Assignment 5: VBA Programming

Solution

Date Due: March 5, 2015
Instructor: Trani

Problem 1

a) VBA Program \& Excel interface
'-------------Data validation----------------
'A message box is output if the K value the user inputs is either below ' 0.03 or greater than 0.32 . Also, another if-statements check wheter the 'variable alpha is out of range ($0-90$ degrees).
If ($K<0.03$) Then
MsgBox ("K value out of range. Valid K range [0.03-0.32]")
Q = "Out of Range"
Range("C17").Select
ActiveCell.Value $=$ Q
Elself ($K>0.32$) Then
MsgBox ("K value out of range. Valid K range [0.03-0.32]")
$\mathrm{Q}=$ "Out of Range"
Range("C17").Select
ActiveCell.Value $=\mathrm{Q}$
Elself (alphaDeg < 0) Then
MsgBox ("Alpha value out of range. Valid alpha range [0-90 degrees]")
Q = "Out of Range"
Range("C17").Select
ActiveCell.Value $=\mathrm{Q}$
Elself (alphaDeg > 90) Then
MsgBox ("Alpha value out of range. Valid alpha range [0-90 degrees]")
$\mathrm{Q}=$ "Out of Range"
Range("C17").Select
ActiveCell.Value $=\mathrm{Q}$
If none of the data ranges were violated, then the following calculation is made ' and the output is shown in the selected cell.
Else
$\mathrm{Q}=\mathrm{K} *(\mathrm{~g} /$ gamma $) \wedge 0.5^{*}(((\mathrm{Hb}) \wedge 2.5) *(\operatorname{Sin}(2$ * alpha))) / (16*(s-1)*ap)
Range("C17").Select
ActiveCell.Value $=$ Q
End If

End Sub

b) Data Validation

```
--------------Data validation----------------
A message box is output if the K}\mathrm{ value the user inputs is either below
'0.03 or greater than 0.32. Also, another if-statements check wheter the
'variable alpha is out of range (0-90 degrees).
If (K<0.03) Then
    MsgBox ("K value out of range. Valid K range [0.03-0.32]")
    Q = "Out of Range"
    Range("C17").Select
    ActiveCell.Value = Q
Elself (K>0.32) Then
    MsgBox ("K value out of range. Valid K range [0.03-0.32]")
    Q = "Out of Range"
    Range("C17").Select
    ActiveCell.Value =Q
Elself (alphaDeg < 0) Then
    MsgBox ("Alpha value out of range. Valid alpha range [0-90 degrees]")
    Q = "Out of Range"
    Range("C17").Select
    ActiveCell.Value = Q
Elself (alphaDeg > 90) Then
    MsgBox ("Alpha value out of range. Valid alpha range [0-90 degrees]")
    Q = "Out of Range"
    Range("C17").Select
    ActiveCell.Value = Q
'If none of the data ranges were violated, then the following calculation is made ' and the output is shown in the selected cell.
Else
    Q = K * (g / gamma) ^ 0.5 * (((Hb) ^ 2.5) * (Sin(2 * alpha))) / (16 * (s - 1) * ap)
    Range("C17").Select
    ActiveCell.Value = Q
End If
```

This part of the code checks for both alpha and K , and warns the user in case the established valid range of values is violated.
Note: Can also use the Data Validation built in in Excel

