CEE 3804: Computer Applications in Civil Engineering (Assignment 4 solution)

Problem 1

A	В	С	D	E	F	G	н	
Programmed by Armin Zolfaghari					2/25/2021 15:14			
Program to calculate Deflection of Beam an any point along it.								_
								-
Formula:	$Dofloction = (/) M^{*}(y) A(y) // (A * \Gamma * y) (A * \Gamma * y) / (A * I * y) (y) A(y) A(y) A(y) A(y) A(y) A(y) A($							-
ronnula.	Deflection=-((W*(x)^2)/(24*E*I))*((6*(L)^2)-((4*L*x)+(x)^2))							-
Inputs:	Value:							+
L	5.5	meter						+
E	1.80E+11	N/m2						-
IV	0.0001	m4						
w	3000	N						
Distance between 2 sucessive x	0.5	meter						Γ
Iterations:	12							
Beam Station (meter)	Deflection							
0	0							
0.5	-0.000296441							
1	-0.001114583							
1.5	-0.002355469						Run	
2	-0.003930556							
2.5	-0.005761719							
3.5	-0.00778125							_
	-0.009931858							-
4	-0.012166667							-
4.5	-0.014449219							-
5	-0.016753472							-
5.5	-0.019063802							-
								-
								+
								-
								\square

```
(General)
                                                                                                     routine1
  Dim ValL As Double
                                     Can use Option Explicit before Dim
  Dim ValE As Double
  Dim ValIV As Double
  Dim ValW As Double
                                     statements
  Dim Valx As Double
  Dim Valbeamstation As Double
  Dim Valdeflection As Double
  Sub routinel()
  ' Programmed by Armin Zolfaghari
  'Date: 02/24/2021
  'A program to calculater the deflection along a beam every 50 centimetrs
  ' Define the spreadsheat we are working on
  Sheets("Problem1").Select
  'Read necessary inputs from Excel to calculate deflection
  Range("B9").Select
  L = ActiveCell.Value
  Range("B10").Select
  E = ActiveCell.Value
  Range("B11").Select
  IV = ActiveCell.Value
  Range("B12").Select
  W = ActiveCell.Value
  'Distance between two sucessive deflection calculation along beam in meter
  Range("B13").Select
  x = ActiveCell.Value
  'Calculate number of iteration
  CellNumber = "B" & (14)
  Range(CellNumber).Select
  Iterations = Int((L / x) + 1)
  ActiveCell.Value = Iterations
  ' Loop to calculate the deflection along beam every x meter
  For i = 1 To Iterations
  'Function that calculates the desired posion for deflection calculation every 0.5 meter on beam
  CellNumber = "A" & (i + 16)
  Range(CellNumber).Select
  beamstation = x * (i - 1)
  ActiveCell.Value = beamstation
  'Function to calculate the deflection
  CellNumber = "B" & (i + 16)
  Range(CellNumber).Select
  deflection = -((W * beamstation ^ 2) / (24 * E * IV)) * (6 * L ^ 2 - 4 * L * beamstation + beamstation ^ 2)
  ActiveCell.Value = deflection
  Next i
  End Sub
```

Problem 2

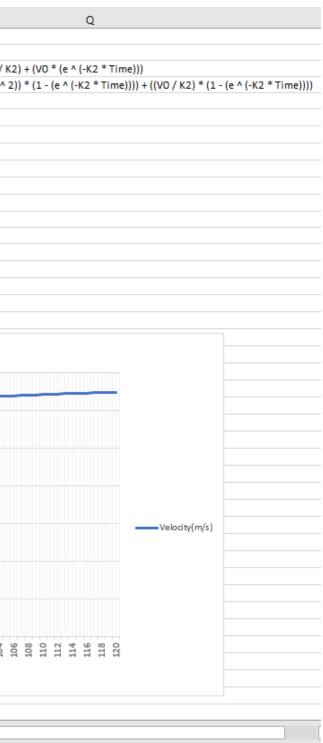
A	В	С	D	E	F	G	
1 Programmed by Armin Zolfaghari							
2							
3 Program to calculate Deflection of Beam an any point along it.							
4							
5							
6 Formula:	Deflection=-((W*(x)^2)/(24*E*I))*((6*(L)^2)-((4*L*x)+(x)^2))						
7							
8 Inputs:	Value:	Unit:					Structura
9 L	5.5	meter					Stainless
10 E	Aluminum	N/m2					Titanium
11 IV	0.0001	m4					Aluminu
12 W	3000	N					High Stre
13 Distance between two sucessive x	0.5	meter					
14 Iterations:	12						
15							
16 Beam Station (meter)	Deflection						
0	0						
18 0.5	-0.000762277						
19 1	-0.002866071						
20 1.5	-0.00605692						
21 2	-0.010107143						
22 2.5	-0.014815848						
23 3	-0.020008929						
24 3.5	-0.025539063						
25 4	-0.031285714						
26 4.5	-0.037155134						
27 5	-0.043080357						
28 5.5	-0.049021205						
29							
30							
31							
32 33							
33							
34							
35 36 37							
27							
Problem1 Problem2 Problem3							

