Spring 2024

Assignment 3: Excel Pivot Tables and Excel Functions

Solution Key

Instructor: Trani

Show all your work including screen captures of Excel pivot tables, VBA code, etc. Create a single PDF file for the complete homework and submit a single file.

Problem 1

ID	StateNumber RestStopName		Highway	MilePost	Municipality	County	State	Latitude_deg	Longitude_deg	Spots
	1	1 Grand Bay Welcome Center	I-10 EB	0.485	Grand Bay	Mobile	AL	30.477238	-88.393032	90
	2	1 Baldwin County Welcome Center	I-10 WB	65.8	Seminole	Baldwin	AL	30.575718	-87.418285	27
	3	1 Houston County Welcome Center	US-231 NB / SB	0.706	Cottonwood	Houston	AL	31.006808	-85.407686	8
	4	1 Covington County Rest Area	US-331 NB / SB	8.002	Florala	Covington	AL	31.090454	-86.296196	5
	5	1 Conecuh County Rest Area (NB)	I-65 NB	84.208	Evergreen	Conecuh	AL	31.336613	-87.114501	22

Truck Rest Stop Data.

Use the truck rest stop data provided to answer the following questions.

a) Use a Pivot Table to summarize the number of truck stops by state. Show a screen capture of the Pivot Table.

The Pivot Table is shown below. The table is ordered alphabetically by default.

Row Labels 💌	Count of MilePost
AL	28
AR	21
AZ	25
CA	83
CO	24
СТ	20
DE	2
FL	87
GA	45
IA	35
ID	12
IL	81
IN	41
KS	41
KY	36
LA	21

Pivot Table with Summary of Truck Stops by State.

b) Use another Pivot Table to summarize the total number of truck stops by state. Show a screen capture of the Pivot Table.

Row Labels 💌	Count of MilePost	PivotTable Fields	8
AL	28	FIELD NAME	Q Search fields
AR	21	StateNumber RestStopName	1
AZ	25	Highway	
CA	83	MilePost Municipality	
CO	24	County State	
СТ	20	Latitude_deg	
DE	2	♥ Filters	III Columns
FL	87		ŧ
GA	45		(
IA	35		
ID	12		
IL	81		
IN	41		
KS	41		3
КҮ	36	Rows	Σ Values
LA	21	: State	Count of MilePost
Pivot Table with S	ummary of Truck Stops	by State	

Pivot Table with Summary of Truck Stops by State.

c) List the five states with the highest total number of truck stops.

The five states with more stops are shown below.

Row Labels	Number of Truck Stops
ОН	95
FL	87
CA	83
IL	81
NY	78

States with higher number of truck stops.

d) Use the LEN command in Excel to find the number of characters contained in the Highway field. Just show me a sample of the first 20 entries (rows).

Example of LEN command:

=LEN(D18)

Retrieves the number of characters in cell D18.

8 $\stackrel{\bullet}{\downarrow}$ \times \checkmark f_x =LEN(D18) В С D Е М MilePost StateNumber RestStopName Characters in Highway Field Highway I-10 EB 1 1 Grand Bay Welcome Center 0.485 7 I-10 WB 2 1 Baldwin County Welcome Center 65.8 7 1 Houston County Welcome Center US-231 NB / SB 0.706 14 3 1 Covington County Rest Area US-331 NB / SB 4 8.002 14 1 Conecuh County Rest Area (NB) I-65 NB 84.208 7 5 6 1 Conecuh County Rest Area (SB) I-65 SB 89.09 7 7 1 Dale County Rest Area US-231 NB / SB 37.847 14 8 1 Barbour County Rest Area US-431 NB / SB 58.835 14 9 1 Butler County Rest Area (NB) I-65 NB 132.841 7 10 1 Butler County Rest Area (SB) I-65 SB 133.234 7 I-59 NB 11 1 Sumter County Welcome Center 0.106 7 1 Macon County Rest Area (NB) I-85 NB 43.6 7 12 44.55 1 Macon County Rest Area (SB) I-85 SB 7 13 1 Chilton County Rest Area/Maplesville Rest Area US-82 WB/ EB 105.331 12 14 1 Greene County Rest Area (NB) I-59 NB 37.979 15 7 1 Lanett Welcome Center I-85 SB 78.78 16 7 17 1 Greene County Rest Area (SB) I-59 SB 39.776 7 18 1 Chilton County Rest Area (NB) I-65 NB 212.915 7 19 1 Chilton County Rest Area (SB) I-65 SB 213.695 7

