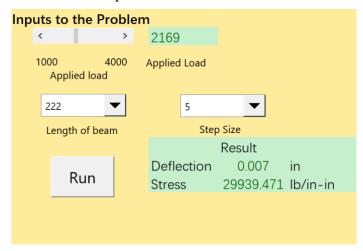

CEE 3804 – Computer Applications in CEE - Assignment 5 Solution

Problem 1

a) Example interface for Problem 1.


b) Code associated with Problem 1.

```
{\tt Call \ calculationForMultipleLoad(W, \ E, \ I, \ x, \ l, \ dN)}
Sub DeflectionCalculation(W, E, I, x, 1, dN, s, y)
   Estimates the hang time and the distance traveled by the ball Uses simple equations learned in Physics \,
 s = W \ / \ (2 * I \ / \ dN * 1) * (1 - x) \ ^2 \ ^2 \ ^s tress at the cross-section being evaluated (lb/in-in) \\ y = W * (x) \ ^2 \ / \ (24 * E * I * 1) * (2 * (1) \ ^2 + (2 * I - x) \ ^2) \ ^d dflection (in) 
'Things to do next:
'a) output the values of vx0 and vy0 to the worksheet,
'b) write another sub to estimate multiple values of distance and hang time
Sub calculationForMultipleLoad(Load, E, I, x, 1, dN)
' define where do you want to start the table rowToStartTable = 16
'write down the header or the table (3 columns)
Range("A" & rowToStartTable).Select
ActiveCell.Value = "Applied load (1b)"
             ActiveCell.Offset(0, 1).Select
ActiveCell.Value = "s(lb/in-in)"
             ActiveCell.Offset(0, 1).Select
ActiveCell.Value = "y(in))"
' start a loop to calculate hangtime and distance for each angle ' note that we do the calculation every 5 degrees
   For Load = 1000 To 4000 Step 50
            s = Load \ / \ (2 * I \ / \ dN * 1) * (1 - x) ^2 \ 'stress at the cross-section being evaluated(lb/in-in) y = Load * (x) ^2 / (24 * E * I * 1) * (2 * (1) ^2 + (2 * I - x) ^2) 'deflection(in) 
             Range("A" & rowToStartTable + 1).Select
ActiveCell.Value = Load
ActiveCell.NumberFormat = 0# ' load(1b)
format numbers
             ActiveCell.Offset(0, 1).Select
ActiveCell.Value = s
ActiveCell.NumberFormat = "0.00"
                                                                               'stress at the cross-section being evaluated(lb/in-in) format numbers
             ActiveCell.Offset(0, 1).Select
ActiveCell.Walue = y 'deflection(in)
ActiveCell.NumberFormat = "00.00000"
   {\tt rowToStartTable = rowToStartTable + 1}\\ {\tt Next Load}
End Sub
```

Table with results of applied load, stress and deflections.

Applied load (lb)	s(lb/in-in)	y(in))		
1000	8137.94	00.00180		
1050	8544.83	00.00189		
1100	8951.73	00.00198		
1150	9358.63	00.00207		
1200	9765.52	00.00216		
1250	10172.42	00.00225		
1300	10579.32	00.00234		
1350	10986.21	00.00243		
1400	11393.11	00.00252		
1450	11800.01	00.00261		
1500	12206.91	00.00271		
1550	12613.80	00.00280		
1600	13020.70	00.00289		
1650	13427.60	00.00298		
1700	13834.49	00.00307		
1750	14241.39	00.00316		
1800	14648.29	00.00325		
1850	15055.18	00.00334		
1900	15462.08	00.00343		
1950	15868.98	00.00352		
2000	16275.87	00.00361		
2050	16682.77	00.00370		
2100	17089.67	00.00379		
2150	17496.56	00.00388		
2200	17903.46	00.00397		
2250	18310.36	00.00406		
2300	18717.26	00.00415		
2350	19124.15	00.00424		
2400	19531.05	00.00433		
2450	19937.95	00.00442		
2500	20344.84	00.00451		
2550	20751.74	00.00460		
2600	21158.64	00.00469		
2650	21565.53	00.00478		
2700	21972.43	00.00487		
2750	22379.33	00.00496		
2800	22786.22	00.00505		

GUI Control Interface with step size.

