Quiz 1 Solution

Write your solutions in a single Word document and convert to PDF file. Cut and Paste all your answers using screen captures. Show all your work. Label your file with your last name and CEE3804. Email the solution to vuela@vt.edu and to Carol (yqliang@vt.edu).

Problem 1 (25 Points)

An engineer formulates a linear programming problem as follows:
Maximize
$Z=40 x_{1}+70 x_{2}$
subject to:

$$
x_{2} \leq 135
$$

$$
x_{1}+1.8 x_{2} \leq 300
$$

and the non-negativity constraints $x 1>=0$ and $x 2>=0$
a) Formulate the problem in standard Linear Programming form to solve the problem using the Simplex Method (add slack and artificial variables as needed)
$\operatorname{Max} Z=40 x_{1}+70 x_{2}$
Constraint equations with additional slack variables
$x_{2}+x_{3}=135$
$x_{1}+1.8 x_{2}+x_{4}=300$
$x_{1}, x_{2} \geq 0$
b) Find the first two tables of the solution using the Simplex Method. This includes the first table with the initial solution and the second table with one iteration.

Construct the first table.

BV	Z	x1	x2	x3	x4	RHS
Z	1	-40	-70	0	0	0
x3	0	0	1	1	0	135
x4	0	1	1.8	0	1	300

Step 1. Decide on the entering variable to the solution. $x 2$ enters the solution first (highest negative coefficient in Z-row).
Step 2. Apply ratio test to decide which Basic Variable leaves the solution first. Variable x3 has the lowest ratio. Therefore x3 leaves the solution and x 2 enters the solution.

BV	Z	x 1	x2	x3	x4		RHS	Ratio
Z	1	-40	-70	0		0	0	
x3	0	0	1	1		0	135	135
x4	0	1	1.8	0		1	300	166.67

Step 3. Perform row operations using the pivot row to eliminate all the coefficients of the pivot column. The table below shows the first solution to the problem. In this solution, variable $x 2$ has replaced $x 3$. The current solution has a value of $Z=9,450$ with variables $x 1=0, x 3=0, x 2=135$, and $x 4=57$.

Step 4. Repeat the procedure and check for optimality. Note the coefficient of $x 1$ is negative, therefore the solution can be improved by bringing $x 1$ to the solution.

BV	Z		x1		x2		x3		x4		RHS	Ratio	
Z		1		-40		0		70		0	9450		
x2		0		0		1		1		0	135	N/A	
x4		0		1		0		-1.80		1	57		57

Variable x 1 enters the solution and variable x 4 leaves the solution (Basic Variable set).

BV	Z		x1		x2		x3		x4		RHS	
Z		1		0		0		-2		40		11730
x2		0		0		1		1		0		135
x 1		0		1		0		-1.80		1		57

In this solution the value of the objective function row (Z-row) 11,730. The values of the decision variables are: $x 1=57, x 2=135$, $x 3=0, x 4=0$. the solution is not optimal because it contains a negative coefficient for variable $x 3$ in the objective function (Zrow).

BV	Z	x1		x2		x3		x4		RHS	Ratio	
Z	1		0		0		-2		40	11730		
x2	0		0		1		1		0	135		135
x1	0		1		0		-1.80		1	57	N/A	

The previous table shows that variable $x 3$ enters the solution and $\times 2$ leaves the solution. This solution is optimal with the value of Z at 12,000 . The values of the decision variables are: $x 1=300, x 2=0, x 3=135, x 4=0$.

BV	Z		x1		x2		x3		x4		RHS	
Z		1		0		2		0		40		12000
x3		0		0		1		1		0		135
x1		0		1		1.80		0.00		1		300

Problem 2 (25 Points)

c) Use Excel Solver to obtain the optimal solution of Problem 1. State the optimal value of Z and the values of $\boldsymbol{X}_{1 \text { and }}$ X_{2}.

Show screen captures of your Excel Solver solution.

Optimization Problem			
Decision Variables			
x1	300		
x2	0		
Objective Function			
$40 \times 1+70 \times 2$	12000		
Constraint Equations			
	Formula		
x2 < $=135$	0	<=	135
$x 1+1.8 \times 2<=300$	300		300
$\mathrm{x} 1>=0$	300		0
$x 2>=0$	0	$>=$	0

Problem 3 (25 Points)

A file named cruiseLine_Data.xls contains information about passenger cruise ships that operated at US ports between 2004 and 2012. A sample of the data is presented below.

