
1 of 50

CEE 3804

Advanced MATLAB Functions

Antonio A. Trani
 Virginia Tech

Spring 2023

Virginia Polytechnic Institute and State University

Virginia Polytechnic Institute and State University

2 of 50

Working with Polynomials

Polynomials are expressed in vector form

in MATLAB nomenclature this will be:

 y=[3 2 1 23]
y =
 3 2 1 23

Note: if some powers are not represented in the
polynomial just set them to zero

y 3x3 2x2 x 23+ + +=

Virginia Polytechnic Institute and State University

3 of 50

Convoluting Polynomials

Define another polynomial such as:

 or f = [1 3 1]

Now multiply both using MATLAB’s ‘conv’ function
conv(y,f)
ans =
 3 11 10 28 70 23

which is equivalent to,

f x2 3x 1+ +=

g 3x5 11x4 10x3 28x2 70x 23+ + + + +=

Virginia Polytechnic Institute and State University

4 of 50

Roots of Polynomials

Take the polynomial,

To find the roots we use the ‘roots’ command,
roots(g)
ans =
 0.7458 + 1.7309i
 0.7458 - 1.7309i
 -2.6180
 -2.1582
 -0.3820

g 3x5 11x4 10x3 28x2 70x 23+ + + + +=

Virginia Polytechnic Institute and State University

5 of 50

Polynomial Evaluation

Sometimes we would like to evaluate polynomials at
particular points. Suppose that we want to find the value
of,

at point x=1.4. Use the ‘polyval’ function in MATLAB.

polyval(g,1.4)
ans =
 261.7123

g 3x5 11x4 10x3 28x2 70x 23+ + + + +=

Virginia Polytechnic Institute and State University

6 of 50

Deconvoluting Polynomials

Suppose we want to divide,

by polynomial (both have been
defined)

deconv(g,f)
ans =
 3 2 1 23

This is the same as polynomial y previously defined.

g 3x5 11x4 10x3 28x2 70x 23+ + + + +=

f x2 3x 1+ +=

Virginia Polytechnic Institute and State University

7 of 50

Curve Fitting with Polynomials

Suppose the following data is collected in a laboratory

x = [1 2 3 4 5 6 7 8 9 10]
y =[1 4 10 16 25 39 49 64 83 100]

0 2 4 6 8 10
0

20

40

60

80

100

Force

Virginia Polytechnic Institute and State University

8 of 50

Curve Fitting with Polynomials

Use the ‘polyfit’ function to approximate the observed
behavior. In this case lets try a second degree polynomial.

d=polyfit(x,y,2)
d =
 0.9659 0.4477 -0.5500

Suppose we want to evaluate values from this resulting
polynomial and compare with the original (x,y) values.

Virginia Polytechnic Institute and State University

9 of 50

Curve Fitting with Polynomials

Create a new vector (xnew) with values to be evaluated

xnew = 1:1:10;
»s = polyval(d,xnew)
ans =
0.8636 4.2091 9.4864 16.6955 25.8364 36.9091

49.9136 64.8500 81.7182
100.5182

Plot the original (x,y) versus (xnew,s)

Virginia Polytechnic Institute and State University

10 of 50

Curve Fitting with Polynomials

plot(x,y,xnew,s,'+'):xlabel('Force');ylabel('Acceleration')

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Force

Virginia Polytechnic Institute and State University

11 of 50

Interpolation in MATLAB

Several interpolation functions exist to facilitate data
handling.

Suppose the following data represent temperatures
measured in a standard atmosphere as a function of
altitude. Altitude (h) in km and temperature (t) in degrees
Kelvin.

h=[0 1 2 3 4 5 6 7 8 9 10 11 12]
t=[288.2 281.7 275.2 268.7 262.2 255.7 249.2 242.7

236.2 229.7 223.2 216.7]

Virginia Polytechnic Institute and State University

12 of 50

Interpolation in MATLAB

The following plot represents the observed behavior,

0 2 4 6 8 10 12
210

220

230

240

250

260

270

280

290

Altitude (km)

Virginia Polytechnic Institute and State University

13 of 50

Interpolation in MATLAB

Suppose we want to include the temperature data in a
program and want to evaluate the temperature in Denver
(1.58 km above mean sea level).