Excel interface.

Parameter	Definition	Value	Units
W	Applied Load	3679	1b
E	Modulus of Elasticity	30000000	1b/sq-in
I	Moment of inertia	100	in^4
x	distance from datum point	10	in
1	beam length	223	in
ďΝ	distance from edge of beam to neutral axis	8	in
Z	section modulus of the cross section of the beam	12.5	
Step Size	The interval for the applied load	5	
	Results		
S	stress at the cross-section being evaluated	29939.471	1b/in-in
у	Deflection	0.007	in
Applied load (lb)	s(lb/in-in)	y(in))	
1000	8137.94	00.00180	
1005	8178.63	00.00181	
1010	8219.32	00.00182	
1015	8260.01	00.00183	
1020	8300.70	00.00184	
1025	8341.39	00.00185	
1030	8382.08	00.00186	
1035	8422.77	00.00187	
1040	8463.46	00.00188	
1045	8504.14	00.00188	
1050	8544.83	00.00189	
1055	8585.52	00.00190	
1060	8626.21	00.00191	
1065	8666.90	00.00192	
1070	8707.59	00.00193	
1075	8748.28	00.00194	
1080	8788.97	00.00195	
1085	8829.66	00.00196	
1090	8870 35	00 00197	

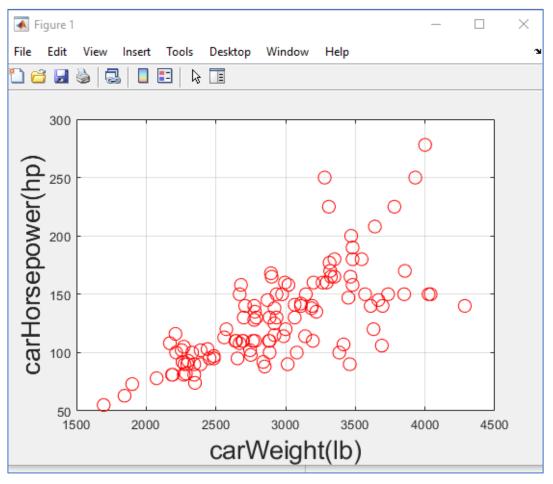
Results with a step size of 5.

Parameter	Definition	Value	Units
W	Applied Load	3500	1b
E	Modulus of Elasticity	30000000	1b/sq-in
I	Moment of inertia	100	in^4
x	distance from datum point	10	in
1	beam length	200	in
ďΝ	distance from edge of beam to neutral axis	8	in
Z	section modulus of the cross section of the beam	12.5	
Step Size	The interval for the applied load	5	
	Results		
		25270.000	11 ₁ (i.e. i.e.
S	stress at the cross-section being evaluated	25270.000	1b/in-in
У	Deflection	0.006	in
Applied load (lb)	s(lb/in-in)	y(in))	
1000	7220.00	00.00161	
1005	7256.10	00.00161	
1010	7292.20	00.00162	
1015	7328.30	00.00163	
1020	7328.30	00.00164	
1025	7400.50	00.00165	
1030	7436.60	00.00166	
1035	7472.70	00.00167	
1040	7508.80	00.00168	
1045	7544.90	00.00168	
1050	7581.00	00.00169	
1055	7617.10	00.00170	
1060	7653.20	00.00171	
1065	7689.30	00.00171	
1070	7725.40	00.00172	
1075	7761.50	00.00173	
1080	7797.60	00.00174	
1085	7833.70	00.00175	
1090	7869.80	00.00176	
1095	7905.90	00.00176	
1100	7942.00	00.00177	
1105	7978.10	00.00178	
1110	8014.20	00.00179	
1115	8050.30	00.00180	
1120	8086.40	00.00181	

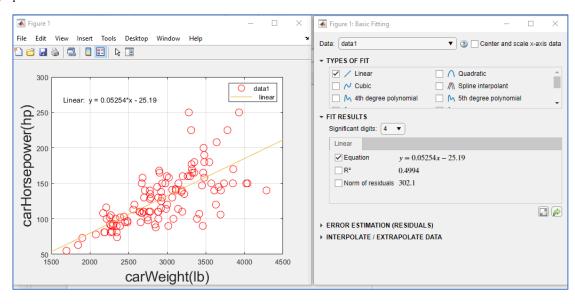
Results with Step Size of 10 inches.

