CEE 3804 – Computer Applications in Civil and Environmental Engineering

Assignment 6 Solution

Problem 1

a) Defined time and displacement vectors and plotted a displacement vs time graph

b) In the figure plot, go to Tools > Edit Plot
 Select and right click the curve to change the color, line width and marker

c) Created variable z and plotted graphs displacement vs time and velocity vs time in the same window

d) Select a few points to test if the gradient function is doing its job. The building horizontal speed is the derivative of the displacement as a function of time.

Time (s)	Displacement (m)	Speed (m/s)	Result
0	0	0	Slope is zero (checks)
1.9	0.0138	0.0140	Maximum slope (speed) Inflection point
3.8	0.0293	~0	Slope if flat as expected (checks)

Another way to check is to take the derivative of the function (x = f(t)).

$$x = time^{1.85} * e^{-time} * (1 - \cos\left(\frac{time}{8}\right))$$
$$x = \left(time^{1.85} * e^{-time}\right) - \left[time^{1.85} * e^{-time} * \cos\left(\frac{time}{8}\right)\right]$$

Velocity (using the product rule),

$$\frac{dx}{dtime} \frac{(time^{1.85} * e^{-time})}{dtime} = time^{1.85} * \frac{dx}{dtime} (e^{-time}) + \frac{dx}{dtime} (time^{1.85}) * e^{-time}$$
$$\frac{dx}{dtime} (time^{1.85} * e^{-time}) = time^{1.85} * (-e^{-time}) + 1.85 * time^{(1-1.85)} * e^{-time}$$

$$\frac{dx}{dtime} \left(time^{1.85} * e^{-time} * \cos\left(\frac{time}{8}\right) \right)$$

$$= time^{1.85} * e^{-time} * \frac{dx}{dtime} \left(\cos\left(\frac{time}{8}\right) \right) + time^{1.85} * \frac{dx}{dtime} \left(e^{-time} \right) * \cos\left(\frac{time}{8}\right)$$

$$+ \frac{dx}{dtime} \left(time^{1.85} \right) * e^{-time} * \cos\left(\frac{time}{8}\right)$$

$$= time^{1.85} * e^{-time} * \left(-\frac{\sin(time/8)}{8} \right) + time^{1.85} * \left(-e^{-time} \right) * \cos\left(\frac{time}{8}\right) + 1.85 * time^{(1-1.85)} * e^{-time} * \cos\left(\frac{time}{8}\right)$$

$$= \left[time^{1.85} * \left(-e^{-time} \right) + 1.85 * time^{(1-1.85)} * e^{-time} \right] - \left[time^{1.85} * e^{-time} * \left(-\frac{\sin(time/8)}{8} \right) + time^{1.85} * \left(-e^{-time} \right) * \cos\left(\frac{time}{8} \right) + 1.85 * time^{(1-1.85)} * e^{-time} * \cos\left(\frac{time}{8} \right) \right]$$

$$= -(time^{1.85} * e^{-time}) + (1.85 * time^{0.85} * e^{-time}) + \left(time^{1.85} * e^{-time} * \frac{\sin(time/8)}{8}\right) + \left(time^{1.85} * e^{-time} * \cos\left(\frac{time}{8}\right)\right) - (1.85 * time^{0.85} * e^{-time} * \cos\left(\frac{time}{8}\right)) = (time^{1.85} * e^{-time}) * \left(-1 + \frac{\sin(time/8)}{8} + \cos\left(\frac{time}{8}\right)\right) + (1.85 * time^{0.85} * e^{-time}) * (1 + \frac{\cos\left(\frac{time}{8}\right)}{8} + \cos\left(\frac{time}{8}\right)) = (time^{1.85} * e^{-time}) * (1 + \frac{\sin(time/8)}{8} + \cos\left(\frac{time}{8}\right)) = (time^{1.85} * e^{-time}) * (1 + \frac{\sin(time/8)}{8} + \cos\left(\frac{time}{8}\right)) = (time^{1.85} * e^{-time}) * (time^{1.85} * e^{-time}) = (time^{1.85} * e^{-time}) * (time^{1.85} * e^{-time}) = (time^{1.85} * e^{-ti$$

Verification:

