CEE 3804 - Computer Applications in Civil and Environmental Engineering

Assignment 6 Solution

Problem 1

a) Defined time and displacement vectors and plotted a displacement vs time graph

```
    % representing the time and horizontal movement
    % experienced by a building during an earthquake:
    time=0:0.1:25;
    x=time.^1.85.*exp(-time).*(1-cos(time/8));
    % where:
    % time = time in seconds
    % x=horizontal displacement of the building in meters
    plot(time,x,'o-r',..
        'LineWidth',2.5,...
        'MarkerEdgeColor','r',...
        'MarkerFaceColor','r',...
        'MarkerSize',2)
    xlabel('Time (seconds)','fontsize',20)
    ylabel('Building Displacement (meters)','fontsize',20)
    arid
```


b) In the figure plot, go to Tools > Edit Plot

Select and right click the curve to change the color, line width and marker
c) Created variable z and plotted graphs displacement vs time and velocity vs time in the same window
z = gradient(x,time); \% units are m/s
figure
subplot($2,1,1$)
plot(time, x,'o-r',...
'LineWidth',2.5,...
'MarkerEdgeColor','r',...
'MarkerFaceColor','r',...
'MarkerSize',2)
xlabel('Time (seconds)','fontsize',20)
ylabel('Building Displacement (meters)','fontsize',20)
grid
subplot(2,1,2)
plot(time,z,'^-b',... 'LineWidth',2.5,...
'MarkerEdgeColor','b',...
'MarkerFaceColor','b',...

d) Select a few points to test if the gradient function is doing its job. The building horizontal speed is the derivative of the displacement as a function of time.

Time (s)	Displacement (m)	Speed $(\mathrm{m} / \mathrm{s})$	Result
0	0	0	Slope is zero (checks)
1.9	0.0138	0.0140	Maximum slope (speed) Inflection point
3.8	0.0293	~ 0	Slope if flat as expected (checks)

Another way to check is to take the derivative of the function $(x=f(t))$.

$$
\begin{gathered}
x=t \text { time }^{1.85} * e^{- \text {time }} *\left(1-\cos \left(\frac{\text { time }}{8}\right)\right) \\
x=\left(\text { time } e^{1.85} * e^{- \text {time }}\right)-\left[\text { time } e^{1.85} * e^{- \text {time }} * \cos \left(\frac{\text { time }}{8}\right)\right]
\end{gathered}
$$

Velocity (using the product rule),

$$
\begin{gathered}
\frac{d x}{d t i m e}\left(\text { time }^{1.85} * e^{- \text {time }}\right)=\text { time }^{1.85} * \frac{d x}{d \text { time }}\left(e^{- \text {time }}\right)+\frac{d x}{d t i m e}\left(\text { time }^{1.85}\right) * e^{- \text {time }} \\
\frac{d x}{d t i m e}\left(\text { time }^{1.85} * e^{- \text {time }}\right)=\text { time }^{1.85} *\left(-e^{- \text {time }}\right)+1.85 * \text { time }^{(1-1.85)} * e^{- \text {time }} \\
\frac{d x}{d t i m e}\left(\text { time }^{1.85} * e^{- \text {time }} * \cos \left(\frac{\text { time }}{8}\right)\right) \\
=\text { time }^{1.85} * e^{- \text {time }} * \frac{d x}{\text { dtime }}\left(\cos \left(\frac{\text { time }}{8}\right)\right)+\text { time } e^{1.85} * \frac{d x}{d t i m e}\left(e^{- \text {time }}\right) * \cos \left(\frac{\text { time }}{8}\right) \\
+\frac{d x}{d t i m e}\left(\text { time } e^{1.85}\right) * e^{- \text {time }} * \cos \left(\frac{\text { time }}{8}\right) \\
=\text { time }^{1.85} * e^{-t i m e} *\left(-\frac{\sin (\text { time } / 8)}{8}\right)+\text { time }^{1.85} *\left(-e^{- \text {time }}\right) * \cos \left(\frac{\text { time }}{8}\right)+1.85 * \text { time }^{(1-1.85)} \\
* e^{- \text {time }} * \cos \left(\frac{\text { time }}{8}\right)
\end{gathered}
$$