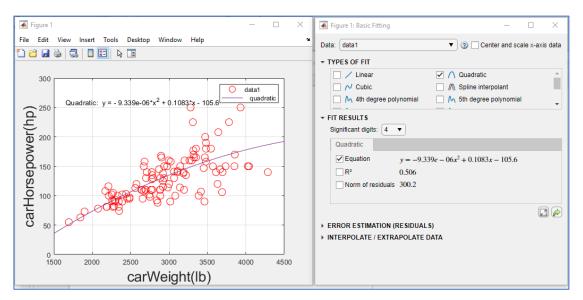
Parameter	Definition	Value	Units
W	Applied Load	3500	1b
E	Modulus of Elasticity	30000000	1b/sq-in
I	Moment of inertia	100	in^4
x	distance from datum point	10	in
1	beam length	200	in
ďΝ	distance from edge of beam to neutral axis	8	in
Z	section modulus of the cross section of the beam	12.5	
Step Size	The interval for the applied load	10	
•			
	Results		
s	stress at the cross-section being evaluated	25270.000	1b/in-in
y	Deflection	0.006	in
,			
Applied load (lb)	s(lb/in-in)	y(in))	
1000	7220.00	00.00161	
1010	7292.20	00.00163	
1020	7364.40	00.00164	
1030	7436.60	00.00166	
1040	7508.80	00.00168	
1050	7581.00	00.00169	
1060	7653.20	00.00171	
1070	7725.40	00.00172	
1080	7797.60	00.00174	
1090	7869.80	00.00176	
1100	7942.00	00.00177	
1110	8014.20	00.00179	
1120	8086.40	00.00181	
1130	8158.60	00.00182	
1140	8230.80	00.00184	
1150	8303.00	00.00185	
1160	8375.20	00.00187	
1170	8447.40	00.00189	
1180	8519.60	00.00190	
1190	8591.80	00.00192	
1200	8664.00	00.00192	
1210	8736.20	00.00195	
1220	8808.40	00.00197	
1230	8880.60	00.00197	
1240	8952.80	00.00198	
1250	9025.00	00.00200	

Problem 2


a)

```
-
                                      Set up the Import Options and import the data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1
                                            opts = delimitedTextImportOptions("NumVariables", 8);
                                             % Specify range and delimiter
                                            opts.DataLines = [2, Inf];
opts.Delimiter = "\t";
6
7
8
9
10
11
12
13
14
15
16
17
18
                                             % Specify column names and types
                                            & Specity Column names and types opts.VariableNames = ["Model", "Country", "Type", "Weight", "TurningCircle", "Displacement", "Horsepower", "GasTankSize"]; opts.VariableTypes = ["string", "categorical", "categorical", "double", "double"
                                            % Specify file level properties
opts.ExtraColumnsRule = "ignore";
                                             opts.EmptyLineRule = "read";
                                            % Specify variable properties opts = setvaropts(opts, "Model", "WhitespaceRule", "preserve"); opts = setvaropts(opts, ["Model", "Country", "Type"], "EmptyFieldRule", "auto");
19
                                            % Import the data
                                           Cardata1 = readtable("C:\Users\SBLBC\Desktop\A5\Car data.txt", opts)
                                    Clear temporary variables
```


b)


c) Matlab script to plot car weight versus horsepower.

```
carWeight = Cardata.Weight;
 1
          carHorsepower = Cardata.Horsepower;
 2
 3
          carTurningCircle = Cardata.TurningCircle;
 4
 5
          figure
 6
 7
          plot(carWeight, carHorsepower, 'ro', 'MarkerSize', 10)
 8
          xlabel('carWeight(lb)', 'FontSize', 20);
 9
          ylabel('carHorsepower(hp)', 'Fontsize', 20);
10
          set(gca, 'color', 'w');
11
          grid on
12
13
```


d) .

Compare linear regression versus the quadratic polynomial (2^{nd} order polynomial), the R^2 value improves from 0.4994 to 0.506. The quadratic polynomial fits the data better.