$R = A + BV + CV^2$

Solution

Problem 1

V is the train speed in meters/second

A, B, C are empirical constants derived from wind tunnel test. The values of A, B, C are 8.2, 0.107, and 0.0119, respectively.

1) **Create a public function in Excel/VBA** to estimate the value of the basic train resistance (R) given a value of train speed (V).

Assignment 4: VBA Programming

2) Apply the Excel function created above using a table of speeds ranging from 0 to 90 m/s.

A train engineer finds that the basic train resistance of a high-speed train (see Figure 1) to be:

3) Use Excel to make a plot of train resistance (y-axis) versus speed (x-axis). Label accordingly.

Figure 1. High-speed Train (Shinkansen 300 series). Source: Wikipedia.

Instructor: Trani

Spring 2024

rogram estimates train	resistance (R in kiloNewt	ons) given speed (m/	5)			
rogrammer	Trani					
Date	2/21/24 5:55					
Formula	R=A+B V + C V^2					
nputs to problem						
peed	10	meters/second				
A Contraction of the second seco	8.2000	kN	train resistance c	oefficient		
3	0.1070	kN/m/s	train resistance c	oefficient		
C	0.0119	kN/m^2/s^2	train resistance c	oefficient		
Dutput						
Train Resistance (R)	10.46	kiloNewtons				
rain Speed (m/s)	Resistance (KN)			Train Resist	ance (kN)	
	0 8.20 5 0.02		20.00		()	
	5 9.05	I	20.00			<u> </u>
	10.40	1	00.00			
	.5 12.48 20 15.10		80.00			
4	.0 15.10	(kl	80.00			
	18 31 סי	U U				
	25 18.31 30 22.12	ance	60.00			
	25 18.31 30 22.12 35 26.52	esistance	60.00		A A A A	
	25 18.31 30 22.12 35 26.52 40 31.52	Resistance	40.00		a a a a a a a a a a a a a a a a a a a	
2 2 2	25 18.31 30 22.12 35 26.52 40 31.52 45 37.11	Resistance	60.00 40.00 20.00		and a second	
	25 18.31 30 22.12 35 26.52 10 31.52 15 37.11 30 43.30	Resistance	60.00 40.00 20.00		and a second	
	25 18.31 30 22.12 35 26.52 40 31.52 15 37.11 30 43.30 35 50.08	Resistance	60.00 40.00 20.00 0.00 0 2	0 40	60	80

Problem 2

Table 1 provides the California Bearing Ratios of various types of Sounds according to the Unified Soil Classification System (USCS).

Table 1. CRB Values for Typical Soils According to the Unified Soil Classification System (USCS).

Soil Type	CBR (dim)
Well-graded gravels	55
Poorly-graded gravels	45
Gravel-sand-silt	35
Clayey gravels	30
Well-graded sands	29
Silty sands	28
Clayey sands	13
Inorganic silts	12
Inorganic silty clay	5
Fine silty soils	9
Peat soil	4

Create a spreadsheet and associated VBA code to estimate the total pavement thickness (in inches) according to the empirical equation:

Pavement Thickness (inches) = sqrt (Load / (8.1 * CBR) + Area /pi)

Where:

Thickness_inches is the total pavement thickness (in inches)

Load is the single-wheel equivalent load in pounds

Area is the contact area between the tire and the pavement (square inches)

CBR is the California Bearing Ratio (dim)

The following features are needed for the spreadsheet and code:

- i) The user can select the soil type via a **data validation drop down menu list** containing the names of the soil type (column 1 in Table 1).
- ii) The VBA code reads the values of CBR (column 2 in Table 1) and estimates the pavement thickness. This means Table 1 (both columns) must be inserted into the spreadsheet at a location of your choice. The VBA code reads the values of column 2 once the soil type is selected by the user.
- iii) The VBA code reads the soil type from the validation drop box and reads the value of CBR from the spreadsheet (Table 1).
- iv) The VBA code creates a table of pavement thickness solutions for 10 values of load ranging from 20,000 to 40,000 lbs. The table with pavement thickness solutions are shown on the spreadsheet. Use a contact area of 250 square inches in your analysis.
- v) Declare all program the variables using Option Explicit.

Estimation of pav	ement thickness with	soil selection	Formula t =	sqrt (load / (8.1 * CBF	२) + Area / P
Prorammer: A. Ti	rani				
Date: 02/14/07					
		Units			
Area	250.00	sq. inches	Calculatio	on	
		lbs.			
Soil Type	Inorganic silty clay				
Repetitions	6.00				
_oad (lbs)	Pavement Thickness	(inches)		Soil Type	CBR (dim)
20000	16.420	• •		Well-graded gravels	55
22500	17.120			Poorly-graded gravels	45
25000	17.800			Gravel-sand-silt	35
27500	18.460			Clayey gravels	30
30000	19.090			Well-graded sands	29
32500	19.700			Silty sands	28
				Clayey sands	13
				Inorganic silts	12
				Inorganic silty clay	5
				Fine silty soils	9
				Peat soil	4

Excel Interface to Estimate Pavement Thickness with Soil Selection List.

