
Sept. 2013 CEE 3804 Faculty

Language Fundamentals

VBA Concepts

Language Fundamentals

1. Statements
2. Data Types
3. Variables and Constants
4. Functions
5. Subroutines

2

Data Types

1. Numeric
Integer
Long integer
Single-precision
Double-precision
Currency

2. Character Strings
Variable length
Fixed length

3. Variant in VBA

3

Numeric Data Types, VBA
• Integers in VBA, Short in VB*

• Two bytes
• 32,767 to -32,768

• Long Integers in VBA, Integers in VB*
• Four bytes
• 2,147,483,647 to -2,147,483,648

• Single Precision
• Four bytes
• -3.402833E+38 to -1.40129E-45 negative
• 1.40129E-45 to 3.402823E+32 positive

• Double Precision
• Eight bytes
• -1.7977E+308 to -4.9407E-324 negative
• 4.9407E-324 to 1.7977E+308 positive

* Integer types in VB are larger than same named types in VBA
4

Integers
 Integers are whole numbers
 They may be either positive or negative
 The range of VBA integers is -32767 to +32787
 If the number if positive it is not necessary to put a +

sign in front of the number
 You cannot use commas to separate groups of digits in

an integer
 Examples of valid integers are:

 1234 -13550 1667 -340
 15 -30000 -5002 221

 Examples of invalid integers are:

-50000 35000 3,456 3.123

5

Long Integers
 A long integer can hold a whole number but it can store

a larger range of values
 VBA uses “Long” for this data type, VB uses “Integer”
 The range of values that can be stored in a long integer

is -2,147,483,648 to +2,147,483,648
 To declare a long integer variable you use the following

declaration statement

DIM x as Long

 Examples of some long integer constants are the
following

32895 65483 -68957
 56658 -1236978 58960321

6

Single Precision

 A real number is a number which contains
a decimal point. In Basic real numbers can
be represented as single precision
numbers or as double precision numbers

 Real numbers cannot be represented in a
computer exactly - only approximately

 Single precision numbers are accurate to
the first seven digits

 4 bytes of storage space

7

Single Precision Numbers

 Single precision numbers can be written using
fixed point notation or exponential notation

 The range of single precision numbers is from
approximately -3.4E+38 to +3.4E+38

 Examples of single precision numbers are:

 102.3 0.00034 5678.90
 10.5e-3 100E10 -5.67e-35
 22! -35! 12.4e-27

8

Double Precision Numbers
 Double precision numbers are accurate to 15 or

16 digits
 8 bytes of storage space
 The range of double precision numbers is from

approximately -1.8D+308 to +1.8D-308
 The letter D is used to represent the exponent

(instead of the letter E)
 Examples of double precision numbers are:

 12345.6789012345 0.000012345036953
 10.24D-300 12.687D+300

9

Currency
 This data type is designed specifically to store

financial information

 Currency values are in fixed-point format with up
to 15 digits before the decimal and 4 digits after
the decimal point

 The range of numbers is from
922,337,203,685,477.5805, to
+922,337,203,685,477.5807

10

Strings

 There are two types of stings:
 variable length
 fixed length

 In a variable length string, the stored string can
be of any length (up to 65,500 characters)

 Sequence of alphanumeric characters enclosed
by double quotation marks

 “What is your name?”
“Enter yield strength of steel”

11

Strings

 A fixed length string stores a string value of a
predetermined length.

 You declare the fixed length to be from 0 to 32,767
characters.

 The length of the string cannot change

12

Variant Data Type
 A variant is a data type that can store data of any

other type
 The stored value can be numeric, string, or date/time

information
 Visual Basic automatically converts a value stored in

a Variant variable to the necessary data type

Dim x as Variant
x = “35” ‘ string stored
Print 2 * x ‘ string converted

 A variant variable actually stores two pieces of
information: a value, and a code number indicating
its data type

13

Boolean Data Type
 Logical constants that take two possible

values:
– True
– False

 Example

14

Boolean Example

15

Variables
 Permit us to access data stored in memory through the use

of symbolic names
 Value of a variable can change during program execution
 Made up of the letters A to Z, digits 0 to 9, and underscore

