CEE 3804 Exam1 (Spring 2024)

Computer Applications in Civil Engineering

Solution Key

Your Name \qquad

Your Signature *

* The answers in this exam are the product of my own work. I certify that I have not received nor I have provided help to others while taking this examination.

Directions:

Solve the problems. Copy and paste the VBA code and solutions such as graphs in a Word Document and convert to a single PDF file. Make sure your code is not too small for me to be able to read it. Minimum font size 12 is acceptable.

Problem 1 (30 points)

Figure 1 shows a file containing marine dock facilities in the United States and US Territories. The file is provided in the assignments website.

	A		B	C		D	
1	Name	\checkmark	Facility	State	-	Waterway Name	∇
2	TOBINS HBR		Dock	MI		Lake Superior	
3	NATIONAL PARK SER NPS MAHONE BAY		Dock	MI		Lake Superior	
4	GRAND MARAIS PUBLIC DOCK		Dock	MN		Lake Superior	
5	PIER 40		Dock	GU		APRA HARBOR, GUAM ISLAND, GU	
6	APRA HARBOR-OPEN WATER		Open Water	GU		APRA HARBOR, GUAM ISLAND, GU	
7	COMMERICAL PIER		Dock	GU		APRA HARBOR, GUAM ISLAND, GU	
8	PORT APRA F-4, F-3		Dock	GU		APRA HARBOR, GUAM ISLAND, GU	
9	NAVAL BASE GUAM, VICTOR WHARF		Dock	GU		APRA HARBOR, GUAM ISLAND, GU	
10	SAIPAN		Dock	AK		NORTHERN MARIANA ISLANDS	

Figure 1. Docks in the United States and US Territories.

The fields in the file are explained below.
Name - name of the facility
Facility - type of facility (docks, anchorages, junctions, etc.)
State - the State or US territory
Waterway name - name of the waterway where the facility is located
Port name - name of the port where the facility is located
a) Create a Pivot Table (a matrix) to count the number of facilities (in columns) for each state (in rows).

3	Count of Name	Facility							
4	State \quad	Anchorage	Bridge	Dock	Fleeting Area	Junction	Lock and/or Dam	Lock Chamber	Marina
5	AK	80		768					
6	AL		14	414		11	14	18	1
7	AR		2	125		15	15	15	
8	AS			1					
9	CA	26	10	725	2	2	1	1	10
10	CT	12	5	225					61
11	DC			34					5
12	DE	10	2	65					3
13	FL	6	34	695	1	80	10	10	31
14	GA	1	10	187		1	3	3	8
15	GU			4					
16	HI	3		165					
17	IA		8	110			5	6	
18	ID			27		1			
19	IL	1	11	541	19	3	21	22	
20	IN		1	177	1	1	3	4	
21	KS			7					
22	KY		6	423	14	16	23	34	4
23	LA	14	14	1950	25	73	27	27	2
24	MA	31	6	486					112

[^0]b) Tell me the number of docks in the state of Florida (FL) and in Guam (GU). 695 docks in Florida. Four docks in Guam.
c) Create a Pivot Chart to count the number each type of facility. Make sure the Pivot Chart has labels.

	A	B	C	D	E		F		G	H		I		J	K		L
1	Count of Name			5													\square
2	Facility -	Total								Total							
3	Anchorage	389			18000												
4	Bridge	266			16000												
5	Dock	15239			14000												
6	Fleeting Area	143			12000												
7	Junction	397															
8	Lock and/or Dam	239		Number of	10000												
9	Lock Chamber	281		Fa	8000												
10	Marina	397			6000												
11	Open Water	780			4000												
12	Tie Off	14			2000												
13	Virtual Marina	6															
14	Grand Total	18151			0	Anchorage	Bridge	Dock	Fleeting	Junction	Lock and/or		Marina	OpenWater	Tie Off	Virtual	
15									Area		Dam	Chamber				Marina	
16											cility Type						
17																	
18				C							I						0

Figure 1b. Pivot Chart with Count of Facilities.

Show me the upper left portion of the Pivot Table and the full Pivot Chart. Highlight the numbers with your answers.

Problem 2 (30 points)

Engineers test a new commuter train and measure the noise level generated at different speeds. One of the civil engineers in the team, proposes a quadratic regression equation to approximate the noise level produced as a function of speed.
$L_{e q}=A+B V+C V^{2}$
where:
$L_{e q}$ is the equivalent noise level produced by the train (in decibels - dBA)
V is the train speed (in miles per hour)
A, B, C are the regression constants of the model
After numerous tests, the numerical values of the constants A, B, C are:
$A=40.486, B=1.2984, C=-0.0086$
All constants are dimensionally correct to produce a value of $L_{e q}$ in decibels (a unit of noise level).
a) Write a Public Function in VBA to estimate the equivalent noise level $\left(L_{e q}\right)$ as a function of train speed (V). Use the equation provided in your function. Use Option Explicit in your code.

