CEE 3804 Final Exam (Spring 2021)

Computer Applications in CEE

Open Book and Notes (Take Home)

Your Name \qquad

Your Signature * \qquad

* The answers in this exam are the product of my own work. I certify that I have not received nor I have provided help to others while taking this examination.

Directions:

Solve the problems. Copy and paste the Matlab and VBA code and solutions such as graphs in a Word Document and convert to a single PDF file. Make sure your code is not too small for me to be able to read it.

Problem 1 (25 points)

Using your knowledge of Simulink, solve the differential equation of the cooling process of Hot Mix Asphalt (HMA) - commonly used material to pave roads. The Simulink model should solve the firstorder differential equation that models the temperature variation of Hot Mix Asphalt (HMA) as a function of time. The differential equation is:
$\frac{d T}{d t}=-H\left(T-T_{a}\right)^{n}$
subject to initial conditions such that:
$T(t=0)=T_{o}$
where:
$H=$ cooling constant of the asphalt mixture
$H=0.040$ (1/minute)
$T=$ Temperature of the asphalt mixture (deg. C)
$T_{0}=$ Initial Temperature of the asphalt mixture (deg. C)
$T_{a}=$ Ambient Temperature (deg. C)
$n=$ empirical constant (dimensionless)

Task 1

Create a Simulink model to model the HMA cooling process.

Task 2

Run the Simulink model created in Task 1. Verify with solutions obtained in Problem 1 that the model works as expected. The ambient temperature during HMA mixture lay down is 9 deg . C and the initial temperature of the asphalt mixture is 185 deg. C at the site. Empirical lab analysis reveals a value of n to be 0.86 .
a) Export the state variables to the Simulink model to the Matlab and plot the HMA temperature vs. time (a plot using the Simulink scope is not acceptable for this task). Label accordingly.
b) Using the model developed, find the time for the HMA mixture to reach 5% above the ambient temperature. You can do this graphically if desired.

Task 3

Verify the solution of the Simulink model developed by performing steady-state hand-calculations for the problem.

Problem 2 (25 points)

A common model used in engineering and meteorology to estimate the temperature (T), density (ρ) and pressure (P) in the atmosphere is shown below. The model consists of three equations to estimate temperature, density and pressure. The metric units in this model are all consistent.
$T=T_{0}+\lambda\left(h-h_{o}\right)$
where:
$T=$ air temperature (deg. Kelvin)
$T_{0}=$ air temperature at sea level (deg. Kelvin)
$\lambda=$ is the temperature lapse rate (i.e., change) with altitude (deg. Kelvin per meter)
$h=$ is the altitude (in meters) at which we want to know the atmospheric variables
$h_{0}=$ is the value of the sea level reference altitude (meters)
$\rho=\rho_{0}\left(\frac{T}{T_{0}}\right)^{\left(\frac{-g}{R \lambda}-1\right)}$
where:
$\rho=$ is the air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\rho_{0}=$ is the sea level air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$g=$ is the gravity constant $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$R=$ is a universal gas constant ($\mathrm{N}-\mathrm{m} / \mathrm{deg} . \mathrm{K}$)
$T=$ air temperature (deg. Kelvin)
$T_{0}=$ air temperature at sea level (deg. Kelvin)
also
$P=P_{o}\left(\frac{\rho}{\rho_{0}}\right)\left(\frac{T}{T_{0}}\right)$
where:
$P=$ is the atmospheric pressure at altitude $\left(\mathrm{N} / \mathrm{m}^{2}\right)$
$P_{0}=$ is the atmospheric pressure at sea level conditions ($\mathrm{N} / \mathrm{m}^{2}$)
$\rho=$ is the air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\rho_{0}=$ is the sea level air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$T=$ air temperature (deg. Kelvin), and
$T_{0}=$ air temperature at sea level (deg. Kelvin)
The numerical values of sea level conditions are given in the table below:

Table 1. Numerical Constants of Standard Atmospheric Model.

