Spring 2015

Assignment 3: Excel Functions and Linear Programming

Solution

Date Due: February 12, 2015

Instructor: Trani

Problem 1

<u>Task 1</u>

Public Function RailNoise(SELref, Ncars, S, V) 'Function used to estimate the noise generated by a rail vehicle
'Programmer: Moises Bobadilla ' Date: Februrary 10, 2015 '
'Inputs: 'SELref = equivalent noise level (dBA) 'Ncars = number of cars in the train 'S = train speed (mph) 'V = hourly average train volume (trains/hr)
RailNoise = SELref + 10 * (Log(Ncars) / Log(10)) + 20 * (Log(S / 50) / Log(10)) + 10 * (Log(V) / Log(10)) - 31.4
End Function

NOTE: Taking the natural log in VBA can be done using two methods: a) as shown in the solution to Task 1 (divide Log(x)/log(10)) or b) sing the Excel function (Application.WorksheetFunction.In). This last statement used Excel to do the computation of In.

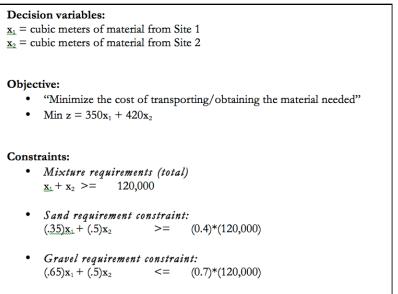
<u>Task 2</u>

Inputs								
SELref	73	dBA						
Ncars 8 # of cars								
S 49 mph								
V	28	cars/hr						
Output								
Leq	64.9270	dBA						

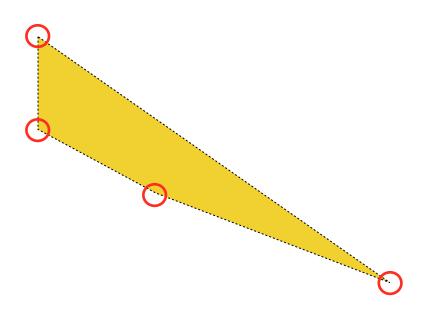
Train Speed (mph)	Leq (dBA)
0	0
5	45.102
6	46.686
9	50.208
12	52.707
15	54.645
18	56.229
21	57.567
24	58.727
27	59.750
30	60.666
33	61.493
36	62.249
39	62.944
42	63.588
45	64.187
48	64.748
51	65.274
54	65.771
57	66.241
60	66.686
63	67.110
66	67.514
69	67.900

NOTE: Sanity check. The higher the train speed, the higher the noise.

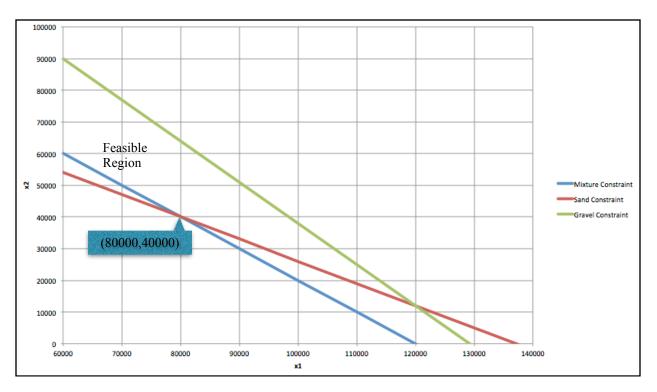
<u>Task 4</u>


Leq (dBA)
Leq (ubA)
58.906
60.667
61.917
62.886
63.678
64.347
64.927

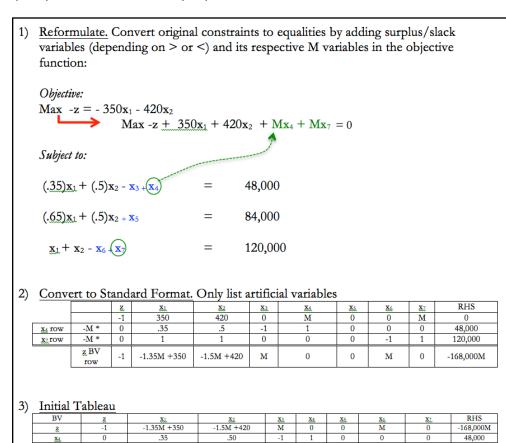
NOTE: Sanity check. The larger the train size (i.e., transit unit), the more noise is produced.


