
Excel Macros and VBA

CEE3804 Computer
Applications for Civil
and Environmental
Engineers



Fall 2007CEE 38042

Topics to be Covered

 Excel Macros
 Understanding and making use of VBA
 Basics of VBA

 Using code modules
 Understanding procedures
 Interacting with the user

 Creating useful forms
 Adjusting form layout
 Using form and control events



Fall 2007CEE 38043

Macros
Definition

 A macro is:
 a series of commands recorded within the user interface

and wrapped into a single action

 A procedure is:
 is a series of actions but, unlike macros, a procedure is

written from scratch with the Visual Basic for
Applications (VBA) programming language

 In summary:
 a series of commands is called a macro when it is

recorded, however, a macro is a procedure within the
VBA world



Fall 2007CEE 38044

Macros
Why use Macros?

 Why use macros?:
 to simplify a series of commands by

automating the task
 simplify complex tasks
 to learn how the VBA language lends itself to

the Excel environment



Fall 2007CEE 38045

Macros
Recording Macros

 Recording macros:
 Tools/Macros/Record New Macro
 Macro recorder is impartial:

– should map out exactly what you are trying to do
 overall goal of macro
 cells that will be selected
 data required by macro
 menu command to accomplish task
 workbooks that will use the macro

 Give macro a descriptive name and shortcut
 Indicate relative versus absolute references



Fall 2007CEE 38046

Macros : Recording

Excel 2007
Look for the
Developer Tab

Excel 2003
Look under
Tools/Macro/Record
New Macro



Fall 2007CEE 38047

Macros: A Simple Example
 A macro that creates a template for your

homework assignment is shown below

Note:
absolute
references



Fall 2007CEE 38048

Macros: Relative References
 Useful when you need to start the macro at any

location in the worksheet

Note:
relative offset
notation



Fall 2007CEE 38049

Macros
Example

 Create a macro called “Title_Logo”:
 Goes down one row and types the following title:

– Virginia Tech Civil and Environmental Engineering Department
 Makes the text bold
 Inserts the date in the cell below the title using the 04-Mar-00

format

 In Excel 2003 open the Visual Basic editor to
view the code:

 Tools/Macros/Visual Basic Editor or Alt+F11



Fall 2007CEE 380410

Macros
Example

Sub Title_Logo()
'
' Title_Logo Macro
' Macro recorded 2/7/00
'
' Keyboard Shortcut: Ctrl+t
'
    ActiveCell.Offset(1, 0).Range("A1").Select
    ActiveCell.FormulaR1C1 = "Virginia Tech Department of

        Civil and Environmental Engineering"
    Selection.Font.Bold = True
    ActiveCell.Offset(1, 0).Range("A1").Select
    ActiveCell.FormulaR1C1 = "=TODAY()"
    Selection.NumberFormat = "dd-mmm-yy"
End Sub



Fall 2007CEE 380411

Macros
Storing Macros

 Macros can be stored:
 This workbook

– macros specific to the workbook
 New workbook

– Excel generates a new workbook to store the macro
 advantage: multiple workbook applications can share the

same macros
 Personal macro workbook

– you are the only person that can use the macros
– this workbook is a hidden workbook stored in the XLStart

folder with the name (personal.xls)
– macros are available to any open workbooks



Fall 2007CEE 380412

Macros
Creating A Custom Command Button

 To create a command button for a macro (Excel
2003):

 View/Toolbars/Customize
– In the “Commands” tab click on “Macros”

 Select “Custom Button” and move the button to the
toolbar you want to place it on

 In “Modify Selection” you can assign a Macro and
change the button image

 In the Name box type the name to be displayed in the
button tool tip



Fall 2007CEE 380413

Macros
Creating A Custom Command Button

 To create a command button for a macro (Excel
2007):

 Developer Tab
– Insert control

 Select “Button” and move the button to the area in
the worksheet you want to place it on

 Assign the Macro to the button and change the
button text information



Fall 2007CEE 380414

Macros
Creating A Custom Menu

 To create a Menu Item:
 View/Toolbars/Customize

– In the “Commands” tab click on “New Menu”
 In the new menu select “Macros” and then select “Custom

Menu Item”
 Assign a macro to the menu item and give it a name
 “&” indicates that an “Alt-key” combination can be used