Problem 2

a) VBA Code \& Interface

'---------Program Variable Declaration -------------
Option Explicit
Dim A As Single
Dim B As Single
Dim D As Single
Dim R As Single
Dim velocity As Single
Dim i As Single
Dim CellNumber As String
Sub RailResistance0
'This program estimates the basic resistance for the high-speed train for a
'range of velocities in which the train operates
'
' Programmer: Moises Bobadilla
', Date: March/03/2015
'Inputs:
'
'A = 8.20200 [kN]
'B = 0.10656 [kN s/m]
'C = 0.01193 [kN s-s/m-m]
'v = velocity [m/s]
'Output:
'Rbasic = Train resistance [kN]
Sheets("Problem 2").Select 'Opens spreadsheet to read/write
'--------------Variable assignment----------------
Range("C2").Select
A = ActiveCell.Value
Range("C3").Select
B = ActiveCell.Value
Range("C4").Select
D = ActiveCell.Value

```
'---------------Table Headers-------------------
Range("B10").Select
ActiveCell.Value = "Velocity (m/s)"
Range("B10").Font.Bold = True
Range("C10").Select
ActiveCell.Value = "Range (kN)"
Range("C10").Font.Bold = True
'----Loop to estimate resistance at different speeds----
velocity = 0
For i = 0 To 85
    CelINumber = "B" & (i + 11)
    Range(CellNumber).Select
    ActiveCell.Value = i
    R=A + (B * velocity) +(D *(velocity) ^ 2)
    velocity = velocity +1
    CellNumber = "C" & (i + 11)
    Range(CellNumber).Select
    ActiveCell.Value = R
Next
End Sub
```

-	B	C	D	E	F
1	Inputs				
2	A	8.20200	[kN]		
3	B	0.10656	[$\mathrm{kN} \mathrm{s} / \mathrm{m}$]		
4	C	0.01193	[kN s-s/m-m]		
5					
6	Train R	Resistance pr	gram		
7	Program	mer: Moises	Bobadilla		
8	Date	: March/03/2019	015		
9					
10	Velocity (m / s;	Range (kN)			
11	0	8.20199966		Run	
12	1	8.32048988			
13	2	8.46284008			
14	3	8.6290493			
15	4	8.81911945			
16	5	9.03304958			
17	6	9.27083969			
18	7	9.53248978			
19	8	9.81799984			
20		10.1273699			

b) Improved program with sliders, user-defined lower and upper bound for velocity and speed step size selector

1. VBA Code
```
Dim velocity As Single
Dim i As Single
Dim MinRange As Single
Dim MaxRange As Single
Dim x As Single
Dim StepSize As Single
Dim NumberRows As Double
Dim CellNumber As String
Sub RailResistanceTask20
'This program estimates the basic resistance for the high-speed train for a
range of velocities in which the train operates at a user-defined step size
'Programmer: Moises Bobadilla
Date: March/03/2015
'Inputs:
'A}=8.20200[kN
'B=0.10656[kN s/m]
'C=0.01193[kN s-s/m-m]
'v = velocity [m/s]
'Output:
'Rbasic = Train resistance [kN]
Sheets("Problem 2-Task 2").Select
'--------------Variable assignment-----------------
Range("C2").Select
A = ActiveCell.Value
Range("C3").Select
B = ActiveCell.Value
Range("C4").Select
D = ActiveCell.Value
'User-defined lower velocity bound
Range("C7").Select
MinRange = ActiveCell.Value
'User-defined upper velocity bound
Range("C8").Select
MaxRange = ActiveCell.Value
Range("C9").Select
StepSize = ActiveCell.Value
```


2. Interface

a.3. Sliders

There are many ways to do this. Because sliders only take integers, I linked the slider to a "Dummy" number and then used a formula to link this number to the the input area where it would use the correct value. Shown below:

c) Test for various Shinkansen train sets
a. Shinkasen 200
b. Shinkasen 300

Inputs		
A	9.21	$[\mathrm{kN}]$
B	0.12	$[\mathrm{kN} \mathrm{s} / \mathrm{m}]$
C	0.012	$[\mathrm{kN} \mathrm{s}-\mathrm{s} / \mathrm{m}-\mathrm{m}]$
Velocity Range \& Step Selector		
Min		20
Max	21	$\mathrm{~m} / \mathrm{s}$
Step	1	$\mathrm{~m} / \mathrm{s}$
Velocity (m/s)	Resistance (kN)	
20		