<u>Task 3</u>

Problem 2


a) Formulate the problem as a Linear programming problem

• Non-negativity


b) Solve the problem graphically

c) Solve the problem using Solver

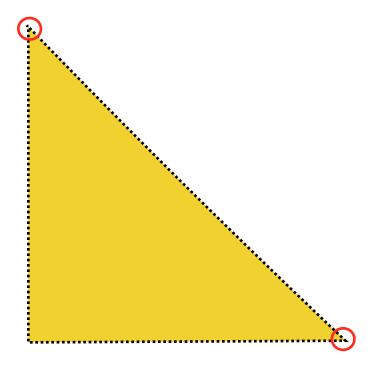
1 Solver Parameters 3 Solver Parameters 4 Solver Parameters 5 Solver Parameters 6 Solver Parameters 7 Decision Variables 8 X1 80000 X2 40000 Cubic meters of material from Site 1 10 Solver Parameters 12 Solver Parameters 13 Objective Function 14 Min z = 350x1 + 420x2 16 Solver Parameters 17 Constraints 18 Constraints 19 x1+x2x=120000 24 Solver Parameters 25 Solver Parameters 26 Solver Parameters 27 Solver Parameters 28 Solver Parameters 29 Solver Parameters 30 Solver Parameters 31 Solver Parameters 32 Solver Parameters 33 Solver 34 Solver 35 Solver 36 Solver		Α	В	С	D	E	F	G	Н		J	K	L
3Solver Parameters4	1												
4										Solv	er Paramete	rs	
S O Decision Variables 8 X1 80000 Cubic meters of material from Site 1 9 X2 40000 Cubic meters of material from Site 2 10 X2 40000 Cubic meters of material from Site 2 11 X2 40000 Cubic meters of material from Site 2 12 X2 40000 Cubic meters of material from Site 2 13 Objective Function Statis Scale Statis Scale 14 Min 2 a 350x1 + 420x2 4480000 Statis Scale Change 16 Constraints Statis Scale Change Delete 17 Constraints Statis Scale Change Delete 18 Constraints Reset All Load/Save 22 Statis Scale Load/Save Select a Solving Method: Simplex LP Options 26 Sale								_					
6 Value Of: 7 Value Of: 8 X1 9 X2 10 Value Of: 9 X2 10 Value Of: 11 Value Of: 12 Value Of: 13 Objective Function 14 Min 2 = 350x1 + 420x2 15 Value Of: 16 Value Of: 17 Constraints 18 Value Of: 19 X1 + 5x2>=(2000) 20 .35x1 + 5x2>=(.4)120000 21 .65x1 + 5x2>=(.7)12000 22 Stat - 5x2>=(.7)12000 23 Value Of: 24 Value Of: 25 Value Of: 26 Value Of: 27 Value Of: 28 Value Of: 29 Value Of: 28 Value Of: 29 Value Of: 21 Value Of: 22 Value Of: 23 Value Of: 24 Value Of: <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Set (</td><td>hiective</td><td>SDS14</td><td></td><td></td><td></td></tr<>								Set (hiective	SDS14			
7 Decision Variables 8 X1 80000 Cubic meters of material from Site 1 9 X2 40000 Cubic meters of material from Site 1 10 Cubic meters of material from Site 2 By Changing Variable Cells: 11 State 2 State 2 12 State 2 Add 13 Objective Function State 2 14 Minz = 350x1 + 420x2 4480000 15 Constraints State 2 16 State 2 Change 17 Constraints Delete 18 Minz = 48000 State 5x2=(7)120000 19 x1+x2=120000 120000 10 State 5x2=(7)120000 72000 <=									ojective.				_
8 X1 80000 Cubic meters of material from Site 1 9 X2 40000 Cubic meters of material from Site 2 10 X2 40000 Cubic meters of material from Site 2 11 X2 40000 Cubic meters of material from Site 2 12 State	-			Do	cision Variab	loc		To:	Max	O Min	O Value Of:	0	
9 X2 40000 Cubic meters of material from Site 2 10 - - - 11 - - - 12 - - - 13 Objective Function - - 14 Min z = 350x1 + 420x2 44800000 - 15 - - - 16 - - - 17 - - - 18 - - - 19 x1+x2>-120000 120000 >= 120000 20 .35x1+5x2>=(.4)120000 120000 >= 48000 21 .65x1+5x2>=(.7)12000 72000 <=			X1				from Site 1		0	•	0.1111		
10 11 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>By C</td><td>hanging Vari</td><td>able Cells:</td><td></td><td></td><td></td></t<>								By C	hanging Vari	able Cells:			