(_).
 First character must be a letter of the alphabet. Cannot

begin with a number or a period
 Can be from 1 to 40 characters long
 Cannot match any reserved words such as

– If Then Input While

 May end with the symbols %, !, #, $, & and @

16

Variable Names

Suggestions for Naming Variables
 Use lower case character for first letter
 Use lowercase for remaining characters
 Uppercase for first letter of compound name

number firstRoot volume
 sum mean surfaceArea
 maxValue minValue counter

 BASIC is NOT type sensitive (be careful)
Number NUMBER NumBer number

are all considered to be the same
 Avoid short non-descriptive names

17

Declaring Variables

Dim x As Single
Dim y As Integer
Dim z1 AS String
Dim z2 AS String*10
Dim a AS Double
Dim z as Variant
Dim bigNum as Long
Dim dollars as Currency

NOTE: Type declaration characters take precedence

18

Forcing Declarations
 You can force all variables to be declared by

using the following statement:

Option Explicit

 The Option Explicit statement is placed in the
Declarations section.

 It requires that all variables be declared within
that form or module

19

Option Explicit

 If you try to use an undeclared variable, you
will get a “Variable not declared” error
message

 You can have Visual Basic automatically
place this statement in your program by
specifying it in the Environment menu

 Decreases possible program "bugs"

20

Example of Option Explicit

Note: all variables have to be defined in the function
Trapezoid because the “Option Explicit” setting

21

Type Declaration Characters

Special character at the end of a variable name which
indicates the type of variable
Data Type Type Declaration

 Character

Integer %
Long &
Single-precision !
Double-precision #
Currency @
String $

22

Type Declaration Characters

 Examples

count% total! Root!
sum# ssNum$ yourName$
errorFlag% longVal& bigNum&

car$, car%, car#, car&, car! are all different variables
in Visual Basic for Applications

23

Example of Type Declaration

Note: variable “sum” has an explicit type declaration character.
In this case sum is defined as 0.0 and VBA types 0#

24

Symbolic Constants
 Can be used in place of numeric or string values

 Const MAXSIZE = 50
 Dim xArray(MAXSIZE)

 Const BLACK = 0, BLUE = 1, WHITE = 15

 Const NUMCOLS = 5

 Try using all uppercase letters for symbolic constants

 In VB (not VBA) also declare data type as part of
constant declaration
Const MAXSIZE as integer=50
 Const PI as double = 3.1417

25

VarType Function
 Use the VarType function to inspect the variable

type in VBA

 Use:
VarType (varname)

Where: varname is the variable in question

26

VarType Function Codes

Boolean11

String8

Double5

Single4

Long3

Integer2

Variable TypeValue

27

VarType Example

First time
x is assigned

28

Computational Issues
 VBA code executes faster if variable

declarations are made explicitly
 Most computers today are optimized to do

floating point computations so “double”
variables do not add a great deal of CPU time in
execution

 In fact, declaring most variables as “double”
might produce faster executions times than
“single” variables

29

Example (No Variable Declarations)

30

Example (with Variable Declarations)

31

Common Errors
1. Arithmetic operations cannot be implied

z = 10(x1+2x2) ‘ illegal
z = 10*(x1+2*X2)
z = 10(x1+2x2) ‘ illegal

2. Two or more operators cannot occur consecutively
z = x + -y
z = x + (-y)

3. There must be an equal number of left and right parentheses

4. Arithmetic expression must accurately represent original sequence
of calculations

5. Variables appearing on right side of arithmetic expression must be
assigned values prior to their use.

32

Mixed Mode Arithmetic

• BASIC converts all operands in the statement so they have
the same precision as the most precise operand

 z = 3/4 0.75
 a% = 200/3 67
 a = 200/3 66.66666
 a# = 200/3 66.666666666666667
 a# = 200#/3 66.666666666666667