Define a variable called h_denver representing its altitude,
h_denver =
 1.5800
»a=interp1(h,t,h_denver)
a =
 277.9300

Virginia Polytechnic Institute and State University

14 of 50

Numerical Integration

Some background information is necessary to expose the
student to various techniques available to execute
numerical integration.

Several numerical methods to be reviewed:

• Standard numerical integration

• Numerical differentiation methods

• Differential equation solvers (document 4.2)

Matlab offers several procedures and built-in functions to
address these methods

Virginia Polytechnic Institute and State University 15 of 50

Standard Numerical Integration
Methods

Goal is to evaluate definite integrals of the form:

Several integration rules are possible:

• Trapezoidal

• Simpson’s rule

• Newton-Cotes

J f x() xd
a

b

∫=

Virginia Polytechnic Institute and State University 16 of 50

Simpson’s Rule

x1 x2x0

f(x1)

h

f(x2)f(x0)

h

Approximation

Virginia Polytechnic Institute and State University 17 of 50

Simpson’s Rule

 for each interval pair

where is the number of pair intervals and

 is an even number of intervals.

f x() xd
x0

x2

∫
h
3
--- f 0 f 1 f 2+ +()=

f x() xd
a

b

∫
h
3
--- f 1 4 f 2 2 f 3 … f n 1++ + ++()=

n
h b a–() n()⁄=

n

Virginia Polytechnic Institute and State University 18 of 50

Composite Simpson’s Rule

In vector form this rule is,

where,

and

f x() xd
a

b

∫
h
3
---c f T=

c 1 4 2 … 2 4 1=

f f 1 f 2 f 3 … f n 1+
=

Virginia Polytechnic Institute and State University 19 of 50

Composite Simpson’s Rule

Truncation error of this evaluation is approximated by (Penny
and Lindfield),

where,

Et b a–()h4 f IV t
180
---------≈

a t b≤ ≤

Virginia Polytechnic Institute and State University 20 of 50

Matlab Built-in Functions

Matlab uses Newton-Cotes numerical techniques

Use higher degree polynomials (nth order)

Newton-Cotes formula (n=3)

Truncation error is, where,

f x() xd
a

b

∫
3h
8

------ f 0 3 f 1 3 f 2 f 3+ + +()=

3h5

80
------- f IV t() a t b≤ ≤

Virginia Polytechnic Institute and State University 21 of 50

Matlab Function ‘Quad’

quad(‘func’,a,b)

% ‘func’ is the function to be integrated
% a and b are the lower and upper limits of integration

• Uses a 2-panel, adaptive recursive Newton Cotes
integration method

• Good compromise in accuracy and speed

Virginia Polytechnic Institute and State University 22 of 50

Example of ‘Quad’ Function

% Matlab quad function use
%
t=clock; flops(0);

quadeval = quad('fsim',0,1.0) % invokes function

fprintf('Integral value %15.8f\n',quadeval)
fprintf('\ntime = %4.2f ...
 seconds flops = %6.0f\n',etime(clock,t),flops);

Integral value 0.33333799
time = 0.42 seconds flops = 2969

Virginia Tech (copyright A.A. Trani)

Sample Numerical Integration

22a

Virginia Tech (copyright A.A. Trani)

Runoff in Civil Engineering Applications

All infrastructure generates runoff
(examples: parking lots, runways at airports,

large structures)

22b

Virginia Tech (copyright A.A. Trani)

Function to Calculate Runoff

22c

Virginia Tech (copyright A.A. Trani)

Runoff Function

22d

Virginia Tech (copyright A.A. Trani)

Script to Calculate the Area Under the
Curve

22e

Virginia Tech (copyright A.A. Trani)

Calculations in Matlab
• Find the volume of water generated in the design

thunderstorm (say 100 year event)

Area under the
curve is the

volume of water going
into a pond

22f

Virginia Tech (A.A. Trani)

Trapezoidal Rule
• Approximates the function f(x) using small trapezoids

spanning the range between a and b

• The accuracy improves when the interval size () is
small

Δx

22g

Virginia Tech (A.A. Trani)