$d x$
 dtime

$$
\begin{aligned}
& =\left[\text { time }{ }^{1.85} *\left(-e^{- \text {time }}\right)+1.85 * \text { time }^{(1-1.85)} * e^{- \text {time }}\right]-\left[\text { time } e^{1.85} * e^{- \text {time }} *\left(-\frac{\sin (t i m e}{8}\right)\right) \\
& \left.+ \text { time }^{1.85} *\left(-e^{- \text {time }}\right) * \cos \left(\frac{\text { time }}{8}\right)+1.85 * \text { time }^{(1-1.85)} * e^{- \text {time }} * \cos \left(\frac{\text { time }}{8}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-\left(\text { time } e^{1.85} * e^{- \text {time }}\right)+\left(1.85 * \text { time } e^{0.85} * e^{- \text {time }}\right)+\left(\text { time }^{1.85} * e^{- \text {time }} * \frac{\sin (t i m e / 8)}{8}\right) \\
& +\left(\text { time }{ }^{1.85} * e^{- \text {time }} * \cos \left(\frac{\text { time }}{8}\right)\right)-\left(1.85 * \text { time } e^{0.85} * e^{- \text {time }} * \cos \left(\frac{\text { time }}{8}\right)\right) \\
& =\left(\text { time }{ }^{1.85} * e^{-t i m e}\right) *\left(-1+\frac{\sin (\text { time } / 8)}{8}+\cos \left(\frac{\text { time }}{8}\right)\right)+\left(1.85 * \text { time }{ }^{0.85} * e^{- \text {time }}\right) *(1 \\
& \left.-\cos \left(\frac{\text { time }}{8}\right)\right)
\end{aligned}
$$

Verification:

*Note that angles are in radians, not degrees
When time $=5$,

$$
\begin{gathered}
x=5^{1.85} * e^{-5} *\left(1-\cos \left(\frac{5}{8}\right)\right) \\
x=0.025 \\
\frac{d x}{d t i m e}=\left(5^{1.85} * e^{-5}\right) *\left(-1+\frac{\sin \left(\frac{5}{8}\right)}{8}+\cos \left(\frac{5}{8}\right)\right)+\left(1.85 * 5^{0.85} * e^{-5}\right) *\left(1-\cos \left(\frac{5}{8}\right)\right) \\
\frac{d x}{d \text { time }}=-0.006
\end{gathered}
$$

Problem 2

a) Copied data and saved file in matlab

Autobahn_data.m $\times 1+$		
$1 \square$	\% Traf	ic
2	\%	
3	\% Auto	ahn
4	\%	
5	\% Colu	n 1
6	\% Colu	
7	0.08	16
8	0.08	
9	0.00	
10	0.00	
11	0.07	

b) Reading data using load command
\% Script to load data from the Autobahn_data file load Autobahn_data.m;
c) Created variables for each column \% Script to load data from the Autobahn_data file load Autobahn_data.m;
speed $=$ Autobahn_data(:,2); \% vector with values of speed density $=$ Autobahn_data(:,1); \% vector with values of density
d) Traffic density vs speed plot

```
load autobahnData.m
density = autobahnData(:,1);
speed = autobahnData(:,2);
% Make a plot
plot(density,speed,'or',...
    'LineWidth',2.5,...
    'MarkerEdgeColor','r',...
    'MarkerFaceColor','r',...
    'MarkerSize',2)
xlabel('Density (veh/km-lane)','fontsize',20)
ylabel('Speed (km/hr)','fontsize',20)
grid
```


e) Linear regression using Basic Fitting tool

- TYPES OF FIT

$\square /$ Linear	$\square \cap$ Quadratic
$\square \wedge$ Cubic	$\square \wedge$ Spline interpolant
$\square M$ 4th degree polynomial	$\square M$ 5th degree polynomial

- FIT RESULTS

Significant digits: 4 V
Linear
Equation $\quad y=-2.318 x+149.2$$\mathrm{R}^{2} \quad 0.3256$Norm of residuals 2109