States with higher number of truck stops.

e) Find the longest Highway name using the information on part (d).

The highway with largest name is: I-70 & I-76 W - PTC Mainline (20 characters)

Problem 2

	A	В	С	D	E	F	G	
1	Length_ofRoadSegment_mi	State_Province	RoadNumber	RoadName	Surface	NoLanes	SpeedLimit_kmhr	
2	1.57	Alaska		AHMOAGAKAVE	Paved	2		88
3	1.41	Alaska		AHMOAGAK AVE	Paved	2		88
4	30.48	Alaska	S11	JAMES DALTON HWY	Unpaved	2		80
5	0.13	Alaska	S11	JAMES DALTON HWY	Unpaved	2		80
6	21.61	Alaska	S11	JAMES DALTON HWY	Unpaved	2		80
7	13.91	Alaska	S11	JAMES DALTON HWY	Unpaved	2		80
8	20.51	Alaska	S11	JAMES DALTON HWY	Unpaved	2		80
9	38.64	Alaska	S11	JAMES DALTON HWY	Unpaved	2		80
10	1.82	Alaska	S11	JAMES DALTON HWY	Unpaved	2		80
11	25.94	Alaska	S11	JAMES DALTON HWY	Unpaved	2		80

Use the highway segment file provided to answer the following questions. This problem requires that you use Excel Pivot Tables.

a) Summarize the number of road/highway segments by state. Show a screen capture of the Pivot Table.

The Pivot Table is shown below. Notice that states are ordered alphabetically by default.

Row Labels 📃 👻	Count of Length_ofRoadSegment_mi	PivotTable Fiel	lds		8
Alabama	10006	FIELD NAME		Q Search fields	
Alaska	2661	Length_ofRoa	dCoan	nont mi	
Arizona	7429	State_Province	-	nent_m	- 11
Arkansas	13512	RoadNumber			- 11
California	63677	RoadName Surface			- 11
Colorado	7500	NoLanes			
Connecticut	6511				
Delaware	1199	🖌 Filters		III Columns	
District of Columbia	1048				
Florida	19906				
Georgia	16805				
Hawaii	953				
Idaho	5578				
Illinois	17639				
Indiana	24883				
lowa	9977	Rows		Σ Values	
Kansas	8298	: State_Province	0	: Count of Lengt	h 🕥
]				

Pivot Table with Summary of Count of Road Segments by State.

b) Find the average number of lanes for all road segments belonging to each state. Show a screen capture of the Pivot Table.

Row Labels	 Average of NoLanes 	PivotTable Fields		⊗
Alabama	3.4			
Alaska	2.7	FIELD NAME	Q Search fields	
Arizona	3.9	Length_ofRoadSeg	ament mi	
Arkansas	2.8	State_Province	,	
California	4.3	RoadNumber		
Colorado	3.7	RoadName		
Connecticut	3.5	Surface		
Delaware	3.8	NoLanes		
District of Columbi	ia 3.7	Filters	III Columns	
Florida	4.2	T Filters	III Columns	
Georgia	3.5			
Hawaii	3.6			
Idaho	2.7			
Illinois	3.4			
Indiana	2.9			
lowa	2.9			
Kansas	3.1			
Kentucky	3.3			
Louisiana	3.3	-		
Maine	2.7	Rows	∑ Values	
Maryland	3.9	: State_Province 🕧	: Average of NoL	🛈
Summary of Ave	rage Number of Lane	s for Road Segme	ents by State.	

c) Find the top ten states with the highest average speed limit for their road/highway segments.

