Assignment 5: Basic Matlab Operations

Solution
Instructor: Trani

Problem 1

Use Matlab to solve this problem. Use the Command Window and define two matrices, A and B, in Matlab. Use (;) to separate the rows in the matrix and use square parenthesis to define the numerical values inside the matrix.

$$
A=\left[\begin{array}{lll}
3 & 5 & 2 \\
4 & 6 & 1 \\
9 & 8 & 7
\end{array}\right]
$$

For example, A would be defined in Matlab as: $>A=[352 ; 461 ; 987]$
and $B=\left[\begin{array}{lll}23 & 12 & 5\end{array}\right]$
Perform the following matrix operations. In one line comment on the results obtained after each operation.
a) $C=B \times A$

Standard matrix multiplication (1×3) $\times(3 \times 3)=(1 \times 3)$
b) $D=A(1,2: 3)$

Extracts elements of matrix A (the first row and the elements of 2nd and 3rd columns)
c) $E=B^{\prime}$

Transposes row vector B
d) $F=A \times B$

Bad operation

e) $G=A(1,:)+B$

Extracts all elements of first row in matrix A and adds to B. Produces a 3×1.
f) $H=A(:, 1)$

Extracts all element of the first column of matrix A
g) $I=\operatorname{diag}(A)+B^{\prime}$

Takes the diagonal elements of 3×3 matrix A and adds to B transposed (result is a 3×1)
h) $J=$ ones $(3,3)+A$

Creates a 3×3 matrix with all ones and adds to matrix A
i) $x=\operatorname{inv}(A)^{*} B^{\prime}$

Solves the system of linear equations $A x=B$

Problem 2

Use Matlab to solve this problem.
a) Create a new Matlab script and define two vectors as follows:
$x=1: 1: 25$
$y=x . \wedge 2 . * \exp (-x)$
In your script make a simple plot using the "plot" function in Matlab. Label the x-axis as 'Time (seconds)' and the y axis as 'Amplitude (dim)'. Add a grid to the plot using the 'grid' attribute of the plot.
b) Modify the script created in part (a) and using the interactive 'Tools-Edit Plot' adjust the color of the line to be red and the line width to be 4.0.

```
x= 1:1:25;
y=x.^2.*exp(-x);
figure
plot(x,y,'o-r')
xlabel('Time (seconds)','fontsize',20)
ylabel('Amplitude (dim)','fontsize',20)
grid
```


Figure 1. Plot with large step size.
c) Modify the script created in part (a) by making the interval across the x-variable smaller. For example, try: $x=1: 0.01: 25$

Plot and comment on the solution.

```
x=1:.01:25;
y=x.^2.*exp(-x);
plot(x,y,'or')
xlabel('Time (seconds)','fontsize',20)
ylabel('Amplitude (dim)','fontsize',20)
grid
```


Figure 2. Plot with small step size.

Problem 3

Use Matlab to solve this problem. Define two vectors as follows:
airportNames=\{'Atlanta';'Charlotte';'Greenboro'\};
passengers = [81e6 16e6 7.4e6];
Perform the following operations using Matlab. In one line comment on the results obtained after each operation.
a) $B=\operatorname{airportNames}(1)$

Selects first element in vector with airport names (Atlanta). B is a cell array.

b) $\mathrm{C}=\operatorname{airportNames(1:2)}$

Selects first two elements in vector with airport names (Atlanta and Charlotte). C is a cell array.
c) $D=$ airportNames $\{1\}$

Selects first element of airportNames as a string variable (char type in Matlab)
d) Comment on any differences observed between variables B and D.

One is a string variable and one is a cell array. You can convert the contents of a cell array to a string by using the "char" command. For example:
stringName $=\operatorname{char}(\mathrm{B})$ converts the cell array B into a string character. Certain operations or functions in Matlab work best in strings than in cell arrays.
e) $\mathrm{E}=\operatorname{airportNames}\{1\}(1)$

Selects the first character of the contents inside the first element of cell array airportNames.
f) $F=$ airportNames\{1\}(1:4)

Selects the first four characters of the contents inside the first element of cell array airportNames.
g) $\mathrm{G}=$ horzcat(airportNames(1),airportNames(2))

Horizontally concatenates the contents of airportNames (1) and (2). Builds the two words 'Atlanta' 'Charlotte' into a single name.

Execute the following two commands sequentially.
h) $\mathrm{H}=$ find (passengers $>$ 15e6)

Finds the indices (i.e.,, positions) of cells in array passengers whose numerical value is greater than 15 million.
i) I = airportNames(H)

Selects the contents of variable airportNames whose indices match H (elements 1 and 2). Produces names Atlanta and Charlotte.

Comment on the two operations executed sequentially.