Example: Runoff Calculation Using the
Trapezoidal Rule

22h

Generates values of parameter t
(time) from t=o to t=4500 seconds

Virginia Tech (A.A. Trani)

Example: Runoff Calculation Using the
Trapezoidal Rule (2)

22i

Generates values of runoff
from t=o to t=4500 seconds

Virginia Tech (A.A. Trani)

Example: Runoff Calculation Using the
Trapezoidal Rule (3)

22j

Volume of water accumulated is
 25,652.45 cubic meters

Note: This calculation
is very accurate because
we defined a very small

interval ()Δx

Virginia Polytechnic Institute and State University 23 of 50

Differential Eqn. Background

Matlab offers several procedures and built-in functions to
address these methods:

• Standard ODE solvers

• Stiff ODE solvers

Virginia Polytechnic Institute and State University 24 of 50

Differential Equations

We want to solve dynamic systems of the form,

Use a Taylor series expansion,

The term is the reminder (includes all others)

df
dt
----- f y t,()=

y t0 h+() y t0() y ′ t0()h y″ Φ()h2

2
----+ +=

y″ Φ()h2

2

Virginia Polytechnic Institute and State University 25 of 50

Euler Method

Simplest of all methods of solving an ODE

Considers two terms in Taylor series expansion

Most innacurate of all

In general for any n interval of solution,

 for error

y t0 h+() y t0() y ′ t0()h+=

yn 1+ yn hyn

′+= n 0 1 2 …, , ,= ∞h2

Virginia Polytechnic Institute and State University 26 of 50

Geometric Interpretation

x

h
y0

y
y=f(x)

y1

Error
y’
0

Virginia Polytechnic Institute and State University 27 of 50

Matlab Functions

Runge Kutta Methods

Define various intermediate functions:

 error

k1 hf tn yn,()=

k2 hf tn h 2⁄+ yn k1 2⁄+,()=

k3 hf tn h 2⁄+ yn k2 2⁄+,()=

k4 hf tn h+ yn k3+,()=

yn 1+ yn k1 2k2 2k3 k4+ + +() 6⁄+= ∞h4

Virginia Polytechnic Institute and State University 28 of 50

Matlab Function ‘ode’

[t,y] = ode23('func',tspan,y0); % low order method

[t,y] = ode45('func',tspan,y0); % med. order method

[t,y] = ode113('func',tspan,y0); % var. order method

% ‘func’ is the function to be integrated
% tspan is a vector with lower and upper limits of

integration
% y0 is the initial value of the state variables

Virginia Polytechnic Institute and State University 29 of 50

Matlab Function ‘odexxs’

[t,y] = ode23s('func',tspan,y0); % stiff low order

[t,y] = ode45s('func',tspan,y0); % stiff med. order

[t,y] = ode113s('func',tspan,y0); % stiff var. order

% ‘func’ is the function to be integrated
% tspan is a vector with lower and upper limits of

integration
% y0 is the initial value of the state variables

Virginia Polytechnic Institute and State University 30 of 50

What is a Stiff ODE?

Those whose rate variables display very rapid changes over
time

Many systems of differential equations display this behavior

• A fast rate vs a slow varying one

• A very fast rate of change

In most systems modeling and analysis stiff system do not
pose a problem.

Virginia Polytechnic Institute and State University 31 of 50

Solution of Differential Equations in MATLAB

There are few steps needed to solve ODE in MATLAB:

1) Write the differential equation(s) as a set of first order
ODEs

2) Perform necessary variable substitutions and write a
MATLAB function to compute the derivatives of the
state variables

This function returns the derivatives of every state of the
system

3) Use anyone of the MATLAB ODE solvers and invoke
the function

Virginia Polytechnic Institute and State University 32 of 50

MATLAB Scripting Approach

The system is represented by ODE

Create two M files: a) a main file and b) a function file

MATLAB Script

for Main File

invoke function
file

MATLAB Script
Function file

 function to be
evaluated

Virginia Polytechnic Institute and State University 33 of 50

Sample Experiment

Suppose that we would like to decsribe the process of
cooling of water from near boiling point to room
temperature. The figure shows our observations.