- ERROR ESTIMATION (RESIDUALS)

- INTERPOLATE / EXTRAPOLATE DATA
f) Traffic speed,

$$
\begin{gathered}
y=-2.318 * 50+149.2 \\
y=33.3
\end{gathered}
$$

Traffic speed for a density of 50 veh/km is $33.3 \mathrm{~km} / \mathrm{hr}$

Problem 3

a) Imported GPS data to matlab
\%Script to load GPS data
load GPS_data.m;|
b) Time vs Speed
\%Script to load and plot GPS data
load GPS_data.m;
time = GPS_data(:,1); \% vector with values of time in s
dist $=$ GPS_data(:,2); \% vector with values of distance in m S = GPS_data(:,3); \% vector with values of speed in $\mathrm{km} / \mathrm{hr}$ speed $=\mathrm{S} / 3.6 ; \%$ vector with values of speed in m / s
\%Plot time vs speed
plot(time, speed)
xlabel('Time (s)')
ylabel('Speed (m/s)')
grid

The vehicle makes 4 stops
c) Converted speed from $\mathrm{km} / \mathrm{hr}$ to m / s

S = GPS_data(:,3); \% vector with values of speed in km/hr speed $=\mathrm{S} / 3.6 ; \%$ vector with values of speed in m / s
d) Time vs Acceleration
\%Script to load and plot GPS data load GPS_data.m;
time = GPS_data(:,1); \% vector with values of time in s dist $=$ GPS_data(:,2); \% vector with values of distance in m S = GPS_data(:,3); \% vector with values of speed in km/hr speed $=\mathrm{S} / 3.6$; \% vector with values of speed in m / s $a=$ gradient(speed); \% vector with values of acceleration in $\mathrm{m} / \mathrm{s} 2$ \%Plot time vs acceleration plot(time,a)
xlabel('Time (s)')
ylabel('Acceleration (m/s2)')
grid

e) Largest speed during the journey $=19.6389 \mathrm{~m} / \mathrm{s}$

Time at largest speed $=692 \mathrm{~s}$
\%Script to load and plot GPS data
load GPS_data.m;
time $=$ GPS_data(:,1); $\%$ vector with values of time in s
dist $=$ GPS_data(:,2); \% vector with values of distance in m $S=$ GPS_data(:,3); \% vector with values of speed in $\mathrm{km} / \mathrm{hr}$
speed $=\mathrm{S} / 3.6 ; \%$ vector with values of speed in m / s
$a=$ gradient(speed); \% vector with values of acceleration in $\mathrm{m} / \mathrm{s} 2$ max_speed $=\max ($ speed $)$;
disp(['Largest speed during the journey $=$ ', num2str(max_speed)])
\%Plot time vs acceleration
plot(time, speed)
xlabel('Time (s)')
ylabel('Speed (m/s)')
grid
>> read_GPS_data
Largest speed during the journey $=19.6389$

f) Average speed of the car for the complete profile is $12.6457 \mathrm{~m} / \mathrm{s}$
avg_speed $=$ mean(speed); \%average speed
disp(['Average speed of the journey $=$ ', num2str(avg_speed)])

```
>> read_GPS_data
Average speed of the journey = 12.6457
```

g) Total distance of the journey $=1865010.8 \mathrm{~m}$

```
tot_dist = sum(dist);
disp(['Total distance of the journey = ',num2str(tot_dist)])
>> read_GPS_data
Total distance of the journey = 1865010.8
```

h) Total number of seconds the car traveled at speeds greater than $30 \mathrm{~km} / \mathrm{hr}$ is 111192 s
load GPS_data.m;
time $=$ GPS_data(:, 1$)$; \% vector with values of time in s
dist $=$ GPS_data(:,2); \% vector with values of distance in m
$\mathrm{S}=$ GPS_data(:,3); \% vector with values of speed in $\mathrm{km} / \mathrm{hr}$
speed $=\mathrm{S} / 3.6$; \% vector with values of speed in m / s
a = gradient(speed); \% vector with values of acceleration in $\mathrm{m} / \mathrm{s} 2$
max_speed $=\max ($ speed $)$;
avg_speed = mean(speed); \%average speed
tot_dist = sum(dist);
index $=$ find(S>30);
sec_greater_than_30 = GPS_data(index,1);
tot_sec_greater_than_30 = sum(sec_greater_than_30);
disp(['Total number of seconds greater than $30 \mathrm{~km} / \mathrm{hr}=$ ', num2str(tot_sec_greater_than_30)])
>> read_GPS_data
Total number of seconds greater than $30 \mathrm{~km} / \mathrm{hr}=111192$