(Ge	eneral) yavementCalculations
;	Programmer : A. Trani
	Const $Pi = 3.1415$
T	retrieve values of constant parameters from cells b6 and b7
5	Sheets("Sheet1").Select
F	Range("b6").Select
ā	area = ActiveCell.Value
'	Code to select the value of CBR asa function of the soil type selected
F	Range("b8").Select
13	

VBA Code to Estimate Pavement Thickness with Soil Selection List. Part 2 of Code.

```
Range("b8").Select
soilType = ActiveCell.Value
If soilType = "Well-graded gravels" Then
  Range("f10").Select
  CBR = ActiveCell.Value
Elself soilType = "Poorly-graded gravels" Then
  Range("f11").Select
  CBR = ActiveCell.Value
Elself soilType = "Gravel-sand-silt" Then
  Range("f12").Select
  CBR = ActiveCell.Value
Elself soilType = "Clayey gravels" Then
  Range("f13").Select
  CBR = ActiveCell.Value
Elself soilType = "Well-graded sands" Then
  Range("f14").Select
```

VBA Code to Estimate Pavement Thickness with Soil Selection List. Part 3 of Code.

```
Range("f18").Select

CBR = ActiveCell.Value

Elself soilType = "Fine silty soils" Then

Range("f19").Select

CBR = ActiveCell.Value

Elself soilType = "Peat soil" Then

Range("f20").Select

CBR = ActiveCell.Value

End If
```

'Retrieve the value of repetitions (n) in cell B9

Range("B9").Select n = ActiveCell.Value

' Clear the range (table) before the loop

Range("A12:B1000").Clear

VBA Code to Estimate Pavement Thickness with Soil Selection List. Part 4 of Code.

For i = 1 To n	
cellnumber = "A" & (i + 11) Range(cellnumber).Select appliedLoad = 20000 + 2500 * (i - 1) ActiveCell.Value = appliedLoad	' assign the cell to write load values ' select cell assigned in previous step ' compute load (lb) at 2500 lb incremer ' assign computed load to cells A+ (n+!
' calculate the pavement thickness	
thickness = Round(Sqr(appliedLoad / ((8.1 * CBR) + area / Pi), 2)
cellnumber = "B" & (i + 11) Range(cellnumber).Select ActiveCell.Value = thickness	' assign the cell to write pavement tł ' select cell ' write value of pavement thickness
Next i	' next value of i

VBA Code to Estimate Pavement Thickness with Soil Selection List. Part 5 of Code.

Problem 3

A simple formula used in highway engineering to estimate the horizontal radius of a road is:

$$R = \frac{v^2}{g(e+f)}$$

Where:

R is the road horizontal radius (in meters)

v is the road design speed (m/s)

g is the gravitational constant (9.81 m/s²)

e is the superelevation rate of the road (%/100). For example, a road with a superelevation rate of 0.06 implies the road of inclined at a lateral slope of 0.06 meters for each one meter in horizontal distance (see . Typical values of e vary from 0 (no superelevation) to 0.10 (high superelevation).

f is the lateral friction force coefficient developed between the vehicle tires and the pavement.

Figure 2. Road Superelevation Diagram. NYDOT.

The lateral friction force coefficient varies according to the table below. This means, at higher speeds, the car has less grip on the road to execute a turn.

Road Design Speed (m/s)	Lateral Friction Coefficient f (dim)
8.34	0.17
16.70	0.15
25.00	0.12
33.34	0.09

First do a linear regression model to estimate the value of lateral friction (f) as a function of design speed (m/s). The figure below illustrates the analysis and the regression equation for (f).

Linear Regression Model of Lateral Friction versus Design Speed.

a) Create a spreadsheet and associated VBA code to estimate the radius of the horizontal curve (in meters) according to the equation provided.

The following features are needed for the spreadsheet and code:

b) The user can select the value of superelevation (*e*) from a drop-down list. Allowable values of *e* range from 0 to 0.10.

		-		
Calculates the Radiu				
Program estimates t	he lateral friction coeffic	cient	given speed	
Programmer: A. Tra	ni			
Date	2/21/24 8	3:34		
Purpose:	Calcuate R given desig	n spe	eed	
Parameter	Value		Units	เอาอาการการการการการการการการการการการการการ
Design Speed		18	m/s	
Superelevation Rate	0.	010	͡;/ft	
		0		0.0
Results		0.01		1
Horizontal Radius	220	0.02	meters	
Lateral Friction	0	0.04	dim	
		0.05		
Speed (m/s)	Radius of Curve (mete	0.00	Lateral Friction	on (dim)
10	4	0.08	00.168	
11	5	0.09	00.164	
12	69	9.50	00.161	
13	82	2.84	00.158	

Drop Down List to Select Superelevation Rate.

- The user enters (directly on the spreadsheet) the value of speed (in meters/second) and the program calculates R in vi) meters.
- vii) The VBA code estimates the value of lateral friction coefficient (f) based on the value of speed entered. The estimation of fcan be performed using the linear regression approximation of f versus speed (v). The regression equation should be coded in VBA.

f = A + Bv

Where:

A, B are two regression coefficients to be found using the Excel trend line of friction versus speed table data.

v is the road design speed (m/s).

viii) Declare all program the variables using Option Explicit.

