CEE 3804: Computer Applications in Civil Engineering Fall 2013

Assignment 8: Ordinary Differential Equations
Date Due: Solution Instructor: Trani
Problem 1

The differential equation to predict the angular acceleration ( 8 )of a rigid pendulum can be derived using a free body diagram
and Newton’s second law of motion shown in Figure 1.
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Figure 1. Free-Body Diagram for a Rigid Pendulum.
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where: K s the drag damping factor, 0 is the angular position (in radians) between the vertical and the position of the rigid
pendulum, @ s the angular velocity, 7 is the mass of the pendulum (kg) and Lis the length of the pendulum (meters). The

units of the Equation (1) are consistent to make the units of O radss2.

Task 1
Create a Matlab script and a function that solves the set of two differential equations shown above. The objective is to calculate

the angular position (9) and the angular speed (9 ) of the pendulum. Solve the differential equations for the following initial
conditions:
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6 =0 and 6 = 0.20 radians. In this solution assume the values of K to be 0.36 kg/s, g=9.81 m/s?, [ = 0.85
meters, and m =32 kg.

1 % Main file to investigate pendulum dynamics
2 % A. Trani
3 % November 10, 2013
4
5= clear
6 % Solution to a set of equations of the form:
7
8 % y(1) = angular speed (rad/s)
9 % y(2) = angular displacement (rad)
10 %
11 % ydot(1l) = - g * sin(y(2)) / | - K* y(1) /m;
12 % ydot(2) = y(1)
13 %
14 % subject to initial conditions:
15 %
16 %y (t=0) = yo
17 %
18 % where:
19
20
21 - global K I mg
22
23 % Define Initial Conditions of the Problem
23 % Define Initial Conditions of the Problem
24
2A3|= yo = [0.2 0.0]; % yo are the initial displacement an
26 — to = 0.0; % to is the initial time to solve this e
21/ |= tf = 20; % tf is the final time (seconds)
28
29 % define parameters
30
31 - K=0.36; % damping constant (kg/s)
32 - m = 32; % mass (kg)
33 - | = 0.85; % length in meters
34 - g =9.81; % m/s-s
35 - tspan =[to tf];
36
37 - [t,y] = ode45(pendulum’,tspan,yo); % call ODE solver
38
39 % Plot the results of the numerical integration procedure
40
41 - figure
42 - plot(t,y(:,1))
43 - xlabel('Time (seconds)’)
44 — ylabel(Angular Speed (rad/s)")
45 - grid

Figure 2. Main Program to Estimate the Pendulum Dynamics.
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1 % Two first-order DEQ to solve the rigid pendulum
2
3 function ydot = pendulum(t,y)
4
5= global KImg
6
7 % y(1) = angular speed (rad/s)
8 % y(2) = angular displacement (rad)
9 %
10 % ydot(1) = - g * sin(y(2)) / | + K* y(1) /m;
11 % ydot(2) = y(1)
12 %
13 %
14 - ydot(1l) = - g * sin(y(2)) / | - K* y(1) /m;
15— | ydot(2) = y(1);
16
17 - ydot = ydot";

Figure 3. Function to Calculate Pendulum Parameters.

Task 2

Plot the values of the state variables position () and the angular speed (9 ) as a function of time (from 0-60

seconds). Label the plots accordingly. Also plot the angular acceleration and plot it with respect to time.

Estimate the maximum velocity for the pendulum,for the given initial conditions.
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Figure 4. Plot of Angular Speed over Time.

Task 3
Make a plot of angular speed vs. angular position (so called Phase plot). Comment on the response observed.
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Figure 5. Plot of Angular Speed vs. Angular Position.
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Problem 2

A civil engineer needs to model the dynamics of a building subject to seismic loads. The building and its foundation is modeled
as series of spring and dampers as shown in Figure 6.

—— f(t
Building ®

Figure 6. Building and Foundation System for Problem 2.

Task 1

Use a free-body diagram with all forces acting on the building system (shown in Figure 2) to verify the basic equation of motion.
In this analysis the displacement (x) towards the right is positive. Use Newton’s second law of Physics to verify the that the
equation of motion for the acceleration of the building at the foundation is:

:f(t)+(b3—b2—blijr(kz—kljx
m m m

where:

i = lateral acceleration of the building system (m/s”)
x = lateral speed of building system (m/s)

x = lateral displacement of building system (m)

The values of the constants are:

m = 2000000; % mass (kg)

b1 =500000; % damper constant (N / (m/s))
b2 = 550000; % damper constant (N / (m/s))
b3 = 600000; % damper constant (N / (m/s))
k1 = 9e6; % spring constant (N/m)

k2 = 7eb6; % spring constant (N/s)
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Task 2

Using the Matlab ODE solver function, construct a script and a function to model the building system and solve the differential

equations of motion of the building system to find the dynamic response of x and X as a function of time.

