
1 of 50

CEE 3804

Advanced MATLAB Functions

Antonio A. Trani
    Virginia Tech

Spring 2023

Virginia Polytechnic Institute and State University



 

Virginia Polytechnic Institute and State University

 

2 of 50

 

Working with Polynomials

 

Polynomials are expressed in vector form

in MATLAB nomenclature this will be:

 y=[3  2  1  23]
y =
     3     2     1    23

Note: if some powers are not represented in the 
polynomial just set them to zero

y 3x3 2x2 x 23+ + +=
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Convoluting Polynomials

 

Define another polynomial such as:

 or f = [1   3   1]

Now multiply both using MATLAB’s ‘conv’ function
conv(y,f)
ans =
     3    11    10    28    70    23

which is equivalent to,

f x2 3x 1+ +=

g 3x5 11x4 10x3 28x2 70x 23+ + + + +=
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Roots of Polynomials

 

Take the polynomial,

To find the roots we use the ‘roots’ command,
roots(g)
ans =
   0.7458 + 1.7309i
   0.7458 - 1.7309i
  -2.6180          
  -2.1582          
  -0.3820          

g 3x5 11x4 10x3 28x2 70x 23+ + + + +=
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Polynomial Evaluation

 

Sometimes we would like to evaluate polynomials at 
particular points. Suppose that we want to find the value 
of,

at point x=1.4. Use the ‘polyval’ function in MATLAB.

polyval(g,1.4)
ans =
  261.7123

g 3x5 11x4 10x3 28x2 70x 23+ + + + +=
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Deconvoluting Polynomials

 

Suppose we want to divide,

by polynomial  (both have been 
defined)

deconv(g,f)
ans =
     3     2     1    23

This is the same as polynomial y previously defined.

g 3x5 11x4 10x3 28x2 70x 23+ + + + +=

f x2 3x 1+ +=



 

Virginia Polytechnic Institute and State University

 

7 of 50

 

Curve Fitting with Polynomials

 

Suppose the following data is collected in a laboratory

x = [1     2     3     4     5     6     7     8     9    10]
y =[1     4    10    16    25    39    49    64    83   100]

0 2 4 6 8 10
0

20

40

60

80

100

Force



 

Virginia Polytechnic Institute and State University

 

8 of 50

 

Curve Fitting with Polynomials 

 

Use the ‘polyfit’ function to approximate the observed 
behavior. In this case lets try a second degree polynomial.

d=polyfit(x,y,2)
d = 
   0.9659    0.4477   -0.5500

Suppose we want to evaluate values from this resulting 
polynomial and compare with the original (x,y) values.
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Curve Fitting with Polynomials 

 

Create a new vector (xnew) with values to be evaluated

xnew = 1:1:10;
»s = polyval(d,xnew)
ans =
0.8636    4.2091    9.4864   16.6955   25.8364   36.9091   

49.9136   64.8500   81.7182  
100.5182

Plot the original (x,y) versus (xnew,s)
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Curve Fitting with Polynomials

 

plot(x,y,xnew,s,'+'):xlabel('Force');ylabel('Acceleration')
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Interpolation in MATLAB

 

Several interpolation functions exist to facilitate data 
handling.

Suppose the following data represent temperatures 
measured in a standard atmosphere as a function of 
altitude. Altitude (h) in km and temperature (t) in degrees 
Kelvin.

h=[0  1  2  3  4  5  6  7  8  9  10  11  12]
t=[288.2  281.7  275.2  268.7  262.2  255.7  249.2  242.7 

236.2  229.7  223.2  216.7]
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Interpolation in MATLAB 

 

The following plot represents the observed behavior,
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Interpolation in MATLAB 

 

Suppose we want to include the temperature data in a 
program and want to evaluate the temperature in Denver 
(1.58 km above mean sea level). 

Define a variable called h_denver representing its altitude,
h_denver =
    1.5800
»a=interp1(h,t,h_denver)
a =
  277.9300
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Numerical Integration 

Some background information is necessary to expose the 
student to various techniques available to execute 
numerical integration.