н	I.	J	К	L
Materials				
al Steel	2.00E+11			
is Steel	1.80E+11			
n	1.20E+11			
um	7.00E+10			
ength Concrete	3.00E+10			
		Run		

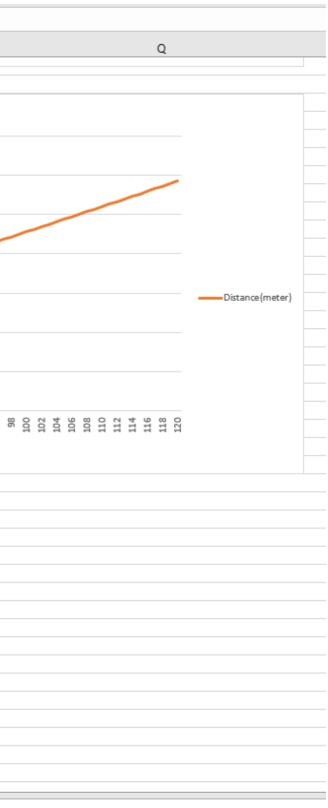
Deflection= -((W*(x)^2)/(24*E*I))*((6*(L)^2)-((4*L*x)+(x)^2)) Value: 5.5 Structural Steel 0.0001 3000 0.5 12	Unit: meter N/m2 m4 N meter					Materials Structural Steel Stainless Steel	2.00E+11		
Value: 5.5 Structural Steel 0.0001 3000 0.5	meter N/m2 m4 N					Structural Steel	2.00E+11		
Value: 5.5 Structural Steel 0.0001 3000 0.5	meter N/m2 m4 N					Structural Steel	2.00E+11		
Value: 5.5 Structural Steel 0.0001 3000 0.5	meter N/m2 m4 N					Structural Steel	2.00E+11		
Value: 5.5 Structural Steel 0.0001 3000 0.5	meter N/m2 m4 N					Structural Steel	2.00E+11		
Value: 5.5 Structural Steel 0.0001 3000 0.5	meter N/m2 m4 N					Structural Steel	2.00E+11		
5.5 Structural Steel 0.0001 3000 0.5	meter N/m2 m4 N					Structural Steel	2.00E+11		
5.5 Structural Steel 0.0001 3000 0.5	meter N/m2 m4 N						2.00E+11		
Structural Steel 0.0001 3000 0.5	N/m2 m4 N					Stainloss Steel			
0.0001 3000 0.5	m4 N					Stanness Steel	1.80E+11		
3000 0.5	Ν					Titanium	1.20E+11		
0.5						Aluminum	7.00E+10		
	meter					High Strength Concrete	3.00E+10		
12									
Deflection									
0									
-0.000266797									
-0.001003125									
								_	
								Run	
0.027.227.122									
	-0.002119922 -0.0035375 -0.005185547 -0.007003125 -0.008938672 -0.01095 -0.013004297 -0.015078125 -0.017157422	-0.0035375 -0.005185547 -0.007003125 -0.008938672 -0.01095 -0.013004297 -0.015078125	-0.0035375 -0.005185547 -0.007003125 -0.008938672 -0.01095 -0.013004297 -0.015078125	-0.0035375 -0.005185547 -0.007003125 -0.008938672 -0.01095 -0.013004297 -0.015078125	-0.0035375 -0.005185547 -0.007003125 -0.008938672 -0.01095 -0.013004297 -0.015078125	-0.0035375 -0.005185547 -0.007003125 -0.008938672 -0.01095 -0.013004297 -0.015078125	-0.0035375	-0.0035375	-0.0035375 Image: Sector of the sector o

```
(General)
  Dim ValL As Double
                               Can use Option Explicit before Dim
  Dim ValE As Double
  Dim ValIV As Double
                               statements
  Dim ValW As Double
  Dim Valx As Double
  Dim Valbeamstation As Double
  Dim Valdeflection As Double
  Sub routine2()
  'Programmed by Armin Zolfaghari
  'Date: 02/24/2021
  'A program to calculater the deflection along a beam every 50 centimetrs
  'Define the spreadsheat we are working on
  Sheets("Problem2").Select
  'Read necessary inputs from Excel to calculate deflection
  Range("B9").Select
  L = ActiveCell.Value
  Range("B10").Select
  material = ActiveCell.Value
  'Use conditional statements to assign E to the desired material
  If material = "Structural Steel" Then
  E = 200000000000
  ElseIf material = "Stainless Steel" Then
  E = 180000000000
  ElseIf material = "Titanium" Then
  E = 120000000000
  ElseIf material = "Aluminum" Then
  E = 70000000000
  ElseIf material = "High Strength Concrete" Then
  E = 30000000000
  End If
  Range("B11").Select
  IV = ActiveCell.Value
  Range("B12").Select
  W = ActiveCell.Value
  'Distance between two sucessive deflection calculation along beam in meter
  Range("B13").Select
  x = ActiveCell.Value
```

```
(General)
```


```
Range("B10").Select
material = ActiveCell.Value
'Use conditional statements to assign E to the desired material
If material = "Structural Steel" Then
E = 200000000000
ElseIf material = "Stainless Steel" Then
E = 180000000000
ElseIf material = "Titanium" Then
E = 120000000000
ElseIf material = "Aluminum" Then
E = 70000000000
ElseIf material = "High Strength Concrete" Then
E = 30000000000
End If
Range("B11").Select
IV = ActiveCell.Value
Range("B12").Select
W = ActiveCell.Value
'Distance between two sucessive deflection calculation along beam in meter
Range("B13").Select
x = ActiveCell.Value
'Calculate number of iteration
CellNumber = "B" & (14)
Range(CellNumber).Select
Iterations = Int((L / x) + 1)
ActiveCell.Value = Iterations
' Loop to calculate the deflection along beam every 50 centimetrs
For i = 1 To Iterations
'Function that calculates the desired posion for deflection calculation every 0.5 meter on beam
CellNumber = "A" & (i + 16)
Range(CellNumber).Select
beamstation = 0.5 * (i - 1)
ActiveCell.Value = beamstation
'Function to calculate the deflection
CellNumber = "B" & (i + 16)
Range(CellNumber).Select
deflection = -((W * beamstation ^ 2) / (24 * E * IV)) * (6 * L ^ 2 - 4 * L * beamstation + beamstation ^ 2)
ActiveCell.Value = deflection
Next i
End Sub
```

```
6
```



