Assignment 3: Optimization and Excel Solver

Date Due: Solution

Instructor: Trani

Spring 2020

Show all your work including code and results of your computation in the spreadsheet as screen captures.

Problem 1

A company develops the following Linear Programming problem to minimize the cost of producing two types of steel pins commonly used the construction industry. The objective function is the profit for the company (in dollars per production batch). The company would like to maximize the profit in solving this problem.

Objective Maximize $Z = 60X_1 + 50 X_2$

Subject to

 $\begin{array}{l} X_2 + X_1 <= 220 \\ 0.1 \ X_1 - 0.12 \ X_2 >= 0 \\ X_1 - X_2 <= 120 \\ X_1, \ X_2 >= 0 \quad \mbox{ (non-negativity conditions)} \end{array}$

Task 2

Solve the problem using Excel Solver. State the exact solution found by Excel for the two decision variables. State the value of the objective function for the optimal solution found.

Maximization Problem				
				Solver Parameters
Decision Variables				Set Objective: \$8\$10
				To: • Max · Min · Value Of: 0
X1	170		Steel Pin 1	By Changing Variable Cells: \$8\$5:\$8\$6
X2	50		Steel Pin 2	Subject to the Constraints: \$8\$14 <= \$D\$14
				S8515 >= 30515 S8516 <= 50516 S8517 >= 50517 S8518 >= 50518
Objective Function				Delete
				Reset All Load/Save
60 X1 + 50 X2	12700			Make Unconstrained Variables Non-Negative
				Select a Solving Method: Simplex LP Options
Constraint Equations				Solving Method Select the CRC Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are non-
	Formula			and select the evolutionary engine for solver problems that are non- smooth.
X1 + X2 <= 220	220	<=	220	Close Solve
0.1 X1 - 0.12 X2 >= 0	11	>=	0	1
X1 - X2 <= 120	120	<=	120	
x1 >= 0	170	>=	0	
x2 >= 0	50	>=	0	

Task 3

Since number of pins to be produced needs to be an integer solution, solve the problem with Excel to obtain an integer solution. State the value of the objective function for the optimal solution found.

The solution is integer for X1 and X2. However, in Solver you can **force an integer solution** by adding another constraint equation in the Solver panel that forces X1 and X2 to be integer (B5 and B6 in my solution). Also, in the "Options" panel select Integer Optimality (%) to zero. The solution shown I changed the first constraint to be <= 220.5 instead of 220 in order to make the optimal solution non-integer. Adding the additional constraint equation to the Solver panel produces the same integer solution as the original problem.

Maximization Problem				
Decision Variables				
X1	170		Steel Pin 1	
X2	50		Steel Pin 2	
				Solver Parameters
Objective Function				Set Objective: \$B\$10
				By Changing Variable Cells: \$8\$5:\$8\$6
60 X1 + 50 X2	12700			Subject to the Constraints:
				\$8\$14 <= \$D\$14 Add \$8\$15 >= \$D\$15 \$8\$16 <= \$D\$16
Constraint Equations				\$8\$17 >= \$D\$17 Change \$8\$18 >= \$D\$18 Delete
	Formula			Reset All
X1 + X2 <= 220	220	<=	220.5	Make Unconstrained Variables Non-Negative
$0.1 \times 1 - 0.12 \times 2 >= 0$	11	>=	0	Select a Solving Method: Simplex LP Options
X1 - X2 <= 120	120	<=	120	Solving Method Select the GRG Nonlinear engine for Solver Problems that are smooth
x1 >= 0	170	>=	0	nonlinear. Select the LP Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are non- smooth.
x2 >= 0	50	>=	0	Close Solve

Problem 2

You are in charge of a civil engineering pavement company that makes concrete for various highway projects in the State of Virginia. Your company has various sites across the state to take sand and gravel materials necessary to make a concrete mix used in pavement projects. For a construction job near Roanoke, Virginia there are two sites to extract sand and gravel raw materials: a) Starkey and b) Laymantown. Due to variations in the soil properties at each site, the raw material from Starkey produces 43% sand and 57% gravel. Material from Laymantown produces 55% sand and 45% gravel.

The construction job in Roanoke requires a minimum of 85,000 cubic meters of sand and gravel mix. The pavement design engineer requires a minimum of 25,000 cubic meters of sand and no more than 38,000 cubic meters of gravel in making the concrete mix for this highway job. The unit delivery costs (includes the cost of raw materials and the hauling costs) are \$120 and \$130 per cubic meter from Starkey and Laymantown, respectively.

For each task and subtask below, use screen captures to show me how is that the analysis is done.

Task 1:

Formulate this problem as a linear programming problem. Clearly state the objective function and the constraint equations of the problem.

