Assignment 3: Optimization and Excel Solver

Date Due: Solution
Instructor: Trani
Show all your work including code and results of your computation in the spreadsheet as screen captures.

Problem 1

A company develops the following Linear Programming problem to minimize the cost of producing two types of steel pins commonly used the construction industry. The objective function is the profit for the company (in dollars per production batch). The company would like to maximize the profit in solving this problem.

Objective \quad Maximize $Z=60 X_{1}+50 X_{2}$
Subject to

$$
\begin{aligned}
& \mathrm{X}_{2}+\mathrm{X}_{1}<=220 \\
& 0.1 \mathrm{X}_{1}-0.12 \mathrm{X}_{2}>=0 \\
& \mathrm{X}_{1}-\mathrm{X}_{2}<=120 \\
& \mathrm{X}_{1}, \mathrm{X}_{2}>=0 \quad \text { (non-negativity conditions) }
\end{aligned}
$$

Task 2

Solve the problem using Excel Solver. State the exact solution found by Excel for the two decision variables. State the value of the objective function for the optimal solution found.

Maximization Problem				
Decision Variables				
X1	170	Steel Pin 1		
X2	50	Steel Pin 2	Subucre te cosmrans:	
Objective Function				
$60 \mathrm{X} 1+50 \mathrm{X} 2$	12700		Make Unconstrained Variables Non-NegativeSelect a Solving Method: $\begin{aligned} & \text { Simplex LP } \\ & \end{aligned} \begin{aligned} & \text { Options }\end{aligned}$	
Cormula				
$\mathrm{X} 1+\mathrm{X} 2<=220$	220	220	Close Sowe	
$0.1 \mathrm{X} 1-0.12 \mathrm{X} 2>=0$		0		
X1- X2 < = 120	120	120		
x1>=0	170	0		
$x 2>=0$	50	0		

Task 3

Since number of pins to be produced needs to be an integer solution, solve the problem with Excel to obtain an integer solution. State the value of the objective function for the optimal solution found.

The solution is integer for X1 and X2. However, in Solver you can force an integer solution by adding another constraint equation in the Solver panel that forces X 1 and X 2 to be integer (B 5 and B 6 in my solution). Also, in the "Options" panel select Integer Optimality (\%) to zero. The solution shown I changed the first constraint to be <= 220.5 instead of 220 in order to make the optimal solution non-integer. Adding the additional constraint equation to the Solver panel produces the same integer solution as the original problem.

Problem 2

You are in charge of a civil engineering pavement company that makes concrete for various highway projects in the State of Virginia. Your company has various sites across the state to take sand and gravel materials necessary to make a concrete mix used in pavement projects. For a construction job near Roanoke, Virginia there are two sites to extract sand and gravel raw materials: a) Starkey and b) Laymantown. Due to variations in the soil properties at each site, the raw material from Starkey produces 43% sand and 57% gravel. Material from Laymantown produces 55% sand and 45% gravel.
The construction job in Roanoke requires a minimum of 85,000 cubic meters of sand and gravel mix. The pavement design engineer requires a minimum of 25,000 cubic meters of sand and no more than 38,000 cubic meters of gravel in making the concrete mix for this highway job. The unit delivery costs (includes the cost of raw materials and the hauling costs) are $\$ 120$ and $\$ 130$ per cubic meter from Starkey and Laymantown, respectively.
For each task and subtask below, use screen captures to show me how is that the analysis is done.

Task 1:

Formulate this problem as a linear programming problem. Clearly state the objective function and the constraint equations of the problem.

Task 2:

Solve the problem graphically. Plot the lines of constant values of the objective function.
Task 3:

Solver cannot find a feasible solution (you can show that graphically as well). However, it offers the closest solution by allocating all the production to the Laymantown site. Note that the solution offered falls short by 556 cubic meters of material.

By relaxing the total material constraint from $>=85,000$ to say $>=83,000$ we can find an optimal solution that involves hauling material from both side. The new solution is how below.

Task 4:

Suppose that the engineer decides to change the specification of the concrete mix to achieve higher durability against repeated vehicle load cycles. A minimum of 23,000 cubic meters of sand are needed for the job and no less than 51,000 cubic meters of gravel. The solution is shown below. Note that all the allocation is made to site 1 (Starkey),

Mixing Problem				
Decision Variables				
X1	85,000.0		Starkey	
X2	-		Laymantown	Soveramenees
Objective Function				$\begin{aligned} & \text { Set Objective: } \\ & \text { To: } \quad \text { M } \$ \$ 10 \\ & \hline \end{aligned}$
$120 x_{1}+130 x_{2}$	10,200,000.0			
Constraint Equations	Formula			neem
$\mathrm{X} 1+\mathrm{X} 2>=85000$	85,000.0	$>=$	85000	One
0.43 X1 + 0.55 X2>=23000	36,550.0	$>=$	23000	, ormer
$0.57 \mathrm{X} 1+0.45 \mathrm{X} 2<=51000$	48,450.0	<=	51000	发
$\begin{aligned} & x 1>=0 \\ & \times 2>=0 \end{aligned}$	$85,000.0$	>=	0	

Problem 3

Solve the Osaka Bay problem described in class with the following modifications:
a) Fuji ships carry 700 metric tons of cargo and require a crew of 2.
b) Haneda ships carry 1000 metric tons of cargo and require a crew of 3

Task 4:

Solve the problem using Excel Solver. Comment on the results obtained in Tasks 2 and 3.
The solution to the revised problem is shown below. Note that the solution, while optimal, does not produce integer values for X1 and X2. Therefore, force the integer solution by adding an additional constraint equation. The integer solution is also presented below.

Optimal solution with integer values for X 1 and X 2 (shown below).

Revised Problem for Osaka Bay			
Decision Variables		Number of Ships Type 1 Number of Ships Type 2	
x1	39.00		
x2	34.00		
Objective Function			
$700 \times 1+1000 \times 2$	61300.00		
			Stas
Constraint Equations			
$2 \times 1+3 \times 2<=180$	180.00		$\frac{\text { Resatall }}{\text { Loutseme }}$
x1 $<=40$	39.00	40	
$\times 2<=60$	34.00	60	Satrention
$x 1>=0$	39.00	0	为
$\times 2>=0$	34.00	0	cose Sove

Problem 4

Solve the lake pollution control problem described in class with the following attributes:

Pollution Source	Loading (kg/year)	Unit Cost of Removal (\$/kg)	Minimum Removal	
River A	17,400	36	7,000	
River B	16,700	38	8,000	
River C	34,500	32	$1 / 2$ of River A removal	
Airport	25,600	16,500	105 without treatment plant	$1 / 2$ of River B removal
City	110,700			$1 / 2$ of City's original loading
Totals				

Task 2:

Solve the water pollution control problem if the total desired pollution removal is $45,000 \mathrm{~kg}$. In solving the new problem, assume the city invested in new pollution treatment plant at a cost of $\$ 30,000,000$. Find out the total cost of pollution removal for this task. Task 3:

Solution with City cost with no treatment plant

Solution with City cost with treatment plant

Note that we save 635,000 per year. The treatment plant is $\mathbf{\$ 3 0}$ million. The payback period is 47 years (assuming no demand increase).

Task 3

Using the solution on Task 2, suppose a new (stricter) environmental law takes effect and It is desired to reduce the total pollution discharge to the lake to $55,000 \mathrm{~kg} / \mathrm{yr}$ instead. Estimate the cost of removal and the amounts to be removed from each pollution source. Contrast the removal cost in Tasks 2 and 3. Comment.

