Quiz 2 (75 minutes)

Solution

Open book and notes, use of computer is allowed

Your Name \qquad

Pledge \qquad

Use a Word processor of your choice to assemble your solutions. Include all screen captures of your Matlab scripts and plots created as outputs. Include all tables for Problem 2 in your solution as well. Create a single PDF file and send via email to: Moises Bobadilla (moisesbm@vt.edu) and to me (vuela@vt.edu).

Problem 1 (30 Points)

Your task is to analyze asset data for a construction company. The data is presented in a separate file called "Construction_assets_Rev.xlsx". The data has the following information:

Construction Site	Vehicle	Miles	Value (\$)	Status
Salem	Cat 775F	98,345	123,450	Active
Galax	Cat 775F	112,340	179,642 Active	
Richmond	Cat 725	172,645	118,900	Active
Galax	Cat 725	109,142	135,385	Active
Galax	Cat 775F	165,058	207,634 Active	

Task 1

Create a Matlab script to read the data (do not use the manual Matlab import procedure here). In your script create variables to store the information in every column individually. In the script you should plot the miles traveled against the vehicle cost. Comment on the trend observed on the plot.

1	\% File to import Excel data (construction assets)
2	\% A. Trani
3	
4 -	clear
5	
6	\% Sample Excel data file
7	
8	\% Construction Site Vehicle Miles Value (\$) Status
9	\% Salem Cat 775F 98345123450 Active
10	\% Galax Cat 775F 112340179642 Active
11	\% Richmond Cat 725172645118900 Active
12	
13	\% Read the complete Excel file
14	
$\left\lvert\, \begin{aligned} & 15- \\ & 16 \end{aligned}\right.$	[num,txt,raw] = xlsread('Construction_assets_Rev-2.xlsx');
17	\% Detect number of rows in the data file
18	
19 -	noRows = length(raw);
20	
21	\% Rename variables of the problem
22	
$23-$	constructionSite $=\operatorname{raw}(2$:noRows,1);
24 -	vehicle $\quad=\operatorname{raw}(2: n o$ Rows, 2 ;
$25-$	miles $\quad=$ num (:, 1);
26 -	value $\quad=$ num $(:, 2)$;
$27-$	status $\quad=\operatorname{raw}(2:$ noRows,5);
29	\% Plot miles traveled vs vehicle value
30	
31-	plot(miles,value,'or')
$32-$	xlabel('Miles Traveled (mi)')
33-	ylabel('Vehicle Value (\$)')
$34-$	grid

Task 2

Modify the script created in Task 1 to find all the vehicles of type Cat725 and then calculate the mean and standard deviation of the miles traveled by that type of vehicle only. Write the results to the Command Window.

36		
37	\% miles traveled	
38		
39 -	matchCat725 = strcmp(vehicle,'Cat 725');	\% Finds matches for vehicle type (Cat 725)
40 -	indicesCat725 = find(matchCat725);	\% Finds indices in original array with matches
41		\% indicesCat725 is a pointer variable
42	cat725Miles $=$ miles(indicesCat725);	\% Extracts the vector with Cat 725 vehicle miles
43		
44	\% Calculate mean and standard deviation	
45		
46	Cat725MeanMiles $=$ mean(cat725Miles);	\% Calculates the mean of Cat 725 vehicle miles
47 -	Cat725StdMiles $=$ std(cat725Miles);	\% Finds the standard deviation of Cat 725 miles
48		
49	\% Display results to the Command Window	
$50-$	clc	
51-	disp(['Mean of Cat 725 Vehicle Miles ', num	Cat725MeanMiles) , ' miles'])
52 -	disp(['Std. Deviation of Cat 725 Vehicle Miles	num2str(Cat725StdMiles) , 'miles'])

Mean of Cat 725 Vehicle Miles 122160.4353 miles
Std. Deviation of Cat 725 Vehicle Miles 62664.7988 miles

Problem 2 (40 Points)

The following linear programming problem has been developed by a team in your company.
$\operatorname{Max} Z=280 x_{1}+180 x_{2}$
subject to:
$x_{2} \leq 1400$
$200 x_{1}+350 x_{2} \leq 634000$
$x_{1} \leq 2200$

Task 1

Convert the problem shown above into standard form to be solved by hand using the Simplex Method. Write down the transformed equations and add slack and artificial variables as needed.

