CEE 3804 Assignment 2 Solution

Problem 1: (Total of 5 points)

a) Early microchips had a modest number of transistors. Name the number of transistors in the Intel 4004.

Solution/answer: The Intel 4004, which is often considered one of the first microprocessors, had a total of 2,250 transistors.

b) Considering the number of transistors in the Intel 4004 and the Apple M2 chip, explain if "Moore's Law" still applies.

Solution/answer: Intel 4004 was introduced in 1971 with 2,250 transistors. Apple M2 chip has 20 billion that was introduced in 2022. Moore's law says that the number of chip transistors doubles every 2 years. Therefore:

2022-1971 = 51 + 1(consider the year 1971) = 52 52/2 = 26

2,250 * 2^25 = 75,497,472,000 > 20,000,000,000 (If we consider the year 2021 when M2 was introduced)

2,250 * 2^26 = 150,994,944,000 > 20,000,000,000 (If we consider the year 2023 when M2 was introduced)

The growth rate is much more than what Moore's law used to predict.

c) DENDRAL was an early artificial intelligence program developed in 1965. Name two of the three developers of the software.

Solution/answer: Joshua Lederberg and Carl Djerassi.

d) The Atari 400 was an early game computer. Name the year of introduction of the Atari 400.

Solution/answer: 1979

e) Briefly explain the difference between a byte and a bit.

Solution/answer: Bit (Binary Digit): A bit is the smallest unit of digital data and represents a single binary value, which can be either 0 or 1. It's the basic building block of all digital communication and computing. Bits are used to represent the most basic form of data and are essential for encoding and transmitting information.

Byte: A byte is a group of 8 bits. It's a larger unit of data that is often used to represent a character, such as a letter, number, or symbol. Bytes are used to encode more complex data, such as text, images, and sound.

Note: Any reasonable and similar answer gets full credit.

f) In 1984, Apple introduced the Macintosh computer. Name the microprocessor used and two novel features of the computer.

Solution/answer: Microprocessor: Motorola 68000 microprocessor.

Features: first successful mouse-driven computer and equipped with a graphical user interface.

g) Name the fastest supercomputer today and the number of CPU cores.

Solution/answer: One of the fastest supercomputers is the Fugaku supercomputer, developed by RIKEN and Fujitsu in Japan. Fugaku is capable of performing over 442 petaflops (quadrillions of calculations per second).

Fugaku consists of a massive number of CPU cores. It is composed of various types of processors, including ARM-based A64FX CPUs. The total number of CPU cores in Fugaku is approximately 7.3 million cores (reference: Wikipedia).

h) Motorola introduced the 68000 microprocessor for graphic applications. State the year and the number of transistors of the Motorola 68000.

Solution/answer: Year: 1979

Number of transistors: approximately 68,000

i) In the year 1981, IBM introduced the IBM-PC (model 5150). Name the microprocessor used in the early IBM-PC computer and the operating system used by the IBM-PC.

Solution/answer: IBM 5150 was equipped with 4.77 MHz Intel 8088 microprocessor and used Microsoft's MS-DOS operating system.

j) Name the year when Microsoft introduces the Windows 3.0 operating system. Name one important feature of the OS.

Solution/answer: Year: 1990

Feature: capability to run multiple programs, simultaneously.

Problem 2: (total of 3 Points)

a) Number and model of CPU processor used

Solution/answer: Quad-Core Intel Core i5

b) CPU clock speed

Solution/answer: 2 GHz

c) Computer Random Access Memory (RAM) size

Solution/answer: 16 GB 3733 MHz LPDDR4X

d) Graphics processing unit if any (GPU)

Solution/answer: None (it depends on your machine. For example, Apple M1 and M2 come with GPU).

e) How many bytes does your computer hard drive have to store information?

Solution/answer: First, get the capacity of your hard drive (H.D.D or S.S.D) in GB. Then use the below formula:

499.96 GB * 1,073,741,824 bytes per GB = 536,827,962,327

Problem 3: (total of 6 Points)

f) Concatenate the Name of the dam and the County where the dam is located. Create a new column with the concatenated text.