Problem 3

A	В	С	D	Ε	F	G	н	1	J	К	L	M	N	0	Р	
1 Designir	ng an acceleratio	on ramp for a highwa	ау													
2																
3 Program	med by Armin Zo	olfaghari			Date:	2/25/2021 15:14		Formula t	o calculate	velocity a	s a functio	on of time (every 1 seco	ond		Vt = ((K1 * (1 - (e ^ (-K2 * Time)))) / K
4								Formula t	o calculate	travelled	distance3	as a funct	ion of time	every 1 se	cond	Dt = ((K1 / K2) * Time) - ((K1 / (K2 ^ 2
5																
6 Inputs:	Value:	Unit:														
7 VO	() m/s														
8 K1	1	m/s2														
9 K2	0.03	3 1/s														
10 t_initial	() seconds														
11 t_final	120) seconds														
12 iteration	n 120)														
13																
14 Time	Velocity(m/s)	Distance(meter)														
15	0 0	0							Run							
16	1 0.985148586	0.495047135														
17	2 1.94118164															
18	3 2.868959655															
19	4 3.769317695															
20	5 4.643066141								V	elocity p	orofile wi	ithin 120) seconds	after tro	uck star	ts moving
21	6 5.490991426				35											
22	7 6.313856738															
23	8 7.112402713				30											
24	9 7.887348095				~											
	0 8.639390386															
	1 9.369206475				25											
	2 10.07745325			Velocity (m/s)												
	.3 10.76476817			<u>ل</u>	20				/							
	4 11.43176987			t∠												
	5 12.0790587			SCI.	15		/	·								
	.6 12.70721726			e e		/										
	.7 13.31681093				LO											
	.8 13.90838839															
	9 14.4824821					/										
	0 15.03960878				5	/										
	1 15.58026989															
	16.10495205				0			-					A A A A			
					0 77 7	- 9 8 0 1 4 9 9	73 73 F	8 8 8 8	8 # # #	444	4 4 G G	2 2 2 2	8228	36 X Z I	5 9 2 8 8	88 88 88 88 88 88 88 88 96 96 96 100 100 100
	3 16.61412752											TIme (s	seconds)			
	4 17.10825457												,			
	5 17.58777798															
	6 18.05312932				0											
	Problem	1 Problem2	Problem	3	÷									:		