1 % Main file to execute the mass-spring-damper system
2
3 % Solution to a set of eauations of the form:
4
5 % let y(1) = position (m)
6 %  y(2) = speed (m/s)
7 %
8 % ydot(1) = y(2);
9 % ydot(2) = F(t)/m + (k2-k1)/m y(1) + (b3-b2-b1)/m y(2)
10 %
11 % subject to initial conditions:
12 %
13 %y (t=0) = yo
14 %
15 % where:
16
ili|= global m b1 b2 b3 k1 k2
18
19 % Define Initial Conditions of the Problem
20
22l (= yo =[0.10]; % yo are the initial displacement and velocity
22 - to = 0.0; % to is the initial time to solve this equation
2= tf = 50.0; % tf is the final time
24
25 % define values of m, b and k
26
27 % m = 500; % mass (kg)
28 % bl =500; % damper constant (N / (m/s))
29 % b2 = 550; % damper constant (N / (m/s))
30 % b3 = 600; % damper constant (N / (m/s))
31 % k1 = 1000; % spring constant (N/m)
32 % k2 = 200; % spring constant (N/s)
33
34 - m = 2000000; % mass (kg)
851 b1 = 500000; % damper constant (N / (m/s))
36 — b2 =550000; % damper constant (N / (m/s))
1/|= b3 = 600000; % damper constant (N / (m/s))
38 - k1l = 9e6; % spring constant (N/m)
39 - k2 = 7e6; % spring constant (N/s)
40
41 - tspan =[to tf];
42
43 - [t,y] = ode45(rateEq_2springs_3dashpots',tspan,yo); % call ODE solver
44
45 % Plot the results of the numerical integration procedure
43 - [t,y] = ode45('rateEq_2springs_3dashpots’,tspan,yo); % call ODE solver
44
45 % Plot the results of the numerical integration procedure
46
47/ |= figure
48 - plot(ty(;,1),'0-")
49 - xlabel('Time (seconds)’,'fontsize’,20)
50 — ylabel('Position (m)','fontsize’,20)
51— grid
52
53
54 - figure
551 plot(t,y(:,2),'A--r")
56 — xlabel('Time (seconds)',' fontsize’,20)
=7 |= ylabel('Speed (m/s)",'fontsize’,20)
58 — grid

Figure 7. Matlab Code - Main File - for Problem 2.
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1 % Two first-order DEQ to solve the mass-spring-damper system
2 function yprime = rateEq_2springs_3dashpots(t,y)
3
4 - global m bl b2 b3 k1 k2
15 % define the forcing function, f(t), here
6 % f = 100;
7 - time =[0 1.2 4.6 7.6 10.2 13 18 23.2 25.3 30 100] ;
8- ftable = [0 0.3 4.2 1.1 4.50.83.6 0.2 0.3 0 0] * 1e5; % Newtons
9
10 - f = interpl(time,ftable,t, 'pchp’);
11 % f=0;
12
13 % define the rate equations
14 % y(1) = position (m)
15 % y(2) = speed (m/s)
16
17 - yprime(1) = y(2);
18 - yprime(2) = f/m + (k2-k1)/m * y(1) + (b3-b2-b1)/m * y(2);
19
20 - yprime = yprime';

Figure 8. Matlab Function for Problem 2.

Task 4

Simulate a small seismic event by adding numerical values to the external forcing function f(¢) as shown in the table below. It

is recommended that adding the forcing function you model the response by interpolating values of force over time. For example,
at time 5 seconds, the value of the seismic force is unknown in the table and thus needs to be calculated by interpolation.

Plot speed and lateral displacement of the building system and record the maximum values observed. Find the time when the
system lateral displacement has reached 5% of the maximum input displacement (assumed to be 10 cm). Comment on the
observed behavior.

Table 1. Forcing Function Values of Simulated Seismic Event.

Time of Event (seconds) Force (N)
0.0 0.0
1.2 30000.0
4.6 420000.0
7.6 110000.0
10.2 450000.0
13.0 80000.0
18.0 360000.0

23.2 20000.0
25.3 30000.0
30.0 0.0
100.0 0.0
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Figure 9. Position and Speed Plot for Problem 2.
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