Solution/answer:

0	
Concatenated Dam Name and Co	ounty
PATILLAS PATILLAS	
LOCO YAUCO	
CARITE GUAYAMA	
ANTONIO LUCCHETTI YAUCO	
GUAYABAL JUANA DIAZ	
TOA VACA DAM VILLALBA	
GARZAS ADJUNTAS	
GUINEO VILLALBA	
PRIETO MARICAO	
CIDRA CIDRA	
ADJUNTAS ADJUNTAS	
PELLEJAS ADJUNTAS	
MATRULLAS OROCOVIS	
GUAYO ADJUNTAS	
YAHUECAS ADJUNTAS	
VIVI UTUADO	
CAONILLAS UTUADO	
STRUCTURE 3 AÑASCO	
LOIZA SAN JUAN	
DOS BOCAS ARECIBO	
LA PLATA TOA ALTA	
LAS CURIAS RIO PIEDRAS	
GUAJATACA QUEBRADILLAS	
KAHANA DAM MAUI	
NUUANU DAM NO. 4 HONOLULU	
KANEOHE DAM HONOLULU	
RESERVOIR 510 HONOLULU	
RESERVOIR 545A HONOLULU	
WAHIAWA DAM HONOLULU	
ALEXANDER KAUAI	
ANZALDUAS DIVERSION HIDALGO	
DELTA LAKE UNIT NO 2 LEVEE HIDALGO	
FALCON STARR	
STRUCTURE 79 LEE	
G-90 HIGHLANDS	
LAKE CASA BLANCA DAM WEBB	

Note: A few dams do not have either a Name or a County.

g) Create a new column in the spreadsheet to assign a size attribute for each dam according to the parameters shown in the table below. Use Excel to classify the dam's normal storage according to the following table. In your answer, show me an example of the Excel formula(s).

Solution/answer:

D E	F	G	н	1	J K	L	M	N	0	Р
tude County H	right N	Aax Storage No	rmal Storage Su	aface Area Dra	ain Area Hazard	State	Year		Concatenated Dam Name and County	New Size Catego
18.021 PATILLAS	147	13797	11029	367	25 H	PR	1914		PATILLAS PATILLAS	Large
18.0446 YAUCO	74	2059	1039	69	8 H	PR	1951		LOCO YAUCO	Small
18.0782 GUAYAMA	104	14992	8953	333	8 H	PR	1913		CARITE GUAYAMA	Large
18.0831 YAUCO	175	17595	11575	266	17 H	PR	1952		ANTONIO LUCCHETTI YAUCO	Large
18.0888 JUANA DIAZ	130	5933	4768	373	21 H	PR	1913		GUAYABAL JUANA DIAZ	Medium
18.1033 VILLALBA	215	54875	50620	836	22 H	PR	1972		TOA VACA DAM VILLALBA	Extra Large
18.133 ADJUNTAS	201	4873	4073	108	6 H	PR	1943		GARZAS ADJUNTAS	Medium
18.1616 VILLALBA	125	1954	1635	77	2 H	PR	1931		GUINEO VILLALBA	Small
18.18327 MARICAO	98	565	285	20	10 H	PR	1955		PRIETO MARICAO	Small
18.198 CIDRA	115	10800	5300	268	8 H	PR	1946		CIDRA CIDRA	Medium
18.2016 ADJUNTAS	80	760	465	15	15 H	PR	1950		ADJUNTAS ADJUNTAS	Small
18.2116 ADJUNTAS	50	280	108	5	9 H	PR	1950		PELLEJAS ADJUNTAS	Small
18.2116 OROCOVIS	120	2879	2294	77	4 H	PR	1934		MATRULLAS OROCOVIS	Small
18.2133 ADJUNTAS	190	14515	11527	285	10 H	PR	1956		GUAYO ADJUNTAS	Large
18.2193 ADJUNTAS	90	1300	470	55	17 H	PR	1956		YAHUEGAS ADJUNTAS	Small
18.233 UTUADO	85	174	71	8	7 H	PR	1950		VIVI UTUADO	Small
18.2716 UTUADO	239	54970	35182	700	50 H	PR	1948		CAONILLAS UTUADO	Extra Large
18.3011 AÑASCO	50	395	334	7	1 H	PR	1978		STRUCTURE 3 AÑASCO	Small
18.329 SAN JUAN	95	16300	9800	175	208 H	PR	1954		LOIZA SAN JUAN	Large
18.335 ARECIBO	188	39380	19800	634	170 H	PR	1942		DOS BOCAS ARECIBO	Extra Large
18.3416 TOA ALTA	131	28000	13700	560	181 H	PR	1974		LA PLATA TOA ALTA	Large
18.3446 RIO PIEDRAS	75	1425	1120	48	1 H	PR	1946		LAS CURIAS RIO PIEDRAS	Small
18.4 QUEBRADILL	120	46655	30055	1000	31 H	PR	1928		GUAIATACA QUEBRADILLAS	Extra Large
20.9792 MAUI	58	225	59	6	4.53 H	H	1984		KAHANA DAM MAUI	Small
21.355 HONOLULU	73	3600	242	25	2 H	H	1910		NUUANU DAM NO. 4 HONOLULU	Small
21.395 HONOLULU	82	4500	260	26	3 H	H	1980		KANEOHE DAM HONOLULU	Small
21.4267 HONOLULU	57	227	227	12	2 5	H	1935		RESERVOIR 510 HONOLULU	Small
21.44 HONOLULU	56	140	140	8	0.53 H	H	1920		RESERVOIR 545A HONOLULU	Small
21.5 HONOLULU	98	9200	7761	302	16.9 H	H	1906		WAHIAWA DAM HONOLULU	Large
21.96 KAUAI	119	2540	1070	31.5	2.86 H	H	1931		ALEXANDER KAUAI	Small
26.137 HIDALGO	23	16400	10340	1287	176112 H	TX	1960		ANZALDUAS DIVERSION HIDALGO	Large
26.43 HIDALGO	16	22545	17788	1227	3.01 S	TX	1939		DELTA LAKE UNIT NO 2 LEVEE HIDALGO	Extra Large
26.559 STARR	175	3177000	2668000	115400	159270 H	TX	1953		FALCON STARR	Extra Large
26.7255 LEE	31	32266	26404	800	839 H	FL	1965		STRUCTURE 79 LEE	Extra Large
27.34 HIGHLANDS	29	44676	33324	3662	44 H	FL	1962		G-90 HIGHLANDS	Extra Large
27.5333 WEBB	78	58600	20000	1656	117 H	TX	1946		LAKE CASA BLANCA DAM WEBB	Extra Large

 f_x = IF(H2 < 3500, "Small", IF(AND(H2 >= 3501, H2 < 6000), "Medium", IF(AND(H2 >= 6001, H2 < 16000), "Large", "Extra Large")))

h) Count how many dams belong to each of the new size classes using the Excel COUNT or COUNTA commands.

Solution/answer:

fx	=COUNTIF(P2:P91659, "Small")					
N	0	Р	Q	R	S	Т
	Concatenated Dam Name and County	New Size Category	Count "Small"	Count "Medium"	Count "Large"	Count "Extra Large"
	PATILLAS PATILLAS	Large	88907	343	770	1638

i) Use Excel conditional formatting to color code the values based on the dam size category. Assign red to Extra Large, Blue to Large, Yellow to Medium, and Green to Small.

Solution/answer:

New Size Category	C
Large	
Small	
Large	
Large	
Medium	
Extra Large	
Medium	
Small	
Small	
Medium	
Small	
Small	
Small	
Large	
Small	
Small	
Extra Large	
Small	
Large	
Extra Large	
Large	
Small	
Extra Large	
Small	
Large	_
Small	_
Large	-
Extra Large	
Extra Large	
	_

Problem 4: (total of 6 Points)

a) The bank offers loans at 7.5% per year over 12 years. Find the monthly payments to pay back the loan for 40 vehicles.

Solution/answer:

E2 = D2/12 C2 = B2*12 G2 = A2*F2

b) Estimate the total amount to be paid to the bank including interest.

Solution/answer:

Note: 144 = 12 years * 12 months for each year

The amount paid to the bank after 12 years is 52% (26.014 million) more than the original loan.