All constraints are of type \geq therefore add a slack variable for each constraint equation.
$Z-280 x_{1}-180 x_{2}=0$
subject to:
$x_{2}+x_{3}=1400$
$200 x_{1}+350 x_{2}+x_{4}=634000$
$x_{1}+x_{5}=2200$

Task 2

Write the first two tables of the Simplex Method for this problem. Indicate the values of all the variables in every table. Indicate the value of the objective function Z in every table.
TABLE 1. INITIAL TABLE. PROBLEM HAS BEEN CONVERTED INTO STANDARD FORM. ADDED THREE SLACK VARIABLES.

Basic	Z	x 1	x2	x3	x4	x5	RHS
	1	-280	-180	0	0	0	0
x3	0	0	1	1	0	0	1400
x4	0	200	350	0	1	0	634000
x5	0	1	0	0	0	1	2200

Initial Basic Feasible Solution (IBFS) is: $\mathrm{x} 1=0, \mathrm{x} 2=0, \mathrm{x} 3=1400, \mathrm{x} 4=634000$ and $\mathrm{x} 5=2200$.
Value of $Z=0$.

Steps:

1) Select Pivot column that containing Non-Basic variable $x 1$. The coefficient of $x 1$ in the Z-row is the most negative and hence improves the solution the most.
2) Take the ratio test. RHS/coefficients in Pivot column.

3) Select the lowest ratio. Variable $x 5$ leaves the Basic Variable set and becomes zero in the next table.
4) Variable $x 1$ enters the solution in the next table.
5) Perform row operations to eliminate all coefficients in Pivot Column.
a) Multiply row with variable $x 5$ (3rd constraint equation) by 280and add to Z-row
b) Multiply row with variable $x 5$ (3rd constraint equation) by (-200) and add to third row (second constraint equation)
6 Eliminate all coefficients in the Pivot column except for the unit value in the Pivot row (see Table 2).

TABLE 2. SECOND TABLE OF SIMPLEX METHOD.

Basic	Z	x 1	x2	x3	x4	x5	RHS
	1	0.00	-180	0	0	280	616000
x3	0	0	1	1	0	0	1400
x4	0.0	0.00	350.0	0.0	1.0	-200.0	194000.0
x 1	0	1	0	0	0	1	2200

Current Solution (2nd Table) is: $x 1=2200, x 2=0, x 3=1400, x 4=194000$ and $x 5=0 . Z=616,000$. Solution is not optimal yet.

Basic	Z	x1	x 2	x3	x4	x5	RHS	Ratio
	1	0.00	-180	0	0	280	616,000	
x3	0	0	1	1	0	0	1,400	N/A
x4	0.0	0.00	350.0	0.0	1.0	-200.0	194,000.0	554.3
x 1	0	1	0	0	0	1	2,200	N/A

TABLE 3. THIRD TABLE OF SIMPLEX METHOD. OPTIMAL SOLUTION.

Basic	Z	x 1	x2	x3	x4	x5	RHS
	1.00	0.00	0.00	0.00	0.51	177.14	715,771.43
x3	0.00	0.00	0.00	1.00	-0.00	0.57	845.71
x2	0.0	0.00	1.0	0.0	0.0	-0.6	554.3
x1	0	1	0	0	0	1	2200

Current Solution (3rd Table) is: $\mathrm{x} 1=2200, \mathrm{x} 2=554.3, \mathrm{x} 3=845.71, \mathrm{x} 4=0$ and $\mathrm{x} 5=0 . \mathrm{Z}=715771.43$. Solution is optimal (all coefficients in Z-row are positive or zero).

Problem 3 (30 Points)

A civil engineer is designing a rainstorm water management system for a new Virginia Tech parking lot. During a severe thunderstorm, the water runoff generated by the large parking lot is approximated using the following equation:

$$
\text { runoff }=k_{2}+k_{1} \sin \left(t / k_{3}\right) e^{\left(-t / k_{4}\right)}
$$

Where runoff is the runoff volume (cubic meters per second) generated by the parking lot, t is the time (in seconds) after the thunderstorm starts and k_{1} through k_{4} are parameters to calculate the runoff.

Task 1

Create a Matlab script to calculate the runoff for values of time t ranging from 0 to 4000 . The value of the parameters k 1 through k4 for a 100 year storm are:
k1 = 56;
k2 $=1.25$;
k3 = 900;
$k 4=375 ;$

Task 2

Modify the Matlab script created in Task 1 and make a plot of the runoff as a function of time. Label accordingly. In your plot, make the markers of the plot red and the font size 20 for both axes.

```
22
23- plot(t,runoff,'o-r')
24- xlabel('Time (seconds)')
25-ylabel('Runoff (cu.feet/second)')
26- grid
```