Several numerical methods to be reviewed:

• Standard numerical integration

• Numerical differentiation methods

• Differential equation solvers (document 4.2)

Matlab offers several procedures and built-in functions to 
address these methods
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Standard Numerical Integration 
Methods

Goal is to evaluate definite integrals of the form:

Several integration rules are possible:

• Trapezoidal

• Simpson’s rule

• Newton-Cotes

J f x( ) xd
a

b

∫=
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Simpson’s Rule

x1 x2x0

f(x1)

h

f(x2)f(x0)

h

Approximation
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Simpson’s Rule

 for each interval pair

where  is the number of pair intervals and 

 is an even number of intervals.

f x( ) xd
x0

x2

∫
h
3
--- f 0 f 1 f 2+ +( )=

f x( ) xd
a

b

∫
h
3
--- f 1 4 f 2 2 f 3 … f n 1++ + ++( )=

n
h b a–( ) n( )⁄=

n
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Composite Simpson’s Rule

In vector form this rule is,

where,

and 

f x( ) xd
a

b

∫
h
3
---c f T=

c 1 4 2 … 2 4 1=

f f 1 f 2 f 3 … f n 1+
=
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Composite Simpson’s Rule

Truncation error of this evaluation is approximated by (Penny 
and Lindfield),

where,   

Et b a–( )h4 f IV t
180
---------≈

a t b≤ ≤
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Matlab Built-in Functions

Matlab uses Newton-Cotes numerical techniques

Use higher degree polynomials (nth order)

Newton-Cotes formula (n=3)

Truncation error is,  where,

f x( ) xd
a

b

∫
3h
8

------ f 0 3 f 1 3 f 2 f 3+ + +( )=

3h5

80
------- f IV t( ) a t b≤ ≤
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Matlab Function ‘Quad’

quad(‘func’,a,b)

% ‘func’ is the function to be integrated
% a and b are the lower and upper limits of integration

• Uses a 2-panel, adaptive recursive Newton Cotes 
integration method

• Good compromise in accuracy and speed
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Example of ‘Quad’ Function

% Matlab quad function use
%
t=clock; flops(0);

quadeval = quad('fsim',0,1.0)    % invokes function

fprintf('Integral value %15.8f\n',quadeval)
fprintf('\ntime = %4.2f ...
      seconds flops = %6.0f\n',etime(clock,t),flops);

Integral value      0.33333799
time = 0.42 seconds       flops =   2969
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Sample Numerical Integration

22a
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Runoff in Civil Engineering Applications

All infrastructure generates runoff
(examples: parking lots, runways at airports,

large structures)

22b
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Function to Calculate Runoff

22c
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Runoff Function

22d
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Script to Calculate the Area Under the 
Curve

22e
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Calculations in Matlab
• Find the volume of water generated in the design

thunderstorm (say 100 year event)

Area under the
curve is the

volume of water going
into a pond

22f
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Trapezoidal Rule
• Approximates the function f(x) using small trapezoids 

spanning the range between a and b

• The accuracy improves when the interval size ( ) is 
small 

Δx

22g
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Example: Runoff Calculation Using the 
Trapezoidal Rule

22h

Generates values of parameter t
(time) from t=o to t=4500 seconds



Virginia Tech (A.A. Trani)

Example: Runoff Calculation Using the 
Trapezoidal Rule (2)

22i

Generates values of runoff
from t=o to t=4500 seconds
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Example: Runoff Calculation Using the 
Trapezoidal Rule (3)

22j

Volume of water accumulated is
 25,652.45 cubic meters

Note: This calculation
is very accurate because 
we defined a very small

interval ( )Δx
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Differential Eqn. Background

Matlab offers several procedures and built-in functions to 
address these methods:

• Standard ODE solvers

• Stiff ODE solvers
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Differential Equations

We want to solve dynamic systems of the form,

  

Use a Taylor series expansion,

The term  is the reminder (includes all others)

df
dt
----- f y t,( )=

y t0 h+( ) y t0( ) y ′ t0( )h y″ Φ( )h2

2
----+ +=

y″ Φ( )h2

2
----
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Euler Method

Simplest of all methods of solving an ODE

Considers two terms in Taylor series expansion

Most innacurate of all

In general for any n interval of solution,

 for  error 

y t0 h+( ) y t0( ) y ′ t0( )h+=

yn 1+ yn hyn

′+= n 0 1 2 …, , ,= ∞h2



Virginia Polytechnic Institute and State University 26 of 50

Geometric Interpretation

x

h
y0

y
y=f(x)

y1

Error
y’
0
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Matlab Functions

Runge Kutta Methods

Define various intermediate functions:

 error 

k1 hf tn yn,( )=

k2 hf tn h 2⁄+ yn k1 2⁄+,( )=

k3 hf tn h 2⁄+ yn k2 2⁄+,( )=

k4 hf tn h+ yn k3+,( )=

yn 1+ yn k1 2k2 2k3 k4+ + +( ) 6⁄+= ∞h4
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Matlab Function ‘ode’