F64		• : ×	$\checkmark f_x$																
1	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р			
40		17.58777798	247.0740675																
41		18.05312932	264.8956892																
42		18.50472747	283.1757512								D	istance(n	actor						
43		18.94297887	301.9007044		_	25.00					D	Istance(II	leterj						
44		19.36827799	321.0574004		_	3500													
45		19.78100762	340.6330792																
46	31		360.615358		meter)	3000													
47	32		380.99222		et														
48	33		401.7520035		<u> </u>	2500													
49		21.31349826	422.8833914		e														
50		21.66873796	444.3754012		2	2000 —													
51		22.01347875	466.2173749		Distance											-			
52 53		22.34803091 22.67269557	488.3989695		- Ois	1500 —													
54		22.98776494	510.9101477 533.7411688																
55	40		556.8825801		Traveled	1000 —													
56	40		580.3252081		N														
57	42		604.0601505		La	500													
58		24.15763696	628.0787681																
59		24.42881969	652.3726771			0 -													
60		24.69198776	676.9337415		_	0	2 6 8 10 12 12	16 18 20 22 22	24 28 28	32 36 36	86 6 4 4	50 48 50 50	5 2 2 2	64 62 64 60	68 70 72 74	76 78 80 80	82 86 92 92 93 88 88 88 94 95 94 95		
61		24.94737804	701.7540654		-								ті	me					
62	47		726.8259867		-									inc					
63	48	25.43573791	752.1420696																
64	49	25.66914706	777.695098																
65	50	25.89565793	803.4780691																
66	51	26.11547439	829.484187																
67	52	26.3287943	855.7068568																
68	53	26.53580965	882.1396784	•															
69	54	26.73670677	908.7764409																
70	55	26.93166649	935.6111169																
71	56	27.12086428	962.6378572																
72		27.30447044	989.8509854																
73	58	27.48265021	1017.244993																
74		27.65556398	1044.814534																
75		27.82336737	1072.554421																
76		27.98621143	1100.459619																
77		28.14424271	1128.525243																
78		28.29760347	1156.746551																
79		28.44643174	1185.118942																
00	65	Problem1	Problem2	Probler		\oplus			1	1					: [

	А	В	С	D	E	F	G	н	1	J	K	L	М	N	0	Р	
82	67	28.86704144	1271.098619)													
83	68	28.99904028	1300.031991	Part	d ansv	ver											
84	69	29.12713796	1329.095401	L													
85	70	29.25144978	1358.285007	7													
86	71	29.37208763	1387.597079	9													
87	72	29.4891601	1417.027997	7													
88	73	29.60277256	1446.574248	3													
89	74	29.71302726	1476.232425	5													
90		29.82002344	1505.999219														
91	76	29.92385741	1535.87142														
92	77	30.02462262	1565.845913														
93		30.12240977	1595.919674		_												
94	79		1626.089771														
95	80		1656.353355														
96	81		1686.707664														
97	82		1717.150017														
98		30.56966568	1747.677811														
99	84	30.65134438	1778.288521														
100	85	30.73060911	1808.979696														
101 102	86 87	30.80753121 30.88217992	1839.74896 1870.594003														
102		30.95462243	1901.512586														
104		31.02492394	1932.502535														
105		31.09314773	1963.561742														
106	91		1994.68816														
107	92	31.22360595	2025.879802														
108	93		2057.13474														
109		31.34646687	2088.451104														
110		31.40518763	2119.827079														
111	96	31.46217293	2151.260902	2													
112	97	31.51747406	2182.750865	5													
113	98	31.5711408	2214.295307	7													
114	99	31.62322144	2245.892619	9													
115	100	31.67376287	2277.541238	3													
116	101	31.72281058	2309.239647	7													
117	102	31.7704087	2340.986377	7													
118		31.81660009	2372.779997	7													
119		31.86142632	2404.619123	3													
120		31.90492773	2436.502409														
121		31.94714349															
	•	Problem1	Problem2	Proble	m3	÷									: [4	