 In integer division operands are rounded to integers before
division and result are truncated

 a = 8.4/9 0
 a = 8.99/9 1
 a = 8/3 2

33

Comments
 A well written program is easy to understand by both

the programmer and users
 Comments are non-executable statements with

means that the computer ignores these statements
during program execution

 Comments enhance make your program more
readable

 Comments are an invaluable part of your program
 They assist you and others in understanding the logic

of the program

Rem -- This is a comment
‘ This is also a comment

34

March 07 CEE 3804 Faculty35

Effect of Declarations in
Functions and Subroutines

CEE 3804 Computer
Applications for
CEE

Modular Programming
 A consequence of top-down design is that the

problem is decomposed into smaller and simpler
sub-problems

 The program is broken up into a number of smaller
subprograms or modules

 This approach of designing programs as a series of
modules is called modular design

–

 A module is a small self-contained section of an
algorithm

 Modular design has a number of advantages

36

Advantages of Modular Design

 Modular programs are easier to write and
debug

 Each module can be written and tested
independently

 Modular programs are easier to debug
 Modules can be changes, rewritten or even

replaced
 Previously developed and tested modules can

be used in different programs
 Can develop a library of modules

37

Visual Basic Modules

 In Visual Basic a module is a source file which
can contain one or more procedure

 A procedure is either a subroutine or a function
 A module file can contain one or more

procedures
 The procedures in a module are global which

means that they can be invoked from anywhere
in the program

38

Recall Procedures in VBA
 There are two types of procedures (subprograms)

in Visual Basic

 Subroutines
– Sub End Sub

– Can return zero or more values. Cannot be used in as
expression

 Functions
– Function End Function

– Can return only one value. Can be used in expressions.
Similar to the Visual Basic built-in functions such as
Abs, Log, Sin

39

Functions
 A function consists of a block of instructions

that begins with the Function statement and
ends with an End Function

 Functions are invoked the same way as Visual
Basic built-in functions

 You specify the name of the function in
expressions, as arguments in statements or
other functions

 Can use a function in any place you can use a
built-in function

 Functions can only return one value

40

Functions
 Syntax

Function functionName (parmlist)

 functionName =

End Function

assign value
to functionName in
VBA. In VB, can use
return()

41

Functions
 Parameter list contains variables that will

receive values when the function is called
 These variables are also called formal

parameters
 In VBA, must have an assignment statement in

the function body that assigns a value to
functionName

 The value assigned to functionName is the
value returned from the function

 In VB, use the return() function, e.g. return(x)
will cause the function to return the value of x

42

Functions
 General Format

[Static][Private] Function funcName [parmlist] [As type]

 funcName = expression

End Function

funcName is the name of the function

parmlist is the list of formal parameters

type specifies the type of value

expression is any general expression that has the same data
type as funcName

43

Functions
 If no data type is defined, the default is Variant in VBA,

object in VB

Function Square (x as Single) As Single
 Square = x * x
End Function

 Function Square can be called as follows:
y = Square(x)
y = Square(10)
z = y * Square(x)

44

Preferred Approach
Function fName (parm1 As type, parm2 as type) As type

 Should explicitly indicate the type of each of the formal
parameters in the function

 Should explicitly indicate the type of value returned by the
function

 Should include comments near the top to indicate what the
function does, and also what it returns

 This makes it easier to understand exactly what the function
does and how it is to be used

45

Example of a Function
Function MaxOf3(a as Single, b as Single, c As Single) As Single
‘--
‘ Purpose:
‘ Determine the largest of three numbers
‘ Input Parameters:
‘ a - first number
‘ b - second number
‘ c - third number
‘ Returns:
‘ The largest of a, b an c
‘ ---

 Dim max as Single
 If a > b And a > c Then

 max = a
 Else If b > c Then

 max = b
 Else

 max = c
 End If

 MaxOf3 = max
 End Function

46

Invoking Functions
 Functions can be used in expressions just like

variables. Consider the function

Function Log10(x as Double) as Double
 This function can be called as

y = Log10(3.4)
y = 2.3 * z * Log10(w)
y = a + Log10(b)

 The function MaxOf3 can be called as
x = MaxOf3(a,b,c)
w = z + MaxOf3(2.0, 50.0, x)
y = MaxOf3(2. * x, a, 4./z)