0 5 10 15 20 25 30 35 40
30

40

50

60

70

80

90

100

Time (min)

Virginia Polytechnic Institute and State University 34 of 50

First Law of Cooling ODE

Observations:

• The temperature drops very quickly initially

• The temperature decay (rate of change) tapers as the
water and room temperatures get closer

• The temperature approaches to the room temperature as
time goes to infinity

Write down possible solutions or forms of the solution

Virginia Polytechnic Institute and State University 35 of 50

Proposed Model

Suppose the model is of the form,

where:

 is a constant of proportionality in the experiment

 is the temperature of the water (deg C)

 is the room temperature (deg C)

td
dT

H– T T a–()=

H

T

T a

Virginia Polytechnic Institute and State University 36 of 50

Step 1 in ODE Solution

1) Write the differential equation(s) as a set of first order
ODEs

This is already in place since the system has only one
ODE to start

td
dT

H– T T a–()=

Virginia Polytechnic Institute and State University 37 of 50

Step 2 in ODE Solution

2) Perform necessary variable substitutions and write a
MATLAB function to compute the derivatives of the
state variables

This function returns the derivatives of every state of the
system

In this case we write two M-files:

1) one initializes the problem (state variable definition at
time zero)

2) one function to computer the derivative of T
(temperature)

Virginia Polytechnic Institute and State University 38 of 50

MATLAB Equations (Main Routine)

% Define Initial Conditions of the Problem
global Ta H % define global variables

To = 100; % To is the initial temperature of the water
to = 0.0; % to is the initial time to solve this equation
tf = 40; % tf is the final time (min)
Tspan = [to tf];% Spanning time for the ODE solution

% Define T ambient (Ta) and cooling constant (H)
Ta = 30; % ambient temperature (deg C)
H = 0.10; % Cooling constant (1/min)

Virginia Polytechnic Institute and State University 39 of 50

Step 3 in ODE Solution

3) Invoke the ODE solver in MATLAB

% Use Runge-Kutta 3rd order solver
[t,T] = ode23('ftem',Tspan,To);

% Plot the results of the numerical integration procedure

plot(t,T)
xlabel('Time (min)')
ylabel('Temperature (deg C)')
grid

Virginia Polytechnic Institute and State University 40 of 50

MATLAB Function ‘ftem.m’

This function estimates the value of the rate of change of
the ODE.
% First Order Differential Equation Function

function tprime = ftem(t,T)
global Ta H
tprime = - H * (T - Ta);

Note: global variables are “shared” by all functions in the
workspace

Virginia Polytechnic Institute and State University 41 of 50

Use of the Hold Command

Here we use the hold command to plot two solutions to
the first order differential equation shown previously

0 5 10 15 20 25 30 35 40 45 50
30

40

50

60

70

80

90

100

Time (min)

T
em

pe
ra

tu
re

 (
de

g
C

)

Virginia Tech (A.A. Trani)

Example: Use of ODE Solvers
Train Kinematics

2nd Order Dynamic System

41a

Virginia Tech (A.A. Trani)

Vehicle Kinematics

• An engineer collects data during the certification of
the new high-speed train to be introduced in the
Northeast Corridor in the United States

• The data collected records train acceleration (a) vs.
velocity (V)

• The data is presented in the table
Train Velocity (m/s) Maximum Train Acceleration

(m/s2)

0.00 2.1

20 1.56

30 1.30

40 1.06

50 0.76

60 0.51

80 0.00

41b

Virginia Tech (A.A. Trani)

Vehicle Kinematics (2)
• Use a Matlab script to find the best first-order polynomial

that fits the acceleration vs. train speed data (i.e., use the
“polyfit” command)

• The resulting polynomial will be of the form:

• where A, B and C are the polynomial coefficients found and
V is the train speed.

