Assignment 6: Linear Programming

Solution
Instructor: Trani

Problem 1

Modify the water management pollution control problem described in the class notes and explained in class. New removal costs are presented in Table 1.
Table 1. Removal Costs and Pollution Values for Water Pollution Control Problem.

Source	Removal Cost (\$/kg)	Pollution to Lake (kg)
River A	1,400	25,200
River B	1,350	22,300
River C	1,420	18,900
City	1,850	16,700
Airport	1,760	17,800

Assume that under a new water mandate by EPA we would like to remove at least half of the of the baseline pollution into the lake. Moreover, the airport manager would like to participate in the pollution removal program by removing at least 55% of their baseline pollution allocations per year. In order to be socially responsible to communities near the lake, the pollution processing plants at all three rivers need to remove at least one fourth of their pollutants as a minimum according to a new environmental law.
a) Formulate the problem as a linear programming problem. Solve the new problem using Excel Solver and state the optimal cost.

	A	B	C	D	E		Solver Parameters	I	J	
1	Pollution Control Problem					\$C\$16				
2	Variables									
3		X1	RiverA RiverB RiverC City Airport							
4		X2				Subject to the Constrans:				
5		X3				SCs18>-5ES18				
6		X4					Charge			
7		X5					Delete			
8							Reset All			
9	Solution	X1	13635				Load/Save			
10		X2	22300			- Make Unconstrained Variales Non-Nevegative				
11		X3	4725			selecta solvng	hod Simplex LP - Ootions			
12		X4	9790			Soving Method				
13		X5	0			Sole				
14							itene			
15	Objective	Minimization								
16		$1400 \times 1+1350 \times 2+1420 \times 3+1850$	74,015,000.00	\$/yr.			Clise Solve			
17										
18	Subject to	$\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4+\mathrm{X} 5>=50450$	50450	> $=$	50450		Total amount to be rem	1/2	al	on)
19		X1<=25200	13635	<=	25200		River A max. removal			
20		X2<=22300	22300	<=	22300		River B max. removal			
21		X $3<=18900$	4725	<=	18900		River C max. removal			
22		X4<=17800	9790	<=	17800		Airport maximum load			
23		X $5<=16700$	0	<=	16700		City maximum removal	aint		
24		X $4>=9185$	9790	>=	9790		55% of initial pollution	dr fr		
25		$\mathrm{X} 1>=6300$	13635	$>=$	6300		Minimum of $1 / 4$ of poll			
26		$\mathrm{X} 2>=5575$	22300	$>=$	5575		Minimum of $1 / 4$ of poll			
27		$\mathrm{X} 3>=4725$	4725	>=	4725		Minimum of $1 / 4$ of poll			

Solver Solution to the LP Problem.

The optimal cost of removal is $\$ 74$ million dollars per year. The removal from the city is zero (above) because the city has the highest cost of removal ($\$ 1850$ per kilogram) and does not have a minimum removal constraint such as the airport and the three rivers.
b) The city manager would like to invest in a new processing plant to further reduce pollution into the lake. The new plant is expected to cost $\$ 7,600,000$ and last for at least 25 years. Using principles of engineering economics and Excel, calculate the yearly payments from the city to a bank to buy the processing plant and pay it off at the end of 25 years. Assume the bank charges 4\% yearly over the loan period.

	A	B	C	D
2	Water Pollution Cost			
3	Tasks			
4	Calculate the monthly payment to pay the cost of a water pollution plant			
5				
6	Loan	7,600,000	Dollar amount of loan	
7	No. of Periods	300	periods in loan	
8	Interest	4\%	percent per year	
9				
10	Monthly Payment	(\$39,982.33)	PMT(interest/month, periods,loan present value,	
11	Yearly Payment	(\$479,787.91)		
12				
13	Total Payments	(\$11,994,697.63)		
Equa	Uniform Payments Sched			

The yearly payments are $\$ 479,788$ as shown in the payment schedule above.

Use the Excel function $=P M T(B 8 / 12, B 7, B 6,0,1)$

Problem 2

The construction of a new highway requires a minimum of $1,100,000$ cubic meters of sand and gravel mixture. The final sand/gravel mixture must contain no less than $572,000 \mathrm{cu}$. meters of sand (fine aggregate) and no more than 605,000 cu. meters of gravel (coarse aggregate).
The gravel and sand materials can be obtained from two sites: 1) Miramar and 2) San Diego. Table 1 shows the proportions of sand and gravel from each site. Because each site is also used in other construction jobs, the maximum amounts of materials excavated from each site are limited to the following: a) 540,000 cu. meters for Miramar, and 690,000 cu. meters for San Diego.