47

Subroutines
 Block of instructions that begins with a Sub

statement and ends with an End Sub statement

 When a Sub procedure is called, control is
transferred to the subroutine and instructions
within the subroutine are executed

 Control is transferred back to the calling
program when an End Sub statement or an Exit
Sub statement is executed

48

Subroutines
 Syntax

Sub subName (parmlist)

End Sub

 Parameter list contains variables that will receive values from the
calling program

 These variables are also called formal parameters
 Items in the parameter list are separated by commas
 Some of these variables are input variables while others are output

variables.

49

Declaring a Sub Procedure
 General syntax
[Static][Private] Sub subName[parmlist]
 instructions
[Exit Sub]
 instructions

End Sub

subName is the name of the Sub procedure
parmlist is the list of formal parameters
instructions is a block of Visual Basic instructions

50

Example of a Subroutine
Sub MaxOf3(a as Single,b as Single,c As Single, max As Single)
‘--
‘ Purpose:
‘ Determines the largest of three numbers
‘ Input Parameters:
‘ a - first number
‘ b - second number
‘ c - third number
‘ Output Parameters:
‘ max - the largest of a, b an c
‘ ---

 If a > b And a > c Then
 max = a

 Else If b > c Then
 max = b

 Else
 max = c

 End If
End Sub

51

Calling Subroutines
Call subName (argument list)

 Call statement transfers control from calling
program to subroutine

 Argument list specifies the variables that are
passed to the subroutine

52

Calling Subroutines
 There is a one-to-one correspondence between

variables in the parameter list and arguments in
the argument list

Sub MaxOf3Numbers(a,b,c,max)

Call MaxOf3Numbers(x,y,z,yMax)

a = x, b = y, x = z, max = yMax

53

Calling Subroutines
 Arguments in the argument list must correspond in number and

type to the parameters in the parameter list

 If they are not in the same order or of the same type, then the
values passed to the subprogram from the calling program will be
incorrect

 Usually the Visual Basic compiler will give an error message

Call MaxOf3Numbers(x,y,z)
Call MaxOf3Numbers(1.,2.,4. “AC”)

54

Differences Between Subroutines and
Functions

 Subroutines cannot be used in expressions
 Subroutines can return zero or more values
 Functions can only return one value
 Functions can be used in expressions
 To call a subroutine we have to use a Call

statement in VBA, or simply the subroutine name in
VB

55

Differences Between Subroutines and
Functions

 Parameter list in functions works the same as for
subroutines

 Static and Private keywords work the same as they do
with subroutines

 Exit Function is similar to Exit Sub instruction
 Main difference is that a function assigns a value to the

name of the function itself
 To call a function we do not use a call statement
 We invoke a function in the same was as we do one of

the Visual Basic built-in functions

56

Passing Arguments
 Two fundamental rules for passing arguments

1. Number of arguments in argument list and the number of formal
parameters in the parameter list must both be the same

2. The data type of each argument and its corresponding formal
parameter must match

 The most common mistakes when calling procedures are: too few
or too many arguments, or passing arguments that are not of the
same type

57

Calling Procedures
 There are two ways in which arguments are

passed to procedures

1. Call by value

2. Call by reference

58

Call By Reference
 When an argument is passed by reference the

program passes the address of the variable to
the procedure

 The procedure can use this address to access
the variable and change it contents

 Call by reference is useful if you need to receive
results from the procedure

 You should be careful when using call by
reference since the procedure can change the
value of the variable which can have adverse
side effects in your programs

59

Call by Value
 When an argument is passed by value the compiler

makes a copy of the argument and then passes this
copy to the procedure

 The procedure can change the value of the argument
but any changes it makes affects the local copy and not
the original variable

 Call by value is useful for sending “input” arguments
to a procedure

 There are several advantages to call by value
 Errors are localized since changes are made to the copy
 Side effects are minimized

60

Passing Arguments
 The default for VBA is call by reference
 In VB and VB.Net use the ByVal or ByRef to

pass by value or reference respectively.
Call MaxOf3(byval x as integer, byval y as
integer, byval z as integer, byref max as
integer)

∗ In the above example, x, y and z are passed by value.
∗ The subroutine cannot change the value of x, y, and

z.
∗ The variable max is passed by reference since the

subroutine needs to change the value of max.