State	Ave. Speed Limit (km/hr)
Montana	95.1
Wyoming	93.1
South Dakota	91.4
New Mexico	91.0
North Dakota	88.1
California	87.3
Kansas	87.3
Alabama	87.2
Nevada	86.6
Utah	86.6

Top 10 states with highest average speed limit.

d) Find the average speed limit (km/hr) for all the road/highway segments in every state. Show a screen capture of the Pivot Table.

The table below shows the states with average speed limits in descending order. Montana has the highest average speed limit limit at 95.1 km/hr.

State	Ave. Speed Limit (km/hr)	PivotTable Fields	8	
Montana	95.1	FIELD NAME	Q Search fields	
Wyoming	93.1	Length_ofRoadSeg	ment_mi	
South Dakota	91.4	State_Province RoadNumber RoadName Surface		
New Mexico	91.0			
North Dakota	88.1	NoLanes		
California	87.3	♥ Filters	III Columns	
Kansas	87.3	ſ		
Alabama	87.2	•		
Nevada	86.6			
Utah	86.6			
Nebraska	86.0			
Oklahoma	85.4			
Texas	84.7	E Rows	∑ Values	
Missouri	84.1	: State_Province 🕧	: Average of Spe 🔞	

Average speed limit by state.

e) Create a Pivot Table to quickly find the total number of miles of unpaved roads and ferry segments. Show a screen capture of the Pivot Table.

The pivot table is shown below. There are 711,645 miles of roads. There are 132 miles of ferry services and 997 miles of unpaved roads in the database.

Row Labels 💌 Sum of Length_ofRoadSeg	gment_mi	PivotTable Fields	8
Ferry	132		
Paved	711,645	FIELD NAME	Q Search fields
Unpaved	997	_	
Grand Total	712,775	 Length_ofRoadSe State_Province RoadNumber RoadName Surface NoLanes Filters E Rows Surface 	rgment_mi III Columns Σ Values Sum of Length ()
Paved versus Non-paved road	d segmer	nts.	

Problem 3

Use the car data file provided in class (week 1) to answer the following questions. This problem requires that you use Excel database functions explained in class. Using IF statements to classify the data is not allowed.

Show all your work and provide screen captures of your work and **include the actual database commands** used to make each query.

a) Calculate the average gas tank size for cars produced in the US with weight > 2,500 lbs.

a) Calculate the ave	erage gas tank size fo	r cars produced in th					
Model	Country	Туре	Weight_lbs	Turning Circle_ft	Displacement_clnch	Horsepower_hp	Gas Tank Size_gallons
	USA		>2500				
Average Tank Size	17.272	Gallons					

Command used to do the query: =DAVERAGE(\$A\$1:\$H\$117,8,K2:R3)

b) Calculate the average engine displacement for Japanese cars whose tank size > 14.7 gallons.

b) Calculate the average engine d	isplacement for Japanese of	ars whose tank size > 14.	7 gallons.					
Model	Country	Туре	Weight_lbs	Turning Circle_ft	Displacement_clnch Horsepower_hp		Gas Tank Size_gallons	
	Japan						>14.7	
Ave. Engine Displacement	t 164.316	Cubic Inches						

Command used to do the query: =DAVERAGE(\$A\$1:\$H\$117,6,K8:R9)

c) Count the number of cars produced in the US with horsepower > 135 HP and turning circle > 36 feet.

c) Count the number of cars prod	circle > 36 feet.						
Model	Country	Туре	Weight_lbs	Turning Circle_ft	Displacement_clnch	Horsepower_hp	Gas Tank Size_gallons
	USA			>36		>135	
Count vehicles	28	Vehicles					

Command used to do the query: =DCOUNTA(\$A\$1:\$H\$117,2,K14:R15)

d) Count the number of cars produced in Japan with tank size > 14.8 gallons and weight < 3200 lbs.

d) Count the number of cars prod	< 3200 lbs.						
Model	Country	Туре	Weight_lbs	Turning Circle_ft	Displacement_clnch	Horsepower_hp	Gas Tank Size_gallons
	Japan		>3200				>14.8
Count vehicles	9.000 Vehicles						

Command used to do the query: =DCOUNTA(\$A\$1:\$H\$117,2,K20:R21)

Problem 4

Use the car data file provided in class (week 1) to answer the following.