Train Velocity (m/s) Maximum Train Acceleration (m/s2)

0.00 2.1

20 1.56

30 1.30

40 1.06

50 0.76

60 0.51

80 0.00

dV
dt

= A + BV Equation (1)

41c

Virginia Tech (A.A. Trani)

1

Vehicle Kinematics (3)
Matlab Script to Find Best Polynomial

Train Velocity (m/s) Maximum Train Acceleration
(m/s2)

0.00 2.1

20 1.56

30 1.30

40 1.06

50 0.76

60 0.51

80 0.00

Calculates coefficients

dV
dt

= A + BV

% Fits a first-order polynomial

41d

Virginia Tech (A.A. Trani)

Regression Coefficients for
Acceleration Function

• B = -0.0268; % coefficient of acceleration function (1st power)

• A = 2.0997; % coefficient of acceleration function (constant)

dV
dt

= A + BV

41e

Virginia Tech (A.A. Trani)

Other Tasks

• Using the Matlab Ordinary Differential Equation solver ODE45,
to solve numerically the differential equation (1) as a function of
time

• This problem is similar to the Water Cooling problem discussed
in class except that the differential equation is a little more
complex

• Use as initial conditions zero for the train speed and solve
numerically the speed of the train for 200 seconds

• Plot the velocity profile of the high-speed train as a function of
time. How fast is the train going after 200 seconds?

41f

Virginia Tech (A.A. Trani)

More Tasks (2)

• Add code to the script and function containing the differential equation created
in Task 2 to calculate the distance traveled by the train. Recall that distance (S)
can be obtained from the first order differential equation:

• The solution to this problem requires solving two first order equations (1-2).
Refer to the mass-spring damper system discussed in class to help you setup
these equations. You can see how these two equations are coupled as follows:

• where: be the speed of the train, be the position of the train and and
be the derivatives of speed and position

dS
dt

=V

x1 =
dV
dt

= A + Bx1

x2 = x1 =
dS
dt

Equation (2)

x1 x2

41g

Virginia Tech (A.A. Trani)

Matlab Main File to Solve Problem

41h

Virginia Tech (A.A. Trani)

Matlab Function File (trainDynamics.m)

Note: I setup the problem for a quadratic model
but the coefficient of x2 is zero. The acceleration is

linear with speed.

41i

Virginia Tech (A.A. Trani)

Matlab Main File Output

The train travels at 78 m/s
after 200 seconds

41j

Virginia Tech (A.A. Trani)

Highway Maintenance Model
Example of Higher-Order ODE

Conserved System

41k

Virginia Tech (A.A. Trani)

Highway Maintenance

• Departments of Transportation are
responsible for keeping up many of
the roads and highways that we use
every day

• Maintenance requires substantial
amounts of State money

• Money can be invested in two types
of maintenance actions:

• Ordinary - fix cracks, rutting

• Replacement - repaving
operations

41l

Virginia Tech (A.A. Trani)

Highways According to their Condition

Good Highways
(PSH)

Deficient Highways
(PDFH)

Deteriorated Highways
(PDTH)

4 years

4 years

Ordinary
maintenace

Replacement
maintenace

41m

Virginia Polytechnic Institute and State University 42 of 50

Higher-Order Dynamic Systems

Higher order system can be solved in a simular way using
MATLAB recognizing that array variables that contain
more than one state variable

• The following highway maintenance example illustrates
this (adapted from Drew, 1997)

• The highway maintenance example solves three coupled
ODEs to predict the state of the State highways system

• The model assumes investments in ordinary
vs.replacement maintenance actions to predict the
number of lane-miles of highway in three possible states
over time (sufficient,deficient and deteriorating
highways)

Virginia Polytechnic Institute and State University 43 of 50

Highway Maintenance Model (main file)

% Highway Maintenance Model
global HME FEOM OMC FEMR MRC HDETT HAT
% Define constants of the problem
HME = 5E7; % Hwy maintenance expenditure ($/yr)
FEOM = 0.5; % Fract. of expenditures to ordinary

maint (%)
OMC = 5E5; % Ordinary maintenance cost($/lane-

mile)
MRC = 2E6; % Maintenance replacement action ($/

la-mi)
FEMR = 0.5; % Frac of expenditures for maint.

replacement (%)
HAT = 4; % Hwy aging time (yr)
HDETT = 8; % Hwy deterioration time (yr)

Virginia Polytechnic Institute and State University 44 of 50

Highway Maintenance Model (main file)

% Define Initial Conditions of the Problem

yN = [200 200 0];% yN defines intial conditions for...
state variables

to = 0.0; % to is the initial time to solve this...
equation (yr)

tf = 10.0; % tf is the final time (yr)
tspan = [to tf]