Task 2:

Solve the problem graphically. Plot the lines of constant values of the objective function.

Task 3:

Mixing Problem			
Decision Variables			
X1 X2	- 84,444.4		Starkey .aymantown
Objective Eurotion		Solver Resu	
Objective Function 120 X1 + 130 X2	10,977,777.8	Keep Solver Solution Restore Original Values	Reports Feasibility Feasibility-Bound:
Constraint Equations		Return to Solver Parameters Dialo Save Scenario Can	
	Formula		
X1 + X2 >= 85000	84,444.4	>=	85000
0.43 X1 + 0.55 X2 >= 25000	46,444.4	>=	25000
0.57 X1 + 0.45 X2 <= 38000	38,000.0	<=	38000
x1 >= 0	-	>=	0
x2 >= 0	84,444.4	>=	0

Solver cannot find a feasible solution (you can show that graphically as well). However, it offers the closest solution by allocating all the production to the Laymantown site. Note that the solution offered falls short by 556 cubic meters of material.

By relaxing the total material constraint from >=85,000 to say >=83,000 we can find an optimal solution that involves hauling material from both side. The new solution is how below.

Mixing Problem					
Decision Variables				Solver Parameters	
				Set Objective: \$8\$10	_
V1	E 416 7		Starkov	To: Max • Min Value Of: 0	
X1	5,416.7		Starkey	\$B\$5:\$B\$6	_
X2	77,583.3		Laymantown	Subject to the Constraints: \$B\$14 >= \$D\$14	
				\$8\$15 >= \$D\$15 \$8\$16 <= \$D\$16	Add Change
Objective Function				\$8\$17 >= \$D\$17 \$8\$18 >= \$D\$18	Delete
					Reset All
120 X1 + 130 X2	10,735,833.3				Load/Save
	20,700,000			Make Unconstrained Variables Non-Negative Select a Solving Method: Simplex LP	
					Options
Constraint Equations				Solving Method Select the GRG Nonlinear engine for Solver Problems that a	are smooth
	Formula			nonlinear. Select the LP Simplex engine for linear Solver Pr and select the Evolutionary engine for Solver problems tha smooth.	roblems, it are non-
X1 + X2 >= 85000	83,000.0	>=	83000	Close	Solve
0.43 X1 + 0.55 X2 >= 25000	45,000.0	>=	25000		
0.57 X1 + 0.45 X2 <= 38000	38,000.0	<=	38000		
x1 >= 0	5,416.7	>=	0		
x2 >= 0	77,583.3		0		

Task 4:

Suppose that the engineer decides to change the specification of the concrete mix to achieve higher durability against repeated vehicle load cycles. A minimum of 23,000 cubic meters of sand are needed for the job and no less than 51,000 cubic meters of gravel. The solution is shown below. Note that all the allocation is made to site 1 (Starkey).

Mixing Problem					
Decision Variables					
X1	85,000.0		Starkey		
X2	-		Laymantown	Solver Parameters	
				Set Objective: \$8\$10	_
Objective Function				To: Max • Min Value Of: By Changing Variable Cells:	
				SB\$5:\$B\$6	-
120 X1 + 130 X2	10,200,000.0			Subject to the Constraints: \$B\$14 >= \$D\$14	Add
120 XI + 130 X2	10,200,000.0			\$8515 >= \$D\$15 \$8516 <= \$D\$16 \$8517 >= \$D\$17	Change
				SB\$17 >= SD\$17 SB\$18 >= SD\$18	Delete
Constraint Equations					Reset All
	Formula				Load/Save
X1 + X2 >= 85000	85,000.0	>=	85000	Make Unconstrained Variables Non-Negative Select a Solving Method: Simplex LP	
0.43 X1 + 0.55 X2 >= 23000	36,550.0		23000	Select a Solving Method: Simplex LP	Options
$0.57 \times 1 + 0.45 \times 2 <= 51000$	48,450.0		51000	Select the GRG Nonlinear engine for Solver Problems th nonlinear. Select the LP Simplex engine for linear Solve and select the Evolutionary engine for Solver problems	er Problems,
$x_1 >= 0$	85,000.0		0	and select the Evolutionary engine for solver problems smooth.	that are non-
	35,000.0		0	Close	Solve
x2 >= 0		>=			

Problem 3

Solve the Osaka Bay problem described in class with the following modifications:

- a) Fuji ships carry 700 metric tons of cargo and require a crew of 2.
- b) Haneda ships carry 1000 metric tons of cargo and require a crew of 3

Task 4:

Solve the problem using Excel Solver. Comment on the results obtained in Tasks 2 and 3.