Model	Country	Туре	Weight_lbs	Turning Circle_ft	Displacement_clnch	Horsepower_hp	Gas Tank Size_gallons
Acura Integra	Japan	Small	2700	37	112	130	13.2
Acura Legend V6	Japan	Medium	3265	42	163	160	18
Audi 100	Other	Medium	2935	39	141	130	21.1
Audi 80	Other	Compact	2670	35	121	108	15.9
Audi 90	Other	Compact	2790	35	141	130	15.9
BMW 325i	Other	Compact	2895	35	152	168	16.4
BMW 535i	Other	Medium	3640	39	209	208	21.1
Buick Century	USA	Medium	2880	41	151	110	15.7

a) Perform a linear regression using Excel to estimate the best regression model that relates vehicle the engine displacement (in cubic inches) and plotted in the x-axis, and engine horsepower (in the y-axis). Use the trend analysis function in Excel to estimate the equation of the line that fits the data best.

The best fit to the data is (y= Engine power and x = engine displacement) is a second order polynomial model (i.e., quadratic or parabolic model). The value of R-square for the quadratic model (0.60) is slightly better than a linear model (0.57). Linear solutions should be acceptable in this problem.

$$v = -0.001363x^2 + 1.001x + 6.047$$

Engine Displacement and horsepower regression analysis. 2nd Order polynomial.

Engine Displacement and horsepower regression analysis. Linear Regression Model.

c) Create a function in Excel (using VBA) to calculate the vehicle horsepower (dependent variable) given the engine displacement.

- d) Test the function created in part (c) to estimate the engine horsepower expected for engine displacements ranging from
- 100 to 300 cubic inches. Make a plot to check your solution. The figure below illustrates the use of the function created in part (c). You are expected to include the plot in the solution.