[t,y] = ode23('func',tspan,y0);     % low order method

[t,y] = ode45('func',tspan,y0);    % med. order method

[t,y] = ode113('func',tspan,y0);   % var. order method

% ‘func’ is the function to be integrated
% tspan is a vector with lower and upper limits of 

integration
% y0 is the initial value of the state variables 
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Matlab Function ‘odexxs’

[t,y] = ode23s('func',tspan,y0);     % stiff low order

[t,y] = ode45s('func',tspan,y0);    % stiff med. order

[t,y] = ode113s('func',tspan,y0);   % stiff var. order

% ‘func’ is the function to be integrated
% tspan is a vector with lower and upper limits of 

integration
% y0 is the initial value of the state variables 
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What is a Stiff ODE?

Those whose rate variables display very rapid changes over 
time

Many systems of differential equations display this behavior

• A fast rate vs a slow varying one

• A very fast rate of change

In most systems modeling and analysis stiff system do not 
pose a problem.
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Solution of Differential Equations in MATLAB

There are few steps needed to solve ODE in MATLAB:

1) Write the differential equation(s) as a set of first order 
ODEs

2) Perform necessary variable substitutions and write a 
MATLAB function to compute the derivatives of the 
state variables

This function returns the derivatives of every state of the 
system

3) Use anyone of the MATLAB ODE solvers and invoke 
the function 
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MATLAB Scripting Approach 

The system is represented by ODE

Create two M files: a) a main file and b) a function file

MATLAB Script

for Main File

invoke function
file

MATLAB Script
Function file

 function to be
evaluated
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Sample Experiment

Suppose that we would like to decsribe the process of 
cooling of water from near boiling point to room 
temperature. The figure shows our observations.
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First Law of Cooling ODE

Observations:

• The temperature drops very quickly initially

• The temperature decay (rate of change) tapers as the 
water and room temperatures get closer

• The temperature approaches to the room temperature as 
time goes to infinity

Write down possible solutions or forms of the solution
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Proposed Model

Suppose the model is of the form,

where:

 is a constant of proportionality in the experiment

 is the temperature of the water (deg C)

 is the room temperature (deg C)

td
dT

H– T T a–( )=

H

T

T a
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Step 1 in ODE Solution

1) Write the differential equation(s) as a set of first order 
ODEs

This is already in place since the system has only one 
ODE to start

td
dT

H– T T a–( )=
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Step 2 in ODE Solution

2) Perform necessary variable substitutions and write a 
MATLAB function to compute the derivatives of the 
state variables

This function returns the derivatives of every state of the 
system

In this case we write two M-files: 

1) one initializes the problem (state variable definition at 
time zero)

2) one function to computer the derivative of T 
(temperature)



Virginia Polytechnic Institute and State University 38 of 50

MATLAB Equations (Main Routine)

% Define Initial Conditions of the Problem
global Ta H % define global variables

To = 100; % To is the initial temperature of the water
to = 0.0; % to is the initial time to solve this equation
tf = 40; % tf is the final time (min)
Tspan = [to  tf];% Spanning time for the ODE solution

% Define T ambient (Ta) and cooling constant (H)
Ta = 30; % ambient temperature (deg C)
H = 0.10; % Cooling constant (1/min)
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Step 3 in ODE Solution

3) Invoke the ODE solver in MATLAB

% Use Runge-Kutta 3rd order solver
[t,T] = ode23('ftem',Tspan,To);

% Plot the results of the numerical integration procedure

plot(t,T)
xlabel('Time (min)')
ylabel('Temperature (deg C)')
grid
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MATLAB Function ‘ftem.m’