B) Test the VBA code and the spreadsheet to find the horizontal radius (R) for different speeds ranging from 10 to 30 m/s. at steps of one m/s.

	A	В	С	D	E	F
1						
2	Calculates the Radiu	s of horizontal curvature of	a Highway			
3	Program estimates t	he lateral friction coefficient	given speed			
4	Programmer: A. Tra	ni				
5	Date	2/21/24 8:20		R	un	
6	Purpose:	Calcuate R given design spe	eed		un	
7						
8	Parameter	Value	Units			
9	Design Speed	18	m/s			
10	Superelevation Rate	0.050	ft/ft			
11				0.0 c	nood(m/c)	25 O
12	Results			3	peeu(m/s)	55.0
13	Horizontal Radius	220.071	meters			
14	Lateral Friction	0.135	dim			
15						
16	Speed (m/s)	Radius of Curve (meters	Lateral Friction	on (dim)		
17	10	46.83	00.168			
18	11	57.52	00.164			
19	12	69.50	00.161			
20	13	82.84	00.158			
21	14	97.59	00.155			
22	15	113.83	00.151			
Inter	face of Excel Model to	Estimate Harizantal Padius of	a Dood			

of Excel Model to Estimate Horizontal Radius of a Road.

Project - VBAProject ×	(General) v horizontalRadiusCalculation
Image: Solver (Solver.xlam) Image: Solver (Solver.xlam) Image: Solver (Solver.xlam) Image: Solver (Highway_Design_Radius)	Option Explicit 'Define variables explicitly
Sheet 2 (Sheet) Sheet 2 (Sheet) Sheet 2 (Sheet) Sheet 3 (Sheet) Sheet 3 (Sheet) Sheet 4 (Sheet	Dim speed As Single Dim radius As Single Dim lateralFriction As Single Dim superelevation As Single
Properties - Module1 × Module1 Module Alphabetic Categorized Marmol Module1	Const pi As Single = 3.141592 'pi constant Const g As Single = 9.81 'acceleration of gravity (m/s-s) Dim rowToStartTable As Single
	Sub horizontalRadiusCalculation() ' programmer = A. A. Trani ' date = 02/20/2024
	' input data Sheets("Interface").Select

VBA Code to Estimate Horizontal Radius of the Road. Part 1.

```
      General)
      Imput data

      ' input data
      Sheets("Interface").Select

      Range("B9").Select
      speed = ActiveCell.Value ' design speed (m/s)

      Range("B10").Select
      superelevation = ActiveCell.Value ' superelevation rate (dim)

      Range("A17:C1000").Clear
      ' Call computation subroutine to estimate radius for a single speed

      Call calculationOfSingleRadii(speed, superelevation, radius, lateralFriction)
      ' output results
```

(General)

'output results

Range("B13").Select ActiveCell.Value = radius ' meters

Range("B14").Select ActiveCell.Value = lateralFriction ' dim

' Call sub to do the calculation for multiple speeds calculationForMultipleSpeeds

End Sub

VBA Code to Estimate Horizontal Radius of the Road. Part 3.

Sub calculationOfSingleRadii(speed, superelevation, radius, lateralFriction)

'Estimates the horizontal radius of the road in meters

lateralFriction = 0.2001 - 0.003241 * speed radius = speed * speed / (g * (superelevation + lateralFriction))

'Things to do next:

' a) output the values of vx0 and vy0 to the worksheet,

' b) write another sub to estimate multiple values of distance and hang time

End Sub

VBA Subroutine to Estimate Horizontal Radius and Lateral Friction of the Road. Part 4.

```
Sub calculationForMultipleSpeeds()
' define where do you want to start the table
rowToStartTable = 16
'write down the header or the table (3 columns)
     Range("A" & rowToStartTable).Select
     ActiveCell.Value = "Speed (m/s)" ' speed in m/s
     ActiveCell.Offset(0, 1).Select
     ActiveCell.Value = "Radius of Curve (meters" ' radius
      Active Call Offert (0 1) Calact
 For speed = 10 \text{ To } 35 \text{ Step } 1
     lateralFriction = 0.2001 - 0.003241 * speed
     radius = speed * speed / (g * (superelevation + lateralFriction))
     Range("A" & rowToStartTable + 1).Select
                                     ' speed (m/s)
     ActiveCell.Value = speed
                                            ' format numbers
     ActiveCell.NumberFormat = 0#
     ActiveCell.Offset(0, 1).Select
     ActiveCell.Value = radius
                                              ' meters
                                              ' format numbers
     ActiveCell.NumberFormat = "0.00"
     ActiveCell.Offset(0, 1).Select
     ActiveCell.Value = lateralFriction
                                              'dimensionless
     ActiveCell.NumberFormat = "00.000"
     rowToStartTable = rowToStartTable + 1
 Next speed
End Sub
VBA Subroutine to Estimate Horizontal Radius and Lateral Friction of the Road for Multiple Speeds.
```

CEE 3804

Part 5.