*Note that angles are in radians, not degrees

When time = 5,

$$x = 5^{1.85} * e^{-5} * (1 - \cos\left(\frac{5}{8}\right))$$

$$x = 0.025$$

$$\frac{dx}{dtime} = (5^{1.85} * e^{-5}) * \left(-1 + \frac{\sin\left(\frac{5}{8}\right)}{8} + \cos\left(\frac{5}{8}\right)\right) + (1.85 * 5^{0.85} * e^{-5}) * (1 - \cos\left(\frac{5}{8}\right))$$

$$\frac{dx}{dtime} = -0.006$$

Problem 2

a) Copied data and saved file in matlab

Autob	ahn_da	ta.m 🗙 🕂
1	-	% Traffic Flow Data
2		%
3		% Autobahn data
4		%
5		% Column 1 = Density (veh/km-lane)
6	L	% Column 2 = Speed (km/hr)
7		0.08 160.00
8		0.08 152.00
9		0.00 0.00
10		0.00 0.00
11		0.07 162.00

b) Reading data using load command

% Script to load data from the Autobahn_data file load Autobahn_data.m; c) Created variables for each column

% Script to load data from the Autobahn_data file load Autobahn_data.m; speed = Autobahn_data(:,2); % vector with values of speed density = Autobahn_data(:,1); % vector with values of density

d) Traffic density vs speed plot

```
load autobahnData.m
```

```
density = autobahnData(:,1);
speed = autobahnData(:,2);
```

```
% Make a plot
```

```
plot(density,speed,'or',...
'LineWidth',2.5,...
'MarkerEdgeColor','r',...
'MarkerFaceColor','r',...
'MarkerSize',2)
xlabel('Density (veh/km-lane)','fontsize',20)
ylabel('Speed (km/hr)','fontsize',20)
grid
```


e) Linear regression using Basic Fitting tool

₹ T	YPES OF FIT						
	🖌 🦯 Linear			Quadratic		^	
	🗌 🖊 Cubic		_ /	Spline interpolar	nt		
	🗌 📐 4th degree po	lynomial	□ Λ	5th degree poly	nomial	-	
	▼ FIT RESULTS Significant digits: 4 ▼						
	Linear						
	 Equation 	y = -2.318	8x + 14	9.2			
	R ²	0.3256					
	Norm of residuals	2109					
► ERROR ESTIMATION (RESIDUALS)							
) II	INTERPOLATE / EXTRAPOLATE DATA						

f) Traffic speed,

$$y = -2.318 * 50 + 149.2$$

$$y = 33.3$$

Traffic speed for a density of 50 veh/km is 33.3 km/hr

Problem 3

- a) Imported GPS data to matlab %Script to load GPS data load GPS_data.m;
- b) Time vs Speed

```
%Script to load and plot GPS data
load GPS_data.m;
time = GPS_data(:,1); % vector with values of time in s
dist = GPS_data(:,2); % vector with values of distance in m
S = GPS_data(:,3); % vector with values of speed in km/hr
speed = S/3.6; % vector with values of speed in m/s
%Plot time vs speed
plot(time,speed)
xlabel('Time (s)')
ylabel('Speed (m/s)')
grid
```


The vehicle makes 4 stops

- c) Converted speed from km/hr to m/s
 S = GPS_data(:,3); % vector with values of speed in km/hr
 speed = S/3.6; % vector with values of speed in m/s
- d) Time vs Acceleration

```
%Script to load and plot GPS data
load GPS_data.m;
time = GPS_data(:,1); % vector with values of time in s
dist = GPS_data(:,2); % vector with values of distance in m
S = GPS_data(:,3); % vector with values of speed in km/hr
speed = S/3.6; % vector with values of speed in m/s
a = gradient(speed); % vector with values of acceleration in m/s2
%Plot time vs acceleration
plot(time,a)
xlabel('Time (s)')
ylabel('Acceleration (m/s2)')
grid
```


e) Largest speed during the journey = 19.6389 m/s
 Time at largest speed = 692 s

```
%Script to load and plot GPS data
load GPS_data.m;
time = GPS_data(:,1); % vector with values of time in s
dist = GPS_data(:,2); % vector with values of distance in m
S = GPS_data(:,3); % vector with values of speed in km/hr
speed = S/3.6; % vector with values of speed in m/s
a = gradient(speed); % vector with values of acceleration in m/s2
max_speed = max(speed);
disp(['Largest speed during the journey = ',num2str(max_speed)])
%Plot time vs acceleration
plot(time,speed)
xlabel('Time (s)')
ylabel('Speed (m/s)')
grid
```

```
>> read_GPS_data
Largest speed during the journey = 19.6389
```