Table 1. Proportions of Sand and Gravel from Three Collection Sites.

Site	Proportion of Sand (\%)	Proportion of Gravel (\%)
Miramar	52	48
San Diego	43	57

The costs of collection and transportation of a cubic meter of material are: a) $\$ 650$ for Miramar, $\$ 670$ for San Diego.
A) Setup the problem as a linear programming problem. The objective is to minimize the cost of producing the concrete for the highway project.
B) Use the Simplex method to setup by hand the first table of the problem. For each table indicate the Basic Variables, Non Basic Variables and the value of the objective function (Z). The first table requires the problem to be in standard form.
C) Find the optimal solution that minimizes the cost using Excel Solver. Clearly state the values of the decision variables and the value of the objective function in the optimal solution.

Best solution. The constraint for sand cannot be met with two sites. The best solution is to excavate $540,000 \mathrm{cu}$. meters from Miramar and $606,667 \mathrm{cu}$. meters from San Diego. The sand constraint is not met. Only $541,667 \mathrm{cu}$. meters of sand can be procured from both sides. The gravel constraint is met.
D) If the San Diego site offers a 7\% discount in purchases of more than 500,000 cu. meters of material, would you consider their offer and re-allocate differently the procurement of sand and gravel from both sites? Explain and solve using Excel Solver to support your answer.

Since the best solution presented involves extracting 590,000 cu. Meters from San Diego, the 7\% offer will be applicable. The new cost of extracting material from San Diego is \$637.50.

Best solution with the discounted cost of extracting material from San Diego. The sand constraint cannot be met. The best solution is to excavate $540,000 \mathrm{cu}$. meters from Miramar and 606,667 cu. meters from San Diego. The sand constraint is not met. Only $541,667 \mathrm{cu}$. meters of sand can be procured from both sides. The gravel constraint is met.

Problem 3

A company develops a sketch in two dimensions of a Linear Programming problem to minimize the cost of producing two types of commonly used steel rebars (called X_{1} and X_{2} in the follow up equations) used in the construction industry. The objective of the problem is to maximize the profit for the company (in dollars per production batch). The company would like to maximize the profit in solving this problem.

Objective \quad Maximize $\mathrm{Z}=340 \mathrm{X}_{1}+326 \mathrm{X}_{2}$

Subject to

$$
\begin{aligned}
& \mathrm{X}_{2}+1.1 \mathrm{X}_{1}<=270 \\
& \mathrm{X}_{1}+6 \mathrm{X}_{2}<=1260 \\
& 3 \mathrm{X}_{1}+\mathrm{X}_{2}<=580 \\
& \mathrm{X}_{1}, \mathrm{X}_{2}>=0 \quad \text { (non-negativity conditions) }
\end{aligned}
$$

For each task below, use screen captures to show your work. Show the formulas of the cells to make out task simpler in grading. Also, show the Solver panel to help in grading.
a) Solve the problem graphically. State the optimal solution found for the two decision variables. State the value of the objective function for the optimal solution found. In the graphical solution, label the corner points and state the value of the objective function at each corner point.

Table Corner Point Solutions to the Problem.

X1		Z		Remark
0	0	0		
64.3	210	68,460		
163	199.3	$86,833.8$	Optimal Solution	
191	81	81,826		
	0	64,940		

b) Solve the problem manually using the Simplex Method explained in class. Show all your steps and tableaus. Indicate the Basic Variables (BV) and the Non Basic Variables (NBV) in every tableau. Also highlight the value of the objective function in every tableau.
Add three slack variables since there are three constraint equations with <= type constraints.
Table. Initial Tableau to Solve the Problem.

BV	Z	X1	x2	X3	X4	X5	RHS
Z	1	-340	-326	0	0	0	0
X3	0	1.1	1	1	0	0	270
X4	0	1	6	0	1	0	1260
X5	0	3	1	0	0	1	570

The basic variables are $\mathrm{x} 3, \mathrm{x} 4$ and x 5 . Non-basic variables are X 1 and X 2 . Current solution for $\mathrm{Z}=0$.

| BV | Z | X1 | X2 | X3 | X4 | X5 | RHS | | Ratio |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Z | 1 | -340 | -326 | 0 | 0 | 0 | 0 | | |
| X3 | 0 | 1.1 | 1 | 1 | 0 | 0 | 270 | 245.5 | |
| X4 | 0 | 1 | 6 | 0 | 1 | 0 | 1260 | 1260.0 | |
| X5 | 0 | 3 | 1 | 0 | 0 | 1 | 570 | 190.0 | |

Step 2: Select pivot column (column with coefficient for X1-in yellow).
Step 3: Select the pivot row as the one with the smallest ratio of RHS and picot column coefficients (row in yellow)
Step 4: Perform row operations to zero all elements of pivot column.