61

Passing Arguments By Value
 When the actual argument is a literal, a constant

or an expression, parameter passing is by value
 In this case, Visual Basic passes the value of the

parameter rather than the address
 The value of the expression is calculated, the

result is stored in a temporary location and the
address of this temporary location is passed to
the procedure

62

Passing Parameters By Value
 You can pass parameters by value using parenthesis for the

variable in question
 Function Square ((x) as Single) As Single
 The parameter x is now passed to the procedure by value

 If you use VB 6.0 or VB.Net
 In VB 6.0 or VB.NET you place the ByVal keyword before the

formal parameter in the procedure declaration
– Function Square (ByVal x as Single) As Single

 The parameter x is now passed to the procedure by value
Sub MaxOf3Numbers(ByVal a as Single, ByVal b as Single,

ByVal c as Single, byref max as Single)

 The parameters a, b and c are now passed to the procedure by
value

63

VBA Example (Chapra’s Book pages 50-51)

64

Example (MsgBox inside Sub ValRef)

65

Example (MsgBox after Sub ValRef)

66

Storage Class, Scope and Visibility
 There are two attributes associated with each

variable
1. data type

 2. storage class

 The data type tells the VBA how much memory
should be assigned for the variable

 The storage class tells VBA how the variable is
to be stored

 The storage class also determines the visibility
and scope of the variable

67

Levels of Variable Scope

Within a
Procedure

Within a Module

All procedures in all Modules
In a Worksheet

68

Scope and Declaration
Procedure (or local) variables
 Variables declared within a procedure
 Created when procedure starts
 Destroyed when procedure terminates

Module Variables
 Variables declared at the beginning of a module
 Before the first procedure
 Can be accessed by all procedures within the module
 Created when module starts
 Destroyed when module terminates

Workbook (or Global) variables
 Variables that can be accessed by all procedures in all modules
 Created using a Public statement before the first procedure in a module

69

Local Variables
 Variables declared within the body of a function

or subroutine are local variables
 Local variables are visible to the procedure but

not to other procedures
 Local variables are created when the procedure

is executed and are destroyed when the
procedure terminates

 Local variables exist only during the duration of
the procedure

 Local variables are reinitialized each time the
procedure is executed

70

Static Variables
 Static variables are permanent variables, that

is they remain in existence for the entire
duration of the program

 You can define individual variables as static
or you can specify that all variables in a
procedure to be static

71

Static Variables
 To declare individual variables as static you use

the following syntax

Sub MySub (b as Single,c as Single)
 Static x, y, z as Single
 Static myAddress as String
 Static a as Double

 Static variable retain their values between
subroutine calls

 Static variables remain in existence for the
entire duration of the program

72

Static Variables
 Static variables are only initialized once. They

are not reinitialized
 To define all variables in a procedure to be

static you can use the following syntax

Sub MySub(a as Single) As Static
 Dim x,y,z as Single
 Dim c,d as String

 All local variables in the subroutine are static
and retain their values between calls to the
subroutine

73

Global Variables
 You should limit the number of global variables

in your program
 Global variables are accessible to all

procedures
 Programs containing global variables are

difficult to maintain and are prone to errors
 Since all procedures have access to global

variables an procedure can unknowingly
change the value of a global variable leading to
problems elsewhere which is difficult to trace.

74

Global Variables
 Global variables limit the portability of your

code
 If you have a global variable and a local variable

of the same name then all references to that
variable inside the procedure apply to the local
variable and not the global variable

75

Public and Private Procedures
 Procedures defined at the form level are

available throughout the form
 Procedures defined at the module level are

available throughout the application
 Procedures in other modules cannot invoke a

procedure declared as Private
 By using Private we can reduce the risk of

name conflicts
 Use Public to make a form level procedure

accessible outside the form

76