f) Average speed of the car for the complete profile is 12.6457 m/s

```
avg_speed = mean(speed); %average speed
disp(['Average speed of the journey = ',num2str(avg_speed)])
```

```
>> read_GPS_data
Average speed of the journey = 12.6457
```

g) Total distance of the journey = 1865010.8 m

```
tot_dist = sum(dist);
disp(['Total distance of the journey = ',num2str(tot_dist)])
>> read_GPS_data
Total distance of the journey = 1865010.8
```

 h) Total number of seconds the car traveled at speeds greater than 30 km/hr is 111192 s load GPS_data.m;

```
time = GPS_data(:,1); % vector with values of time in s
dist = GPS_data(:,2); % vector with values of distance in m
S = GPS_data(:,3); % vector with values of speed in km/hr
speed = S/3.6; % vector with values of speed in m/s
a = gradient(speed); % vector with values of acceleration in m/s2
max_speed = max(speed);
avg_speed = mean(speed); % average speed
tot_dist = sum(dist);
index = find(S>30);
sec_greater_than_30 = GPS_data(index,1);
tot_sec_greater_than_30 = sum(sec_greater_than_30);
disp(['Total number of seconds greater than 30 km/hr = ',num2str(tot_sec_greater_than_30])
```

```
>> read_GPS_data
Total number of seconds greater than 30 km/hr = 111192
```

Problem 4

% Matix calculations A = [2 3 5 7; 2 9 7 5; 6 4 2 1; 3 1 2 6]; B = [10 20 18 14]; C = B*A; D = B(1:3); E = 45*B'+10; F = A(:,3)+6; G = diag(A); H = diag(A)+B; J = zeros(4,4)+2.5*A; x = inv(A)*B';

a) Matrix B [1x4] is multiplied with matrix A [4x4]. The [1,4] element of matrix C is obtained as follows:

```
(10*2)+(20*2)+(18*6)+(14*3)=20+40+108+42=210
```

C = 210 296 254 272

b) Matrix D retrieves the values in the first 3 columns of matrix B

D =

10 20 18

c) B' is the transpose of matrix B which is given as

B' = [10 20 18 14]

The value of each row in the matrix is multiplied by 45 following which 10 is added to it. The value of the first row in matrix E is obtained as follows: $(10^{*}45) + 10 = 450 + 10 = 460$

E =

d) A(:,3) gives the values of all the rows in the 3rd column. This is given as

```
A(:,3) = [5
7
2
2]
```

To the value of each row in this matrix, 6 is added.

The value of the first row in matrix F is obtained as follows:

5 + 6 = 11 F =

- e) Matrix G is a column matrix of the diagonal values of matrix A

G =

- f) In matrix H, the values in the each row is obtained by adding each column value of that row matrix B with the value in that row of matrix G.

The first two rows of matrix H can be obtained as follows:

```
H = [ 2+10 2+20 2+18 2+14
    9+10 9+20 9+18 9+14 .....
Н =
                20
   12
          22
                      16
    19
          29
                27
                      23
   12
          22
                20
                      16
    16
          26
                24
                      20
```

g) Zeros(4,4) gives a 4x4 matrix with all the values as zero. To this, 2.5 times the values in matrix A is added. So essentially, the final answer is the same as matrix A multiplied by 2.5. The value of the first row in matrix J is obtained as follows:
 0 + (2.5*20) = 0 + 5 = 5

J =

5.0000	7.5000	12.5000	17.5000
5.0000	22.5000	17.5000	12.5000
15.0000	10.0000	5.0000	2.5000
7.5000	2.5000	5.0000	15.0000

h) Matrix x is the multiplication of the inverse of matrix A and the transpose of matrix B The inverse of matrix A is given as

inverse_matrix_A =

2.3820

0.1152	-0.1208	0.2022	-0.0674
-0.5084	0.2893	-0.1124	0.3708
0.7893	-0.2669	0.1910	-0.7303
-0.2360	0.1011	-0.1461	0.3820

The transpose of Matrix B is given as

 $B' = \begin{bmatrix} 10 \\ 20 \\ 18 \\ 14 \end{bmatrix}$ The value of the first row in matrix x is obtained as follows: = (10*0.1152) + (20*-0.1208) + (18*0.2022) + (14*-0.0674) = 1.152 - 2.416 + 3.6396 - 0.9436 = 1.432 x = 1.4326 3.8708 -4.2303