Inputs		
A	8.20	$[\mathrm{kN}]$
B	0.11	$[\mathrm{kN} \mathrm{s} / \mathrm{m}]$
C		
0.012		
Velocity Range \& Step Selector		
Min	20	$\mathrm{~m} / \mathrm{s}$
Max	21	$\mathrm{~m} / \mathrm{s}$
Step	1	$\mathrm{~m} / \mathrm{s}$
Velocity (m/s) Resistance (kN)		
20		
15.119999		

c. Shinkasen 500

Inputs		
A	8.10	$[\mathrm{kN}]$
B	0.11	$[\mathrm{kN} \mathrm{s} / \mathrm{m}]$
C	0.011	$[\mathrm{kN} \mathrm{s}-\mathrm{s} / \mathrm{m}-\mathrm{m}]$
Velocity Range \& Step Selector		
Min		20
Max	21	$\mathrm{~m} / \mathrm{s}$
Step		1
Velocity (m/s)	Resistance (kN)	
20		
14.6000004		

c. Shinkasen 700

Inputs			
A	7.92	$[\mathrm{kN}]$	
B	0.10	$[\mathrm{kN} \mathrm{s} / \mathrm{m}]$	
C	0.010	$[\mathrm{kN} \mathrm{s-s} / \mathrm{m}-\mathrm{m}]$	
Velocity Range \& Step Selector			
Min			
Max	20	$\mathrm{~m} / \mathrm{s}$	
Step	21	$\mathrm{~m} / \mathrm{s}$	
Velocity (m / s)	Resistance (kN)		
20	13.9200001		

As it can be seen above, the train which shows the least resistance at a speed of $20 \mathrm{~m} / \mathrm{s}$ is Shinkansen 700 . From this information, it can be inferred that this train is also the fastest from the four in question. This information is confirmed in the Wikipedia article (Under 'Speed Records').

Problem 3

a) (Tasks $1 \& 2$) VBA Code \& Interface

Sub WaterTank0
'This subrutine estimates the reaction force generated by a leaking tank
' Programmer: Moises Bobadilla
' Date: March/03/2015
'Inputs:
'h1 = water depth to the leaking point [meters]
'h2 = distance from the bottom of the tank to the leaking point [meters]
'A = Area of leaking orifice [m^2]
'phi = equivalent friction paramter [dim]
'gamma = Specific Weight of water, (1000 kg/m^3) [kg/m^3]
'mu = contraction coefficient [dim]
'Outputs:
'v = velocity of leaking water flow [m/s]
'd = horizontal distance traveled by the leaking water [meters]
'Q = volumetric flow rate [m^3/s]
'F = friction force acting on tank [N$]$
Sheets("Problem 3").Select
'--------------Variable assignment---------------
$\mathrm{g}=9.81$
Range("C7").Select
h1 = ActiveCell.Value
Range("C8").Select
h2 = ActiveCell.Value
Range("C9").Select
A = ActiveCell.Value
Range("C10").Select
phi = ActiveCell.Value
Range("C11").Select
gamma = ActiveCell.Value

b) (Task 3) Test program with following input: $\mathrm{h} 1=18, \mathrm{~h} 2=1.0, \mathrm{~A}=0.10$, phi=0.97, gamma $=1000$

c) (Task 4) Examine sensitivity of d with water tank depth
a. VBA Code
Sub WaterTank20
'This subrutine examines the sensitivity of d with water depth
'. Programmer: Moises Bobadilla
'. Date: March/03/2015
'Inputs:
'h1 = water depth to the leaking point [meters]
'h2 = distance from the bottom of the tank to the leaking point [meters]
'A = Area of leaking orifice [m^2]
'phi = equivalent friction paramter [dim]
'gamma = Specific Weight of water, (1000 kg/m^3) [kg/m^3]
'mu = contraction coefficient [dim]
'Outputs:
' = velocity of leaking water flow [m/s]
'd = horizontal distance traveled by the leaking water [meters]
'Q = volumetric flow rate [m^3/s]
'F = friction force acting on tank [N]
Sheets("Problem 3 - Task 4").Select
'-------------Variable assignment--------------
'Initial water height, h1
Range("H16").Select
Yinitial = ActiveCell.Value
'Final water height, h2
Range("H17").Select
Yfinal = ActiveCell.Value
'height step
Range("H18").Select
dy = ActiveCell.Value
$\mathrm{g}=9.81$

b. Interface

As it can be seen above, d is directly proportional to the height.