Constant	Value
T_{0}	288 deg. Kelvin
ρ_{0}	$1.225 \mathrm{~kg} / \mathrm{m}^{3}$
P_{0}	$101,325 \mathrm{~N} / \mathrm{m}^{2}$
λ	$-0.0065 \mathrm{Kelvin} / \mathrm{meter}$
R	$287 \mathrm{~N}-\mathrm{m} / \mathrm{deg} . \mathrm{K}$
g	$9.81 \mathrm{~m} / \mathrm{s}^{2}$
h_{0}	Mean sea level condition (0 meters)

Task 1

Create a Matlab function that estimates the values of temperature (T), density (ρ) and pressure (P) in the atmosphere for a given altitude (h). In this analysis assume the mean value of the reference altitude (h_{0}) is zero. Your function has 3 outputs and one input.

Test your function with values of $h=0$ and 5000 meters. State the values of temperature (T), density (ρ) and pressure (P) in the atmosphere.

Task 2

Create a Matlab script and use (i.e., call) the function created in Task 1. The script should do the following:
a) Create a vector of altitudes ranging from sea level conditions to 13,000 meters at steps of 250 meters.
b) Estimate the values of temperature (T), density (ρ) and pressure (P) in the atmosphere for a given altitude (h).
c) Plot the results in three viewports on the same figure (one figure) to show the variations of (T), (ρ) and (P) with altitude altitude.

Task 3

Improve the script created in Task 2 to find and plot (in a separate figure) the values of air density below $0.60 \mathrm{~kg} / \mathrm{m}^{3}$ against altitude. State the altitude at which the density is equal to $0.60 \mathrm{~kg} / \mathrm{m}^{3}$. Use interpolation functions if necessary.

Include screen captures of Matlab code required to create the function and the script itself.

Problem 3 (25 points)

Task 1

Using a variation of the temperature equation of the atmospheric model described in Problem 2 (and partially repeated below), create a function in Microsoft Excel to estimate the atmospheric temperature (T) given the altitude (h) above sea level. The units in this model are all consistent and are metric units. Use the values needed from Table 1 in solving this problem.
$T=\left\{\begin{array}{l}T_{0}+\lambda\left(h-h_{o}\right) \quad \text { if } h \leq 11,000 \mathrm{~m} \\ 216.5 \mathrm{deg} . \mathrm{K} \text { if } h>11,000 \mathrm{~m}\end{array}\right.$
where:
$T=$ air temperature (deg. Kelvin)
$T_{0}=$ air temperature at sea level (deg. Kelvin)
$\lambda=$ is the temperature lapse rate (i.e., change) with altitude (deg. Kelvin per meter)
$h=$ is the altitude (in meters) at which we want to know the atmospheric variables
$h_{0}=$ is the value of the sea level reference altitude (meters)

Task 2

Use Excel to test the function created in Task 1. Create a column of altitude values ranging from 0 to 13,000 meters at intervals of 250 meters. Use the Excel function created in Task 1 to calculate the value of temperature for each altitude included in the altitude column.

Include screen the code required to create the Excel function.

Problem 4 (25 points)

The following linear programming problem has been developed to predict resource allocation at a company.
$\operatorname{Max} \mathrm{Z}=380 x_{1}+200 x_{2}$ subject to:
$\mathrm{x}_{1} \leq 100$
$230 x_{1}+120 x_{2} \leq 44000$
$10 x_{1}+20 x_{2}<5400$
x_{1} and $x_{2} \geq 0$

Task 1

Convert the problem shown above into standard (canonical) form to be solved by hand using the Simplex Method. Write down the transformed equations and add slack and artificial variables as needed.

Task 2

Use the manual steps of the Simplex Method to solve this problem. Indicate the values of all the variables in every table. Indicate the value of the objective function Z in every table. This task requires hand calculations. Show me all the tableaus.

Task 3

Solve the problem using Excel Solver to verify your answer.