Option Explicit

Dim speed As Single
 Dim A As Single
 Dim B As Single
 Dim C As Single

Public Function noiseLevel(speed, A, B, C) As Single
' Function to calculate Leq values given:
'
' Inputs: speed, A, B, and C
' Output: Leq
noiseLevel $=A+B *$ speed $+C$ * speed $\wedge 2$

End Function

Figure 2. Public Function to Estimate Leq Noise Level.
b) Test the function created in part (a) to estimate the value of $L_{e q}$ for speed values ranging from 10 to 60 miles per hour at intervals of 10 mph . Show the value of $L_{e q}$ for each speed tested. To test the function, use Excel and create a two column table with values of speed (in column A) and $L_{e q}$ in column B.

	A	B C
1	Problem	
2	Leq Noise calculator	
3		
4	Program estimates the noise produced by a train	
5	Programmer	Trani
6	Date	2/29/24 21:15
7		
8	Formula	Leq $=A+B^{*}$ speed $+C^{*}$ speed^2
9		
10	Inputs to problem	
11		
12	Speed	10 mile per hour
13	\|A	40.48 dB
14	B	$1.2984 \mathrm{~dB} /(\mathrm{mph})$
15	C	$-0.0086 \mathrm{~dB} /\left(\mathrm{mph}^{\wedge} 2\right)$
16		
17		
18	Output	
19	Leq	53 dB

Figure 2a. Excel Interface to Test the Function to Estimate Leq Noise Level.

Figure 2b. Excel Table to Estimate Values of Leq Noise Level for Various Speeds.

Problem 3 (40 points)

A common problem in Civil Engineering is to estimate the deflection of a cantilever beam at different stations (see Figure 3).
$y=\frac{P x^{2}}{6 E I}(3 l-x)$
(Equation 1)
Where:
y is the deflection at any point in the beam (inches)
x is the distance from the wall to any point on the beam (inches)
P is the load applied (lbs.)
l is the length of the beam (inches)
E is the modulus of elasticity $\left(\mathrm{lb} / \mathrm{in}^{2}\right)$
I is the moment of inertia (in^{4})
The units in this model are all consistent.

Figure 3. Cantilever Beam Subject to a Single Load (P).

Table 1 shows the values of E (Modulus of Elasticity) for three materials.
Table 1. Values of Modulus of Elasticity for Two Materials.

Material	$\mathrm{E}\left(\mathrm{Ib} / \mathrm{in}^{2}\right)$
Steel	$2.9 \mathrm{E}+07$
Titanium	$1.65 \mathrm{E}+07$

a) Create a Visual Basic Subroutine to estimate the beam deflection (y) given the parameters on the right hand side of Equation 1. The values of x, P, l, and I are defined in the Excel spreadsheet and then read by the VBA code. The VBA code reads the beam material property as a list with the names of the two materials in Table 1. The value of E (modulus of elasticity) is assigned in the VBA code once the beam material has been selected from the spreadsheet. The value of deflection (y) is shown in the spreadsheet. Use Option Explicit in your code.

(General)

Option Explicit

Dim x As Single
Dim EModulus As Single
Dim material As String
Dim MInertia As Single
Dim Blen As Single
Dim y As Single
Dim P As Single
Sub beamDeflection()
Sheets("blank").Select
Range("B12").Select
P = ActiveCell.Value
Range("B13").Select
Blen = ActiveCell.Value

```
(General)
Range("B14").Select
x = ActiveCell.Value
Range("B15").Select
material = ActiveCell.Value
If material = "Steel" Then
    Range("E9").Select
    EModulus = ActiveCell.Value
Elself material = "Titanium" Then
    Range("E10").Select
    EModulus = ActiveCell.Value
End If
Range("B16").Select
MInertia = ActiveCell.Value
    y=(P * x * x) * (3 * Blen - x) / (6 * EModulus * MInertia)
Send the results back to the spreadsheet
Range("B19").Select
ActiveCell.Value = y
Range("B20").Select
ActiveCell.Value = EModulus
Range("B21").Select
ActiveCell.Value = material
Range("B22").Select
ActiveCell.Value = MInertia
```

Figure 3a. Cantilever Beam Code.
b) Test the function created in part (a) with the following values:

$$
\begin{aligned}
& x=174 \text { inches } \\
& P=2000 \text { lbs. } \\
& l=250 \text { inches } \\
& \text { Material = Steel } \\
& I=200 \mathrm{in}^{4}
\end{aligned}
$$

Figure 3b. Cantilever Beam Excel Interface. Top Section Uses Steel. Bottom Section Uses Titanium.

[^0]: Figure 1a. Summary Pivot Table.