Problem 4

```
% Matix calculations
A = [lllll
    2 9 7 5;
    64 2 1;
    3 1 2 6];
B = [lllllll
C = B*A;
D = B(1:3);
E = 45*B'+10;
F = A(:, 3)+6;
G = diag(A);
H= diag(A)+B;
J = zeros(4,4)+2.5*A;
x = inv(A)*B';
```

a) Matrix B [1x4] is multiplied with matrix $A[4 x 4]$. The [1,4] element of matrix C is obtained as follows:
$(10 * 2)+(20 * 2)+(18 * 6)+(14 * 3)=20+40+108+42=210$
$\mathrm{C}=$
$210 \quad 296 \quad 254 \quad 272$
b) Matrix D retrieves the values in the first 3 columns of matrix B

D =

```
10 20 18
```

c) B^{\prime} is the transpose of matrix B which is given as

$$
B^{\prime}=[10
$$

20
18
14]
The value of each row in the matrix is multiplied by 45 following which 10 is added to it.
The value of the first row in matrix E is obtained as follows:
$(10 * 45)+10=450+10=460$
$\mathrm{E}=$

460
910
820
640
d) $A(:, 3)$ gives the values of all the rows in the $3^{\text {rd }}$ column. This is given as

$$
A(:, 3)=[5
$$

7
2
2]
To the value of each row in this matrix, 6 is added.
The value of the first row in matrix F is obtained as follows:
$5+6=11$
$\mathrm{F}=$
e) Matrix G is a column matrix of the diagonal values of matrix A
$\mathrm{G}=$

2
9
2
6
f) In matrix H , the values in the each row is obtained by adding each column value of that row matrix B with the value in that row of matrix G.
The first two rows of matrix H can be obtained as follows:

```
H=[\begin{array}{llll}{2+10}&{2+20}&{2+18}&{2+14}\end{array}]
    9+10 9+20 9+18 9+14 .....
    H =
\begin{tabular}{llll}
12 & 22 & 20 & 16 \\
19 & 29 & 27 & 23 \\
12 & 22 & 20 & 16 \\
16 & 26 & 24 & 20
\end{tabular}
```

g) Zeros $(4,4)$ gives a 4×4 matrix with all the values as zero. To this, 2.5 times the values in matrix A is added. So essentially, the final answer is the same as matrix A multiplied by 2.5 .
The value of the first row in matrix J is obtained as follows:
$0+\left(2.5^{*} 20\right)=0+5=5$

J =

5.0000	7.5000	12.5000	17.5000
5.0000	22.5000	17.5000	12.5000
15.0000	10.0000	5.0000	2.5000
7.5000	2.5000	5.0000	15.0000

h) Matrix x is the multiplication of the inverse of matrix A and the transpose of matrix B The inverse of matrix A is given as
inverse_matrix_A =

0.1152	-0.1208	0.2022	-0.0674
-0.5084	0.2893	-0.1124	0.3708
0.7893	-0.2669	0.1910	-0.7303
-0.2360	0.1011	-0.1461	0.3820

The transpose of Matrix B is given as

$$
B^{\prime}=[10
$$

20
18
14]
The value of the first row in matrix x is obtained as follows:
$=\left(10^{*} 0.1152\right)+\left(20^{*}-0.1208\right)+\left(18^{*} 0.2022\right)+\left(14^{*}-0.0674\right)$
$=1.152-2.416+3.6396-0.9436$
$=1.432$
$\mathrm{x}=$
1.4326
3.8708
-4.2303
2.3820