11 12 Subject to the Constraints: 13 Objective Function Subject to the Constraints: 14 Min z = 350x1 + 420x2 44800000 15 Subject to the Constraints: Add 16 Status Status 17 Constraints Status 18 Status Status 20 .35x1+5x2>c(.4)120000 120000 >= 21 .65x1+5x2>c(.7)12000 2000 c= 22 Status Status 24 Status Status 25 Status Status 26 Status Status 27 Status Status 28 Status Status 29 Status Status 21 Status Status 28 Status Status 31 Status Status 33 Status Status 34 Status Status 35 Status Status 36 Status Status 36 Status								SCS	8:5C59				
13 Objective Function 14 Min z = 350x1 + 420x2 44800000 15 SDS19 >= \$F\$19 Add 16 SDS10 >= \$F\$20 Change 17 Constraints Delete 18 10000 >= 120000 10 35x1+5x2>=(1)120000 120000 20 .35x1+5x2>=(1)120000 480000 21 .65x1+5x2>=(1)120000 480000 22 State Score(All)20000 480000 23 State Score(All)2000 Constrainted Variables Non-Negative 24 Select a Solving Method: Simplex LP Options 28 Solving Method Select the LP Simplex centre of Solver Problems that are smooth neot the centre of Solver problems that are non-smooth. 31 Solving Method Select the LP Simplex centre of Solver problems that are non-smooth. 34 Solving Method Solving Method 35 Solving Method Solving Solver problems that are non-smooth. 36 Solving Method Solving Solver problems that are non-smooth.													_
14 Min z = 350x1 + 420x2 44800000 15	12							Subj	ect to the Co	nstraints:			
14 Min z = 350xt + 420x2 44800000 15 SD520 >= SF520 16 SD521 <= SF521	13			Ob	jective Funct	ion		SD5	19 > = \$F\$1	9			Add
16 Constraints 17 Constraints 18 Image 19 x1+x2>-12000 20 .35x1+5x2><(.4)120000	14		Min z = 350x	1 + 420x2	44800000	1							Add
16 Constraints 17 Constraints 18 Image: Constraints 19 x1+x2>=120000 135x1+5x2>=(.7)120000 240000>= 20 .35x1+5x2>=(.7)120000 21 .65x1+5x2>=(.7)120000 22 Image: Constraints 23 Image: Constraints 24 Image: Constraints 25 Image: Constraints 26 Image: Constraints 27 Image: Constraints 28 Image: Constraints 29 Image: Constraints 21 Image: Constraints 28 Image: Constraints 31 Image: Constraints 32 Image: Constraints 33 Image: Constraints 34 Image: Constraints 35 Image: Constraints 36 Image: Constraints								\$DS	21 <= \$F\$2	1			Change
18 19 1+x2>=120000 120000 >= 120000 19 x1+x2>=(1)120000 120000 >= 120000 20 .35x1+sx2>=(.7)120000 48000 >= 48000 21 .65x1+sx2>=(.7)120000 72000 <=													e
19 x1+x2>=120000 120000 >= 120000 20 .35x1+.5x2>=(.4)120000 48000 >= 48000 21 .65x1+.5x2>=(.7)120000 72000 <=					Constraints								Delete
20 .35x1+.5x2>=(.4)120000 48000 >= 48000 21 .65x1+.5x2>=(.7)120000 72000 <=													
Image: Solution of the second seco													Deces All
22 Load/Save 23 Load/Save 24 Load/Save 25 Select a Solving Method: 26 Select a Solving Method: 27 Solving Method: 28 Solving Method: 29 Solving Method: 31 Solving Method: 32 Solving Method: 33 Solving Method: 34 Solving Method: 35 Solving Method:													Reset All
23 24 24 ✓ Make Unconstrained Variables Non-Negative 25 Select a Solving Method: 26 Solving Method: 27 Solving Method 28 Solving Method 29 Solving Method 31 Select the LPS implex engine for Inser Solver Problems that are smooth nonlinear. Select the LPS implex engine for Inser Solver problems that are non-smooth. 32 Solving Method 33 Close			.65x1+.5x2>	=(.7)120000	72000	<=	84000						Lond (Saus
