.07	49	0.01	48	0.48	s 🚬 🚺 🔪
0.08	47	0.01	46	0.46	j 30 🛉 🔨
0.09	45	0.01	43.5	0.435	> 20 -
0.1	42	0.02	39	0.78	20
0.12	36	0.02	34.5	0.69	10 -
0.14	33	0.02	31.5	0.63	
0.16	30	0.02	28.5	0.57	
0.18	27	0.05	24	1.2	0 0.2 0.4 0.6
0.23	21	0.05	18.5	0.925	time (coo)
0.28	16	0.1	12.5	1.25	line (Sec)
0.38	9	0.12	6.5	0.78	
0.5	4				
			sum	10.7675	
			trapezoid	10.7675	sing VBA trapezoid function

Example VBA Code (Trapezoidal)

Option Explicit

```
Public Function trapezoid(x As Range, y As Range) As Double

Dim n As Integer, i As Integer

Dim sum As Double

sum = 0#

n = x.Rows.Count

For i = 2 To n

' sum = sum + (x.Cells(i).Value - x.Cells(i - 1).Value) * (y.Cells(i).Value + y.Cells(i - 1).Value) / 2

sum = sum + (x(i) - x(i - 1)) * (y(i) + y(i - 1)) / 2

Next i

trapezoid = sum

End Function
```

Private Function simp13(dx As Double, f1 As Double, f2 As Double, f3 As Double) As Double simp13 = 2 * dx * (f1 + 4 * f2 + f3) / 6 End Function

Private Function simp38(dx As Double, f1 As Double, f2 As Double, f3 As Double, f4 As Double) As Double simp38 = 3 * dx * (f1 + 3 * (f2 + f3) + f4) / 8 End Function

Few Things to Observe

- The variables in function Trapezoid are defined explicitly
- For example:
 - Dim = dimension statement in VBA (reserved to declare variables at the beginning of a program)
 - Double = double precision variable (reserves 8 bytes for each variable to carry 15 decimal places in calculations)
 - Integer = variable to contain integer numbers (saves memory space)
 - Range = a variable defines to contain multiple elements in a worksheet range

Other Things to Observe

- Statement n = x.Rows.Count
- Counts the number of elements in the variable x defined in function "trapezoid"
- "n" is used as a counter in the for-loop inside function trapezoid
- Variable "sum" is initialized to add the areas under each one of the intervals making up the numerical integration

Integrating Functions with Matlab

```
% Matlab quad function use Main File (any name)
% Illustrates the use of the "quad" function in Matlab
% to perform numerical integration
% Function calls: fsim.m
%
integralArea = quad('fsim2',0,1.0);
```

fprintf('The value of the area under the curve is %15.8f\n',integralArea)

```
% Function to be integrated using Matlab numerical in
%
% Programmer: A. Trani
% date: 03/12/07 File = fsim2.m
function f=fsim2(x)
f= exp (- x .^ 2);
```