Part (d) – The truck takes 68 seconds to reach 29 m/s and the length of the acceleration ramp would be 1,300 meters.

Q	
	Þ

115	100	31.67376287	2277.541238										
116	101	31.72281058	2309.239647										
117	102	31.7704087	2340.986377										
118		31.81660009											
119		31.86142632	2404.619123										
120		31.90492773	2436.502409										
121	106	31.94714349											
122		31.98811157	2500.396281										
123	108	32.02786887	2532.404371										
124	109	32.06645117	2564.451628										
125	110	32.10389318	2596.536894										
126	111	32.14022862	2628.659046										
127	112	32.17549018	2660.816994										
128	113	32.20970961	2693.00968										
129	114	32.2429177	2725.236077										
130	115	32.27514434	2757.495189										
131	116	32.30641854	2789.786049										
132	117	32.33676845	2822.107718										
133	118	32.36622139	2854.459287										
134	119	32.39480386	2886.839871										
135	120	32.42254159	2919.248614										
136													
137													
138													
139													
140													
141													
136 137 138 139 140 141 142 143 144 145 146													
145													
145													
146													
147													
148													
149													
151													
152													
153													
154													
150 151 152 153 154 155 156													
						2							1
	Þ	Problem1	Problem2	Problem	n3 (Ð					:	• [

	_
	_
	_
	_
	-
	_
	-
	_
	-
	_
_	1
	▶

```
(General)
                                                                                                       \sim
  Dim ValVO As Double
  Dim ValKl As Double
                                                   Can use Option Explicit before Dim
  Dim ValK2 As Double
  Dim Valt initial As Double
                                                   statements
  Dim Valt final As Double
  Dim ValVt As Double
  Dim ValDt As Double
  Sub Routine3()
  'Programmed by Armin Zolfaghari
  'Date: 02/24/2021
  'This sub routine calculates the velocity of truck and distance taveled as the finctions of time
  'Define the spreadsheat we are working on
  Sheets("Problem3").Select
  'Read necessary inputs from Excel to calculate deflection
  Range("B7").Select
  V0 = ActiveCell.Value
  Range("B8").Select
  K1 = ActiveCell.Value
  Range("B9").Select
  K2 = ActiveCell.Value
  Range("B10").Select
  t initial = ActiveCell.Value
  Range("Bll").Select
  t final = ActiveCell.Value
  'Time step in seconds
  Range("B12").Select
  t step = ActiveCell.Value
  'Calculate number of iteration
  CellNumber = "B" & (13)
  Range(CellNumber).Select
  Iterations = Int(((t_final - t_initial) / t_step))
  ActiveCell.Value = Iterations
  'Loop to compute velocity of truch as a function of time and traveled distance as a function of time
  'Assign value to E
  E = 2.718281
  For i = 0 To Iterations
  'Calculate and assign time steps to the related Excel column
  CellNumber = "A" & (i + 15)
  Range(CellNumber).Select
  ActiveCell.Value = i
  'Calculate velocity and assign it to the related Excel column
  CellNumber = "B" & (i + 15)
  Range(CellNumber).Select
  Vt = ((K1 * (1 - (E^{(-K2 * i))})) / K2) + (V0 * (E^{(-K2 * i)})))
  ActiveCell.Value = Vt
  'Calculate travelled distance and assign it to the related Excel column
  CellNumber = "C" & (i + 15)
  Range(CellNumber).Select
  Dt = ((K1 / K2) * i) - ((K1 / (K2^{2})) * (1 - (E^{(K2^{2})}))) + ((V0 / K2) * (1 - (E^{(K2^{2})}))))
  ActiveCell.Value = Dt
  Next i
  End Sub
```

Routine3