24 Image: Close 25 Image: Close 26 Image: Close 27 Image: Close 28 Image: Close 29 Image: Close 30 Image: Close 32 Image: Close 33 Image: Close													Load/Save
25 Select a Solving Method: Simplex LP Options 27 Solving Method: Simplex LP Options 28 Solving Method Select the Construction of the LP Simplex engine for Solver Problems that are smooth nonlinear. Select the LP Simplex engine for Solver problems that are non-smooth. 31 Solving Method Select the LP Simplex engine for Solver Problems that are non-smooth. 32 Solving Method Select the LP Simplex engine for Solver problems that are non-smooth. 34 Solving Method Solving Method 35 Solving Method Solving Method									Aske Lincons	trained Va	riables Non-N	enative	
26 Select a Solving Method: Simplex LP ● Options 27 Solving Method: Simplex LP ● Options 28 Solving Method Solving Method: Simplex LP ● Options 29 Solving Method Select the CRC, Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex engine for linear Solver problems that are non-smooth. 31 Close Solve									lake offeoris	cranicu va	nables Non-N	egative	
27 28 28 29 30 Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are non-smooth. 32 33 34 Close 36 Solving Method								Selec	t a Solving M	lethod:	Simplex LP	-	Options
28 A Solving Method 29 Solving Method 30 Select the CRC Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex engine for linear Solver Problems that are non-smooth. 31 A 32 A 34 Close 35 Solve													
29 Select the LP Simplex engine for Solver Problems that are smooth nonlinear. Select the LP Simplex engine for linear Solver Problems, and select the LP Simplex engine for Solver problems that are non-smooth. 31 Select the LP Simplex engine for Solver problems that are smooth nonlinear. Select the LP Simplex engine for Solver problems that are non-smooth. 33 Select the LP Simplex engine for Solver problems that are smooth. 34 Select the LP Simplex engine for Solver problems that are smooth. 35 Solve								Solv	ing Method				
30 anolinear. Select the LP Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are non-smooth. 31 anolinear. Select the Evolutionary engine for Solver problems that are non-smooth. 32 anolinear. Select the Evolutionary engine for Solver problems that are non-smooth. 33 anolinear. Select the Evolutionary engine for Solver problems that are non-smooth. 34 anolinear. Select the Evolutionary engine for Solver problems that are non-smooth. 35 anolinear. Select the Evolutionary engine for Solver problems that are non-smooth. 36 anolinear. Select the Evolutionary engine for Solver problems that are non-smooth.										nlinear end	ine for Solver P	roblems that	are smooth
31 and select the Evolutionary engine for Solver problems that are non-smooth. 32 and select the Evolutionary engine for Solver problems that are non-smooth. 34 and select the Evolutionary engine for Solver problems that are non-smooth. 35 and select the Evolutionary engine for Solver problems that are non-smooth. 36 Close													
32										lutionary er	ngine for Solver	problems th	at are non-
34 35 36 Close Solve								smo	oth.				
35 Close Solve													
36	34												
	35										Cle	ose	Solve
37													
	37							-					