This function estimates the value of the  rate of change of 
the ODE.
% First Order Differential Equation Function

function tprime = ftem(t,T)
global Ta H
tprime = - H * (T - Ta);

Note: global variables are “shared” by all functions in the 
workspace
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Use of the Hold Command

Here we use the hold command to plot two solutions to 
the first order differential equation shown previously
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Example: Use of ODE Solvers
Train Kinematics

2nd Order Dynamic System

41a
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Vehicle Kinematics

• An engineer collects data during the certification of 
the new high-speed train to be introduced in the 
Northeast Corridor in the United States

• The data collected records train acceleration (a) vs. 
velocity (V)

• The data is presented in the table 
Train Velocity (m/s) Maximum Train Acceleration

(m/s2)

0.00 2.1

20 1.56

30 1.30

40 1.06

50 0.76

60 0.51

80 0.00

41b
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Vehicle Kinematics (2)
• Use a Matlab script to find the best first-order polynomial 

that fits the acceleration vs. train speed data (i.e., use the 
“polyfit” command)

• The resulting polynomial will be of the form:

• where A, B and C are the polynomial coefficients found and 
V is the train speed.

Train Velocity (m/s) Maximum Train Acceleration (m/s2)

0.00 2.1

20 1.56

30 1.30

40 1.06

50 0.76

60 0.51

80 0.00

dV
dt

= A + BV Equation (1)

41c
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1

Vehicle Kinematics (3)
Matlab Script to Find Best Polynomial

Train Velocity (m/s) Maximum Train Acceleration
(m/s2)

0.00 2.1

20 1.56

30 1.30

40 1.06

50 0.76

60 0.51

80 0.00

Calculates coefficients

dV
dt

= A + BV

% Fits a first-order polynomial

41d
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Regression Coefficients for 
Acceleration Function

• B = -0.0268;    % coefficient of acceleration function (1st power)

• A = 2.0997;     % coefficient of acceleration function (constant)

dV
dt

= A + BV

41e
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Other Tasks

• Using the Matlab Ordinary Differential Equation solver ODE45, 
to solve numerically the differential equation (1) as a function of 
time

• This problem is similar to the Water Cooling problem discussed 
in class except that the differential equation is a little more 
complex

• Use as initial conditions zero for the train speed and solve 
numerically the speed of the train for 200 seconds

• Plot the velocity profile of the high-speed train as a function of 
time. How fast is the train going after 200 seconds?

41f
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More Tasks (2)

• Add code to the script and function containing the differential equation created 
in Task 2 to calculate the distance traveled by the train. Recall that distance (S) 
can be obtained from the first order differential equation:

• The solution to this problem requires solving two first order equations (1-2). 
Refer to the mass-spring damper system  discussed in class to help you setup 
these equations.  You can see how these two equations are coupled as follows:

• where:         be the speed of the train,       be the position of the train and  and 
be the derivatives of speed and position 

dS
dt

=V

 

x1 =
dV
dt

= A + Bx1

x2 = x1 =
dS
dt

Equation (2)

x1 x2

41g
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Matlab Main File to Solve Problem

41h
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Matlab Function File (trainDynamics.m)

Note:  I setup the problem for a quadratic model 
but the coefficient of x2 is zero. The acceleration is 

linear with speed.

41i
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Matlab Main File Output

The train travels at 78 m/s 
after 200 seconds

41j



Virginia Tech (A.A. Trani)

Highway Maintenance Model
Example of Higher-Order ODE 

Conserved System

41k
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Highway Maintenance

• Departments of Transportation are
responsible for keeping up many of
the roads and highways that we use
every day

• Maintenance requires substantial
amounts of State money

• Money can be invested in two types
of maintenance actions:

• Ordinary - fix cracks, rutting

• Replacement - repaving
operations

41l
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Highways According to their Condition

Good Highways
(PSH)

Deficient Highways
(PDFH)

Deteriorated Highways
(PDTH)

4 years

4 years

Ordinary
maintenace

Replacement
maintenace

41m
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Higher-Order Dynamic Systems

Higher order system can be solved in a simular way using 
MATLAB recognizing that array variables that contain 
more than one state variable

• The following highway maintenance example illustrates 
this (adapted from Drew, 1997)

• The highway maintenance example solves three coupled 
ODEs to predict the state of the State highways system