% Invoke the ordinary differential equation solver
[t,y] = ode23('fhwy3_rev',tspan,yN);

Virginia Polytechnic Institute and State University 45 of 50

Highway Maintenance Model (main file)

% Plot the results of the numerical integration procedure
subplot(3,1,1) % plots PSH in the top half of the...

page

plot(t,y(:,1)) % plots all elements of the first...
column of y

xlabel('Time (years)')
ylabel('PSH (la-mi)');
grid

Virginia Polytechnic Institute and State University 46 of 50

Highway Maintenance Model

subplot(3,1,2) % plots I in the bottom half of the page
plot(t,y(:,2)) % plots all elements of the second

column of y
xlabel('Time (years)')
ylabel('PDTH (la-mi)');
grid

subplot(3,1,3) % plots PDTH in the bottom third of
the page

plot(t,y(:,3)) % plots all elements of the first column
of y

xlabel('Time (years)')
ylabel('PDFH (la-mi)')
grid

Virginia Polytechnic Institute and State University 47 of 50

Function File (fhwy3_rev)

function yprime = fhwy3_rev(t,y)
global HME FEOM OMC FEMR MRC HDETT HAT

% define rate equation(s)
HD = y(2) / HDETT; % Hwy deteriorating (lane-mi/yr)
HA = y(1) / HAT; % Hwy aging (lane-mi/yr)

HOM = HME * (FEOM / OMC);
% Highway with ordinary maintenance (lane-mi/yr)

HMR = HME * (FEMR / MRC);
% Highway with maint replacement (lane-mi/yr)

Virginia Polytechnic Institute and State University 48 of 50

Function File (fhwy3_rev)

% Define the rate equations (3 rate variables representing
PSH, PDFH and PDTH)

%
% PSH - Physically sufficient highways (y1)
% PDFH - Physically defficient highways
% PDTH - Physically deteriorated highways

% Model equivalencies for state variables

% y1 = PSH
% y2 = PDFH
% y3 = PDTH

Virginia Polytechnic Institute and State University 49 of 50

Function File (fhwy3_rev)

yprime(1) = HOM + HMR - HA;
% Rate of change of PSH (la-mi/yr)

yprime(2) = HA - HD - HOM ;
% Rate of change of PDFH (la-mi/yr)

yprime(3) = HD - HMR;
% Rate of change of PDTH (la-mi/yr)

yprime=yprime'; % returns a column vector to main file

Virginia Polytechnic Institute and State University 50 of 50

Sample Output of the Highway Maintenance Model

0 1 2 3 4 5 6 7 8 9 10
200

220

240

260

Time (years)

P
S

H
 (l

a-
m

i)

0 1 2 3 4 5 6 7 8 9 10
50

100

150

200

Time (years)

P
D

T
H

 (l
a-

m
i)

0 1 2 3 4 5 6 7 8 9 10
200

250

300

350

Time (years)

P
D

F
H

 (l
a-

m
i)

CEE 3804 - Computer Applications in CEE

Spring-Mass-Damper (SMD) System

• Spring-mass-damper systems have many
applications in mechanical and civil
engineering systems

51

CEE 3804 - Computer Applications in CEE

Equations to Describe the SMD System

52

y′ 1 = y2

y′ 2 =
F(t)
m

−
k
m

y1 −
b
m

y2

F(t)
y1

y2

External force (N)

SMD displacement (m)

SMD speed (m/s)

Mass (kilograms)m
b Damper constant (N / (m/s))

Spring constant (N / m)k

CEE 3804 - Computer Applications in CEE

Matlab Implementation of the SMD System

53

Main File

Function File
With ODE equations

CEE 3804 - Computer Applications in CEE

Numerical Solution of the SMD System

54

Function File
With ODE equations

Main File

CEE 3804 - Computer Applications in CEE

Numerical Solution of the SMD System

55

CEE 3804 - Computer Applications in CEE

Numerical Solution of the SMD System

56

CEE 3804 - Computer Applications in CEE

Perform Changes to Damper Constant System

57

B = 5000 N/(m/s)B = 5000 N/(m/s)