d) Setup the first tableau of the Simplex procedure

0

0

1


0

0

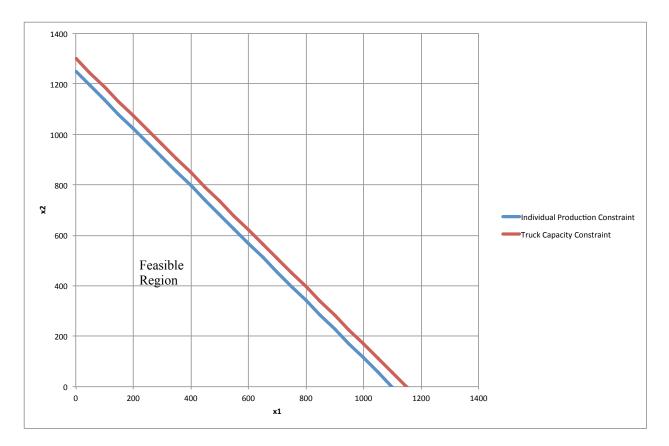
84,000

120,000

Problem 3

85

X7

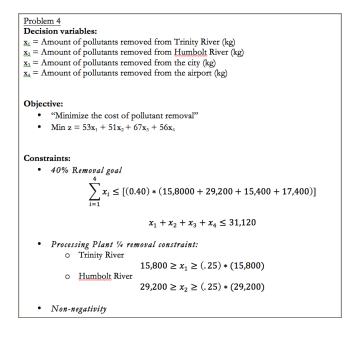

0

.65

a) Formulate the problem as a linear programming problem

$\underline{\mathbf{x}}_{1} = \mathbf{A}$	ion variables: amount of product A produced/day amount of product B produced/day
Objec •	etive: "Maximize revenue" Max $z = 120x_1 + 97x_2$
Const •	traints: Individual production constraint
•	Truck capacity constraint: $\frac{x_1}{1100} + \frac{x_2}{1250} \le 1$ $\frac{x_1}{1150} + \frac{x_2}{1300} \le 1$
•	Non-negativity

b) Solve the problem graphically



c) Solve the problem using Solver

					Solver Parameters
	De	cision Variab	les		Set Objective: \$D\$19
X1	1100	Cubic M	eters of Pro	duct A/day	
X2	0	Cubic M	eters of Pro	duct B/day	To: 💽 Max 🔿 Min 🔿 Value Of: 🛛 0
					By Changing Variable Cells:
	01		1	_	SC\$8:SC\$9
ax Z: 120X1		jective Funct 132000			Cubicat to the Constraints
ax 2. 120AI	. + 3/ \2	132000			Subject to the Constraints:
					\$D\$19 <= 1 Add \$D\$20 <= 1
		Constraints			
					Change
1/1110 + X	2/1250 <=1	1	<=		Delete
1/1150 + X	2/1300 <=1	0.95652174	<=	1	Delete
					Reset All
					Level (Cruze
					Load/Save
					Make Unconstrained Variables Non-Negative
					Select a Solving Method: Simplex LP 💌 Options
					Solving Method
					Select the GRG Nonlinear engine for Solver Problems that are smooth
					nonlinear. Select the LP Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are non-
					smooth.
					Close Solve

Problem 4

a) Formulate the problem as a linear programming problem

b) Solve the problem using Excel Solver

		Decision Va	riables				
X1	3950	Amount of po	ollutants removed	from Trinity River			
X2	27170	Amount of pol	lutants removed f	rom Humbolt River	Solver Results		
X3	0	Amount of	pollutants remov	ed from the city			
X4	0	Amount of p	ollutants removed	d from the airport	Solver found a solution. All constraints and optimality conditions are satisfied.		
					C Keep Solv	ver Solution Original Values	Reports Answer Sensitivity Limits
		Objective F	unction				
Min z = 53x1+51x2+67x3+56x4 1595			1595020		Return to Solver Parameters Dialog Outline Re		
					Save Scenario	Cano	cel OK
		Constra	ints				
Σ(xi) <= (.40)*77800	31120	>=	31120			
15800>=x1		15800	>=	3950			
x1>=(.25*15800)		3950	>=	3950			
2920	00>=x2	29200	>=	27170			
0. 10	5*29200)	27170	-	7300			