• The model assumes investments in ordinary 
vs.replacement maintenance actions to predict the 
number of lane-miles of highway in three possible states 
over time (sufficient,deficient and deteriorating 
highways)
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Highway Maintenance Model (main file) 

%  Highway Maintenance Model
global HME  FEOM OMC FEMR MRC HDETT HAT
% Define constants of the problem
HME = 5E7;  % Hwy maintenance expenditure ($/yr) 
FEOM = 0.5; % Fract. of expenditures to ordinary 

maint (%)
OMC = 5E5; % Ordinary maintenance cost($/lane-

mile)
MRC = 2E6; % Maintenance replacement action ($/

la-mi)
FEMR = 0.5; % Frac of expenditures for maint. 

replacement (%)
HAT = 4; % Hwy aging time (yr)
HDETT = 8; % Hwy deterioration time (yr)
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Highway Maintenance Model (main file) 

% Define Initial Conditions of the Problem

yN = [200 200 0];% yN defines intial conditions for... 
state variables

to = 0.0; % to is the initial time to solve this... 
equation (yr)

tf = 10.0; % tf is the final time (yr)
tspan = [to tf]

% Invoke the ordinary differential equation solver
[t,y] = ode23('fhwy3_rev',tspan,yN);
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Highway Maintenance Model (main file) 

% Plot the results of the numerical integration procedure
subplot(3,1,1) % plots PSH in the top half of the... 

page

plot(t,y(:,1)) % plots all elements of the first... 
column of y

xlabel('Time (years)')
ylabel('PSH (la-mi)'); 
grid
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Highway Maintenance Model

subplot(3,1,2)       % plots I in the bottom half of the page
plot(t,y(:,2)) % plots all elements of the second 

column of y
xlabel('Time (years)')
ylabel('PDTH (la-mi)'); 
grid

subplot(3,1,3) % plots PDTH in the bottom third of 
the page

plot(t,y(:,3)) % plots all elements of the first column 
of y

xlabel('Time (years)')
ylabel('PDFH (la-mi)')
grid
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Function File (fhwy3_rev)

function yprime = fhwy3_rev(t,y)
global HME  FEOM OMC FEMR MRC HDETT HAT

% define rate equation(s)
HD = y(2) / HDETT;   % Hwy deteriorating (lane-mi/yr)
HA = y(1) / HAT;       % Hwy aging (lane-mi/yr)

HOM = HME * (FEOM / OMC);
% Highway with ordinary maintenance (lane-mi/yr)

HMR = HME * (FEMR / MRC);
% Highway with maint replacement (lane-mi/yr)
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Function File (fhwy3_rev)

% Define the rate equations (3 rate variables representing 
PSH, PDFH and PDTH)

%
% PSH - Physically sufficient highways (y1)
% PDFH - Physically defficient highways
% PDTH - Physically deteriorated highways

% Model equivalencies for state variables

% y1 = PSH
% y2 = PDFH
% y3 = PDTH
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Function File (fhwy3_rev)

yprime(1) = HOM + HMR - HA;
% Rate of change of PSH (la-mi/yr)

yprime(2) = HA - HD - HOM ;
% Rate of change of PDFH (la-mi/yr)

yprime(3) = HD - HMR;
% Rate of change of PDTH (la-mi/yr)

yprime=yprime';   % returns a column vector to main file
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Sample Output of the Highway Maintenance Model
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CEE 3804 - Computer Applications in CEE

Spring-Mass-Damper (SMD) System

• Spring-mass-damper systems have many 
applications in mechanical and civil 
engineering systems

51
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Equations to Describe the SMD System

52

y′ 1 = y2

y′ 2 =
F(t)
m

−
k
m

y1 −
b
m

y2

F(t)
y1

y2

External force (N)

SMD displacement (m)

SMD speed (m/s)

Mass (kilograms)m
b Damper constant (N / (m/s))

Spring constant (N / m)k
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Matlab Implementation of the SMD System

53

Main File

Function File
With ODE equations
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Numerical Solution of the SMD System

54

Function File
With ODE equations

Main File
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Numerical Solution of the SMD System

55
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Numerical Solution of the SMD System

56
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Perform Changes to Damper Constant System

57

B = 5000 N/(m/s)B = 5000 N/(m/s)