Problem	and the second								
Car data: Calculates HP given engine	e displacement								
Program calculates car HP given eng	ine displacement (cubic inch	es)							
Programmer	Trani	,							
Date	2/14/24 8:07								
Formula	HP = -00.1363*(displacer	nent)^2 + 1.001*(d	displacem	ent) + 6.(047				
		, ,		•					
Inputs to problem									
Car engine displacement	200 cu	200 cubic inches							
Output: Car HP									
Car horsepower	151.73 ho	rsepower							
Car horsepower		-							
Engine displacement (cu inches)	Car horsepower (HP)	-	orsepov	ver vers	sus Engi	ne Disp	laceme	nt Plot	
		-	orsepov	ver vers	sus Engi	ne Disp	laceme	nt Plot	
Engine displacement (cu inches) 100	Car horsepower (HP) 92.52	200.00 180.00	orsepov	ver vers	sus Engi	ne Disp	laceme	nt Plot	
Engine displacement (cu inches) 100 125	Car horsepower (HP) 92.52 109.88	Car Ho 200.00 180.00 $\widehat{\underline{A}}$ 160.00	orsepov	ver vers	sus Engi	ne Disp	laceme	nt Plot	
Engine displacement (cu inches) 100 125 150	Car horsepower (HP) 92.52 109.88 125.53	Car H 200.00 180.00 (+) 160.00 140.00	orsepov	ver vers	sus Engi	ne Disp	laceme	nt Plot	
Engine displacement (cu inches) 100 125 150 175	Car horsepower (HP) 92.52 109.88 125.53 139.48	Car H 200.00 180.00 (+) 160.00 140.00	orsepov	ver vers	sus Engi	ne Disp		nt Plot	
Engine displacement (cu inches) 100 125 150 175 200	Car horsepower (HP) 92.52 109.88 125.53 139.48 151.73	Car H 200.00 180.00 (+) 160.00 140.00	orsepov	ver vers	sus Engi	ne Disp	laceme	nt Plot	
Engine displacement (cu inches) 100 125 150 175 200 225 250 275	Car horsepower (HP) 92.52 109.88 125.53 139.48 151.73 162.27 171.11 178.25	Car H 200.00 180.00 (+) 160.00 140.00	orsepov	ver vers	sus Engi	ne Disp	laceme	nt Plot	
Engine displacement (cu inches) 100 125 150 175 200 225 250	Car horsepower (HP) 92.52 109.88 125.53 139.48 151.73 162.27 171.11	Car H 200.00 180.00 (+) 160.00 140.00	orsepov	ver vers	sus Engi	ne Disp	laceme	nt Plot	
Engine displacement (cu inches) 100 125 150 175 200 225 250 275	Car horsepower (HP) 92.52 109.88 125.53 139.48 151.73 162.27 171.11 178.25	Car H 200.00 180.00 GH 160.00 b 140.00 b 120.00 0 80.00 H 60.00 H 60.00 H 40.00 H 40.00 H 20.00 H 2	orsepov	ver vers	sus Engi	ne Disp		nt Plot	
Engine displacement (cu inches) 100 125 150 175 200 225 250 275	Car horsepower (HP) 92.52 109.88 125.53 139.48 151.73 162.27 171.11 178.25	Car H 200.00 180.00 AH 160.00 b 140.00 0 120.00 0 120.00 0 120.00 0 100.00 0 120.00 0							
Engine displacement (cu inches) 100 125 150 175 200 225 250 275	Car horsepower (HP) 92.52 109.88 125.53 139.48 151.73 162.27 171.11 178.25	Car H 200.00 180.00 GH 160.00 b 140.00 b 120.00 0 80.00 H 60.00 H 60.00 H 40.00 H 40.00 H 20.00 H 2	50	100	150	200 ment (cu. i	250	nt Plot	35

Excel interface with application of the function horsepower.

Problem 5

The equations to estimate the sail drag (lateral force acting on the tanker when subjected to crosswinds) and the power required to overcome the "sail" drag force are presented below:

 $D_{sail} = \frac{1}{2} \rho V_c^2 S_a C_d$ $D_{sail} = \text{sail drag (Newtons)}$ $V_c = \text{crosswind speed (m/s)}$ $\rho = \text{air density (kg/cu. meter)}$ $S_a = \text{sail area (square meters)}$ $C_d = \text{drag coefficient (dimensionless)}$ $P_{sail} = D_{sail} V_c$ $P_{sail} = \text{power to overcome sail drag (Watts)}$

The air density at sea level conditions is 1.225 kg/cu.meter. The ship's sides act as flat plates that generate resistance force with a drag coefficient (Cd) value of 0.95. The ship's sail area is the lateral area of the ship above the water line exposed to crosswinds. You can estimate the sail area using Figure 1.

a) Create an Excel function (Public Function) to calculate the ship's sail drag with a crosswind speed of 20 m/s. The function should take the ship's parameters (including the ship's dimensions) and estimate the sail drag (Newtons). Note that all units in the equations above are consistent.

b) Perform a sensitivity analysis to estimate the sail drag (force) as a function of wind speed. Create a table in Excel with wind speeds ranging from 0 to 25 m/s at steps of 2.5 m/s and calculate the sail drag force.

Wind Speed (m/s)	Sail Drag (N)
0.0	-
2.5	12,059
5.0	48,234
7.5	108,527
10.0	192,938
12.5	301,465
15.0	434,109
17.5	590,871
20.0	771,750
22.5	976,746
25.0	1,205,859

Sensitivity analysis for sail drag versus wind speed.

c) Plot sail drag (y-axis) versus wind speed (m/s).