North American Cruises, January 1, 2004 - March 31, 2012						
Cruise Line	Vessel Name	Sail Date	Departure Port	Destination	Nights	Passengers
Carnival Cruise Line	CARNIVAL IMAGINATION	1/1/04	Miami	Western Caribbean	4	2,449
Royal Caribbean International	ENCHANTMENT OF THE SEAS	1/1/04	Fort Lauderdale	Western Caribbean	4	2,262
Carnival Cruise Line	CARNIVAL FANTASY	1/1/04	Port Canaveral	Bahamas	3	2,636
Carnival Cruise Line	CARNIVAL SENSATION	1/1/04	Tampa	Western Caribbean	4	2,483
Celebrity Cruise Line	CELEBRITY GALAXY	1/2/04	San Juan	Southern Caribbean	7	1,644
Royal Caribbean International	MAJESTY OF THE SEAS	1/2/04	Miami	Bahamas	3	2,570
Carnival Cruise Line	CARNIVAL SPIRIT	1/2/04	Miami	Southern Caribbean	8	2,324
Carnival Cruise Line	CARNIVAL ECSTASY	1/2/04	Long Beach	Mexico (Pacific)	3	2,474
Carnival Cruise Line	CARNIVAL FASCINATION	1/2/04	Miami	Bahamas	3	2,484
Prinnese Cruices	CORAI PRINCESS	1/7/04	Fort I anderdale	Wectern Carihhean	10	1987

a) Use a Pivot table to summarize the average number of nights per trip by cruise line. Which cruise line has the highest average nights per trip?

Row Labels	\checkmark Average of Nights
AIDA Cruise Line	14.00
Aida Cruises	9.36
Azamara Club Cruises	11.00
Carnival Cruise Line	5.44
Celebrity Cruise Line	8.42
Costa Cruise Line	8.16
Crystal Cruises	11.59
Cunard Line	8.87
Disney Cruise Line	4.79
Fred Olsen Cruise Line	14.64
Holland America Line	8.98
MSC Italian Cruises	9.42
Norwegian Cruise Line	7.04
Oceania Cruises	13.39
Princess Cruises	8.79
Regent Seven Seas Cruises	8.78
Royal Caribbean International	15.97
Seabourn Cruise Line	11.24
SeaDream Yacht Club	7.17
Silversea Cruises	9.82
Windstar Cruises	7.58
Grand Total	6.83

The cruise line with longer cruise is Fred Olsen Cruise Line with 14.64 nights per cruise.
b) Use a pivot chart to summarize the average number of passengers per cruise trip (i.e., passenger column) and by cruise line.

Row Labels	п Average of Passengers
AIDA Cruise Line	$1,272.17$
Aida Cruises	$1,546.00$
Azamara Club Cruises	640.23
Carnival Cruise Line	$2,617.33$
Celebrity Cruise Line	$2,030.97$
Costa Cruise Line	$2,313.04$
Crystal Cruises	694.12
Cunard Line	$2,357.30$
Disney Cruise Line	$2,701.33$
Fred Olsen Cruise Line	$1,045.55$
Holland America Line	$1,558.45$
MSC Italian Cruises	$1,973.00$
Norwegian Cruise Line	$2,231.09$
Oceania Cruises	700.44
Princess Cruises	$2,484.78$
Regent Seven Seas Cruises	496.02
Royal Caribbean International	$2,788.94$
Seabourn Cruise Line	200.89
SeaDream Yacht Club	89.94
Silversea Cruises	309.74
Windstar Cruises	150.55
Grand Total	$\mathbf{2 , 3 3 9 . 1 8}$

Problem 4 (25 Points)

Steel cables are key components of suspension bridges to support the horizontal roadway/transit loads. For simplicity, we assume a uniformly distributed load along the horizontal span of the bridge. The tension at mid-span of the suspension bridge is given by the formula:
$H=\frac{w L^{2}}{8 d}$
where:
H = Mid-span tension (Newtons)
$w=$ Load per horizontal distance $(\mathrm{N} / \mathrm{m})$
$L=$ bridge span (m)
$d=$ sag of supension bridge cable (m)
Write a simple function in Excel to calculate the value of H given values of w, L and d (arguments of the function). Test the function and state the answer using the following values:
$w=30,000 \mathrm{~N} / \mathrm{m}$.
$\mathrm{L}=100$ meters
D $=20$ meters
Show a screen capture of your Excel function in VBA.

	$\cdots \times$	${ }^{\text {fx }}$ =tensio	,	
	A	B	C	D
	Problem 4			
2	Quiz 1			
3				
	$\mathrm{H}=$ Mid-span tension (N)			
5	$w=$ load per horizontal distance (N / m)			
	L = bridge span (m)			
7	$d=$ sag of the suspension bridge (m)			
8				
9	w	30000		
10	L	100		
11	d	20		
12	H	1875000		

```
Public Function tension(w, L, d)
' H = Mid-span tension (N)
' Input parameters to estimate mid-span tension
' w = load per horizontal distance (N/m)
' L = bridge span (m)
' d = sag of the suspension bridge (m)
tension = w * L ^ 2 / (8 * d)
End Function
```


VBA Code

