CEE 3804 Exam1 (Spring 2022)

Computer Applications in Civil Engineering

Open Book and Notes

Your Name \qquad

Your Signature * \qquad

* The answers in this exam are the product of my own work. I certify that I have not received nor I have provided help to others while taking this examination.

Directions:

Solve the problems. Copy and paste the VBA code and solutions such as graphs in a Word Document and convert to a single PDF file. Make sure your code is not too small for me to be able to read it. Minimum font size 10 is acceptable.

Problem 1 (30 points)

A common model used in engineering and meteorology to estimate the temperature (T) in the standard atmosphere is shown below. The units in this model are all
$T=\left\{\begin{array}{c}T_{0}+\lambda\left(h-h_{o}\right) \quad \text { if } h \leq 11,000 \mathrm{~m} \\ 216.5 \text { deg. K } \quad \text { if } h>11,000 \mathrm{~m}\end{array}\right.$
where:
$T=$ air temperature at altitude h (deg. Kelvin)
$T_{0}=$ air temperature at sea level (deg. Kelvin)
$\lambda=$ is the temperature lapse rate (i.e., change) with altitude (deg. Kelvin per meter)
$h=$ is the altitude (in meters) at which we want to know the atmospheric variables
$h_{0}=$ is the value of the sea level reference altitude (meters)
consistent.
The numerical values of sea level conditions are given in the table below:

Table 1. Numerical Constants of the Standard Atmospheric Model.

Constant	Value
T_{0}	288 deg. Kelvin
$\boldsymbol{\lambda}$	-0.0065 Kelvin/meter (negative slope)
h_{0}	Mean sea level condition (0 meters)

a) Create a VBA function (not a Sub) that estimates the value of temperature ($T^{\text {) }}$) for a given value of altitude (h) in meters. In this analysis assume the mean value of the reference altitude (h_{0}) is zero.

```
Microsoft Visual Basic for Applications - New Microsoft Excel Worksheet (6).xlsx - [Module1 (Code)]
```



```
(General)
    Function Temperature(h, T0, lambda, h0)
    If h}<=11000 The
    Temperature = T0 + lambda * (h - h0)
    Else
    Temperature = 216.5
    End If
    'use if function to set up the criteria for the equation
    End Function
```

b) Create a table of altitude values in Excel (say in column A) ranging from 0 to 13,000 meters at steps of 1,000 meters. Use the function created in part (a) to estimate the temperature (T). Provide headers with labels and units in your table. You can write the headers directly in Excel to save time.

Include screen captures of VBA function code and also a screen capture of the table with solutions obtained for (T). Show me a sample of how do you invoke (use) the function in Excel (a screen capture of the formula bar is acceptable).

Answer:

Problem 2 (40 points)

The following linear programming problem has been developed to predict resource
$\operatorname{Max} Z=340 x_{1}+150 x_{2}$
subject to:
$\mathrm{x}_{1} \leq 100$
$230 x_{1}+150 x_{2} \leq 44000$
$10 x_{1}+20 x_{2} \leq 5000$
x_{1} and $x_{2} \geq 0$
allocation at a company.
a) Convert the problem shown above into standard (canonical) form to be solved by hand using the Simplex Method. Write down the transformed equations and add slack variables as needed.

Answer:

$$
\begin{gathered}
230 x_{1}+150 x_{2}+x_{3}=44000 \\
10 x_{1}+20 x_{2}+x_{4}=5000 \\
x_{1}+x_{5}=100 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

b) Show me the first two tables of the hand calculations using the Simplex Method. Indicate the values of all decision variables in every table. Indicate the value of the objective function Z in every table. This task requires hand calculations and you need to show me your row operations clearly.

Show me the problem in standard form and then two tables to solve the problem.

Answer:

First Table

BV	Z	x 1	x 2	x 3	x 4	x 5	RHS
Z	1	-340	-150	0	0	0	0
x 3	0	230	150	1	0	0	44000
x 4	0	10	20	0	1	0	5000
x 5	0	1	0	0	0	1	100

Calculation 1

BV	Z	x 1	x 2	x 3	x 4	x 5	RHS
Z	1	0	-150	0	0	340	34000

Calculation 2

x 3	0	0	150	1	0	-230	21000

Calculation 3

x 4	0	0	20	0	1	-10	4000

Second Table

BV	Z	x 1	x 2	x 3	x 4	x 5	RHS
Z	1	0	-150	0	0	340	34000
x 3	0	0	150	1	0	-230	21000
x 4	0	0	20	0	1	-10	4000
x 1	0	1	0	0	0	1	100

Solution in Table 1 is: $\mathrm{x}=0, \mathrm{x} 2=0, \mathrm{x} 3=44000, \mathrm{x} 4=5000, \mathrm{x} 5=100 . \mathrm{Z}=0$.
Solution in Table 2 is: $\mathrm{x}=100, \mathrm{x} 2=0, \mathrm{x} 3=21000, \mathrm{x} 4=4000, \mathrm{x} 5=0 . \mathrm{Z}=34,000$.

[^0]
Problem 3 (30 points)

Short answers:
a) An engineer develops a program to estimate the deflections of a 12-meter beam subject to a uniform load. The engineer saves the deflection and stress estimates every 10 centimeters. Find the number of bytes in the computer memory needed to store all deflections and stresses along the beam if every deflection and stress is to be saved in double precision.

Answer: 1920 bytes
8 bytes per value (2 values needed for each station of the beam). 120 stations along the beam. 240 total values saved. 1920 bytes.
b) Use the file named Construction_firm available on Week 2 of the Syllabus website to create a Pivot Table that counts the number of construction equipment assets (i.e., truck, scraper, etc.) in-maintenance by location. Highlight the number of trucks in-maintenance at the New York site.

Answer:

Status	In-maintenance			
Count of Value (\$)	Location			
Equipment	Atlanta	Charlotte	New York	Grand Total
Loader	10	13	11	34
Scraper	4	5	12	21
Truck	9	20	23	52
Grand Total	23	38	46	107

There are totally 107 construction equipment assets in-maintenance. There are 23 trucks in-maintenance in the New York location.

Show me your Pivot table and indicate the answer for part (b).

[^0]: Graphical solution (not needed).