Table. Row operations in row X5.

BV	Z	X1	x2	X3	X4	X5	RHS
Z	1	-340	-326	0	0	0	0
X3	0	1.1	1	1	0	0	270
X4	0	1	6	0	1	0	1260
X5	0	1	$1 / 3$	0	0	1/3	190

Table Second Tableau of the Solution.

BV	Z	X1	x2	X3	X4	X5	RHS
Z	1	0	-212.67	0	0	113.33	64600
X3	0	0	0.63	1	0	-0.37	61
X4	0	0	5.67	0	1	-0.34	1070
X1	0	1	0.37	0	0	0.37	190

The basic variables are $x 3, x 4$ and $x 1$. Non-basic variables are $X 5$ and $X 2$. Current solution for $Z=64,600$.
$X 1=190, x 2=0, x 3=61, x 4=1070$, and $x 5=0$.

New pivot column is $x 2$. New pivot row is $x 3$.

BV	Z	X1	x2	X3	X4	X5	RHS	Ratio
Z	1	0	-212.67	0	0	113.33	64600	
X3	0	0	0.63	1	0	-0.37	61	96.8
X4	0	0	5.67	0	1	-0.34	1070	188.7
X1	0	1	0.37	0	0	0.37	190	513.5

Perform row operations on row x3.

| BV | Z | X1 | X2 | X3 | X4 | X5 | RHS |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Z | 1 | 0 | -212.67 | 0 | 0 | 113.33 | 64600 |
| X3 | 0 | 0 | 1 | 1.5873 | 0 | -0.5873 | 96.8254 |
| X4 | 0 | 0 | 5.67 | 0 | 1 | -0.34 | 1070 |
| X1 | 0 | 1 | 0.37 | 0 | 0 | 0.37 | 190 |

Table. Third Tableau of the Solution.

BV	Z	X1	x2	X3	X4	X5	RHS
Z	1	0	0	337.56	0	-11.57	85192
X2	0	0	1	1.5873	0	-0.5873	96.8254
X4	0	0	0	-9	1	3.0	521
X1	0	1	0	-0.59	0	0.59	154.17

The basic variables are $x 2, x 4$ and $x 1$. Non-basic variables are $X 5$ and $X 3$. Current solution for $Z=85,192$. $X 1=154.17, x 2=96.82, x 3=0, x 4=521$, and $x 5=0$.
The solution is not optimal because the value of coefficient for X5 in Z-row is negative. Need one more tableau. New pivot column is $x 5$. New pivot row is $x 4$ (lowest Nono-negative).

BV	Z	X1	x2	X3	X4	X5	RHS	Ratio
Z	1	0	0	337.56	0	-11.57	85192	
X2	0	0	1	1.5873	0	-0.5873	96.8254	-164.86531
X4	0	0	0	-9	1	3.0	521	173.666666
X1	0	1	0	-0.59	0	0.59	154.17	261.305084

Perform row operations on row X4.

BV	Z	X1	x2	X3	X4	X5	RHS
Z	1	0	0	337.56	0	-11.57	85192
X2	0	0	1	1.5873	0	-0.5873	96.8254
X4	0	0	0	-3	0.334	1	173.67
X1	0	1	0	-0.59	0	0.59	154.17

BV	Z	X1	x2	X3	X4	X5	RHS
Z	1	0	0	302.85	3.8567	0	87201
X2	0	0	1	-0.1746	0.1958	0	198.81
X5	0	0	0	-3	0.334	1	173.67
X1	0	1	0	1.18	-0.1967	0	51.71

The basic variables are $x 2, x 5$ and $x 1$. Non-basic variables are $X 4$ and $X 3$. Current solution for $Z=87,201$.
$X 1=51.71, x 2=198.81, x 3=0, x 4=0$, and $x 5=173.67$.
The solution is optimal. The solution obtained by hand differs slightly from the Solver solution because I carried two significant figures in the calculations.

Excel Solution to LP Problem. The Excel Solver Panel is Shown on the Right.
d) Since number of steel rebars to be produced needs to be an integer solution, solve the problem with Excel to obtain an integer solution. State the value of the objective function for the optimal solution found.