The solution to the revised problem is shown below. Note that the solution, while optimal, does not produce integer values for X1 and X2. Therefore, force the integer solution by adding an additional constraint equation. The integer solution is also presented below.

40.00 33.33				
(1222.22)			Solver Parameters Set Objective: 58510 To: Max Min Value Of: 0 By Changing Variable Cells: 58553856	-
01333.33			Subject to the Constraints: \$8514 <= \$D\$14 \$8515 <= \$D\$15 \$8516 <= \$D\$16 \$8517 >= \$D\$16 \$8517 >= \$D\$17	Add Change
Formula			\$8\$18 >= \$D\$18	Delete Reset All
40.00 33.33 40.00	<= <= >=	180 40 60 0 0	nonlinear. Select the LP Simplex engine for linear Solve	er Problems.
	33.33 61333.33 Formula 180.00 40.00 33.33 40.00	33.33 61333.33	33.33 Number of Si 61333.33	33.33 Number of Ships Type 2 33.33 Solver Parameter 61333.33 Solver Parameter 600 Solver Parameter 90 Solver Parameter 90 Solver Parameter 91 Solver Parameter 92 Solver Parameter 93 Solver Parameter 90 Solver Parameter 91 Solver Parameter 92 Solver Parameter

Optimal solution with integer values for X1 and X2 (shown below).

Revised Problem for O	saka Bay				
Decision Variables					
x1	39.00		Number of S		
x2	34.00		Number of S	hips Type 2 Solver Parameters	
Objective Function				Set Objective: \$8\$10 To: • Max • Min • Value Of: • By Changing Variable Cells:	
700 x1 + 1000 x2	61300.00			\$855:5856 Subject to the Constraints: \$8514 <= \$D\$14 \$8515 <= \$D\$15	Add
Constraint Equations	Formula			58516 <= 5D516 58517 >= 5D517 58518 >= 5D518 5855-5856 = integer	Change Delete Reset All
2 x1 + 3 x2 <= 180	Formula		190		Load/Save
$2 \times 1 + 3 \times 2 <= 180$ $\times 1 <= 40$	180.00 39.00		180 40	Make Unconstrained Variables Non-Negative Select a Solving Method: Simplex LP	Options
x2 <= 60	34.00		60	Solving Method Select the GRG Nonlinear engine for Solver Problems t nonlinear. Select the LP Simplex engine for linear Solv	er Problems,
x1 >= 0	39.00		0	and select the Evolutionary engine for Solver problem smooth.	s that are non-
x2 >= 0	34.00	>=	0	Close	Solve

Problem 4

Pollution Source	Loading (kg/year)	Unit Cost of Removal (\$/kg)	Minimum Removal
River A	17,400	36	7,000
River B	16,700	38	8,000
River C	34,500	32	1/2 of River A removal
Airport	25,600	56	1/2 of River B removal
City	16,500	105 without treatment plant 30 with treatment plant	1/2 of City's original loading
Totals	110,700		

Solve the lake pollution control problem described in class with the following attributes:

Task 2:

Solve the water pollution control problem if the total desired pollution removal is 45,000 kg. In solving the new problem, assume the city invested in new pollution treatment plant at a cost of \$30,000,000. Find out the total cost of pollution removal for this task. Task 3:

‡ × √ fx		14 · · · ·	-		Solver Parame	iters
A	В	С	D	Set Objectiv		
Revised Pol	lution Control Problem			те: и	Aax ○ Min ○ Value C g Variable Cells:	H. 0
				SC\$9.5C5		-
	(1	RiverA		Subject to t	he Constraints:	
	(2	RiverB		SC\$18 >= SC\$19 <=	\$E\$18 \$E\$19	Add
	(3	RiverC		SCS20 <- SCS21 <-	\$E\$20 \$E\$21	Change
	(4 (5	Airport		SCS22 <= SCS23 <= SCS24 >=	5E523 5E524	Delete
^	.5	City		SCS18 >> SCS19 <> SCS20 <> SCS21 <> SCS22 <> SCS23 <> SCS24 >> SCS25 >> SCS26 >> SCS26 >> SCS27 >>	\$E\$25 \$E\$26	Reset All
Decision X	(1	7000		SC\$27 >= SC\$28 >=	- \$E\$27 - \$E\$28	Load/Save
Variables X	(2	8000		🖸 Make U	nconstrained Variables Non-	Negative
	(3	17750		Select a Sol	ving Method: Simplex LP	Options
	(4	4000		Solving Me	thed	
×	(5	8250		Select the incollinear.	thed IRG Nonlinear engine for Solve Select the LP Simplex engine for the Evolutionary engine for Sol	r Problems that are smooth ir linear Solver Problems,
Objective N	linimization		-	and select smooth.	the Evolutionary engine for sor	ver problems that are non-
	6X1+38X2+32X3+56X4+105X5	2,214,250.00	\$/vr			
-	0.1+30.2+32.3+30.4+103.5	2,214,200.00	<i>\\</i> /y1.			Close Solve
Subject to	(1+X2+X3+X4+X5	45000	>=		45000	
×	(1<= 17400	7000			17400	
	2<=16700	8000			16700	
	(3<=34500	17750			34500	
	4<=25600	4000			25600	
	(5<= 16500 (1>= 7000	8250 7000			16500 7000	
	(2>=8000	8000			8000	
	$(3 - 1/2 \times 1) = 0$	14250			0	
	$(4 - 1/2 \times 2) = 0$		>=		0	
>	(5>= 16500/2	8250	>=		8250	
Variables	ollution Control Problem	RiverA				
Names	X2	RiverB				
Names	X3	RiverC				
	X3 X4					
	X5	Airport City				
	×3	City				
Decision	X1			7000		
Variables	X2			8000		
Variables	X3			9500		
	X4			4000		
	X5			.6500		
	<u>,,,</u>		- 1			
Objective	Minimization					
2 Sjeen e	36X1+38X2+32X3+56X4	+3072 4	,579,0	00.00	\$/wr	
	3071730727327373084	+30A3 I	,373,0	00.00	ψ/ γ1.	
Subject to	X1+X2+X3+X4+X5			5000	~-	45000
Subject to	X1 + X2 + X3 + X4 + X5 X1 <= 17400		4	7000		17400
	X1<= 17400 X2<=16700					
				8000		16700
	X3<=34500			9500		34500
	X4<=25600			4000		25600
	X5<= 16500		1	.6500		16500
	X1>= 7000			7000		7000
	X2>=8000			8000		8000
	X3 - 1/2 X1 >= 0			6000		0
	X4 - 1/2 X2 >= 0			0	>=	0
	X5>= 16500/2			6500		8250

Solution with City cost with no treatment plant

Solution with City cost with treatment plant

Note that we save 635,000 per year. The treatment plant is \$30 million. The payback period is 47 years (assuming no demand increase).

Task 3

Using the solution on Task 2, suppose a new (stricter) environmental law takes effect and It is desired to reduce the total pollution discharge to the lake to 55,000 kg/yr instead. Estimate the cost of removal and the amounts to be removed from each pollution source. Contrast the removal cost in Tasks 2 and 3. Comment.

\$ × ✓ J	fx			OOO Solve	r Parameters	
А	В	С		Set Objective: \$C\$16		_
Revised P	ollution Control Problem			To: 🔿 Max 😐 Min	Value Of: 0	
				By Changing Variable Cells:		
Variables	X1	RiverA		\$C\$9:\$C\$13		_
				Subject to the Constraints:		
Names	X2	RiverB		\$C\$18 >= \$E\$18 \$C\$19 <= \$E\$19		Add
	X3	RiverC		\$C\$20 <= \$E\$20		Change
	X4	Airport		\$C\$21 <= \$E\$21 \$C\$22 <= \$E\$22		
	X5	City	\$C\$23 <= \$E\$23 \$C\$24 >= \$E\$24			Delete
				\$C\$25 >= \$E\$25 \$C\$26 >= \$E\$26		Reset All
Decision	X1	7000		\$C\$27 >= \$E\$27		
Variables	X2	8000		\$C\$28 >= \$E\$28		Load/Save
variables	X3	27750		🗹 Make Unconstrained Varia	ables Non-Negative	
	X4	4000		Select a Solving Method: S	implex LP 💌	Options
				Solving Method		
	X5	8250		Select the GRG Nonlinear engin		
				nonlinear. Select the LP Simple and select the Evolutionary eng		
Objective	Minimization			smooth.		
	36X1+38X2+32X3+56X4+105X5	2,534,250.00	\$/yr.			
		··			Close	Solve
Subject to	X1+X2+X3+X4+X5	55000	>=	5500	00	
	X1<= 17400	7000	<=	1740	00	
	X2<=16700	8000	<=	1670	00	
	X3<=34500	27750	<=	3450	00	
	X4<=25600	4000	<=	2560	00	
	X5<= 16500	8250	<=	1650	00	
	X1>= 7000	7000	>=	700	00	
	X2>=8000	8000		800		
	X3 - 1/2 X1 >= 0	24250			0	
	X4 - 1/2 X2 >= 0		>=		0	
	X4 - 1/2 X2 >= 0 X5>= 16500/2	8250		825	-	
	AJ/- 10300/2	8230	/-	82.		