Fall 2007CEE 380415

Editing Macros with the VB Editor
Editor Layout

 The editor consists of three windows:
 The Project Explorer window

– whenever a workbook is created a companion VBA project is
also created

– available for each workbook to write code or insert user forms

 The Properties Window
– defines the properties of components within a project
– changes properties at design time

 The Code Window
– the Visual Basic Code is stored within a code module
– the code module is displayed in a code window for editing



Fall 2007CEE 380416

VB Basics
Objects, Collections, and Object Models

 Objects:
 elements that represent some part of an application
 workbook, chart, or form control

 Collections:
 a group of objects usually of the same type
 group of workbooks

– Workbooks(1): the first workbook in a sequence of workbooks

 Object Model:
 a hierarchical representation of how the objects and

collections are related to each other



Fall 2007CEE 380417

VB Basics
Properties, Methods, and Arguments

 Every object has distinct properties & methods
 A property is an attribute of an object

– Example: color, font, size, value, etc.
– ActiveSheet.Name = “Data”

 A method is an action an object can take
– Example: printing or copying

Application.Quit
or
ActiveWorkbook.SaveAs “D:\test.xls”

 Occasionally methods require information:
 An argument is the information provided to the method

– Example: ActiveWorkbook.SaveAs “D:\test.xls”
– or ActiveWorkbook.SaveAs Filename:= “D\test.xls”



Fall 2007CEE 380418

VB Basics
Arguments

 Arguments can be provided in the exact order, or
in any order where the argument is preceded by
“:=“

 Example:
ActiveWorkbook.SaveAs FileName:=“test.xls”

 You can continue a line using the line-
continuation character (_)

 Example:
ActiveWorkbook.SaveAs FileName:=“test.xls”, _

FileFormat:=xlExcel7



Fall 2007CEE 380419

VB Basics
Object Libraries

 The Object Library:
 displays object libraries available to the current VBA project
 press F2 to access the Object Library
 three main areas:

– Search area
– Classes list
– Members list



Fall 2007CEE 380420

VB Basics
VBA Projects and Components

– VBA creates a project for every open workbook
– contains all of the VBA code written and forms
– forms are custom dialog boxes that allow the user to

input information
– code can be written in the code modules

behind items
 items include forms, textboxes, etc.

– code can be written in a standard module
– ideal for functions that will be shared



Fall 2007CEE 380421

VB Basics
Organizing Code

 Within any code module, code is grouped into
distinct blocks known as procedures

 A procedure:
 contains one or more lines of code that

accomplish a particular task
 each line is a statement
 blank lines are ignored
 indent lines to make it easier to read the code
 comments are preceded by colons



Fall 2007CEE 380422

VB Basics
Using Code Modules

 To insert a new standard module:
 In the Visual Basic window

– Insert/Module
 To change the name:

 change the properties “Name”
 Group code in a module based on functionality
 To open the code module associated with an

application
 double click on the application



Fall 2007CEE 380423

VB Basics
Using Code Windows

 At the top of the window are two drop-down
lists:

 Left box is the Object list
– lists all objects associated with a window
– (General) refers to code that does not apply to

a specific object
 Right box is the Procedure list

– contains a list of all existing procedures within
the code module

 Code window is divided into two areas:
 Declaration and Procedures



Fall 2007CEE 380424

VB Basics
Understanding Procedures and Functions

 Types of procedures:
 Sub procedures:

– perform some task
– begin with a “Sub” statement followed by a unique name
– and ends with an “End Sub”
– Can return more than one value via arguments

 Function procedures:
– perform some task
– return a single value
– begin with a “Function” statement followed by a unique

name
– end with an “End Function”
– set the function name to the value to be returned



Fall 2007CEE 380425

VB Basics
Examples of Procedures and Functions

Sub ChangeExcelCaption()
   Application.Caption = "My Great Application"
End Sub

Function CalcTakeHome()
    CalcTakeHome = Range("a1") * 0.06
End Function



Fall 2007CEE 380426

VB Basics
Using Arguments

 The parentheses at the end of the opening
statement of a procedure are used to indicate
extra information such as arguments:

 Example:



 To access a custom function:
– Insert/Function/User Defined

Function CalcTakeHome(Salary)
    CalcTakeHome = Salary * 0.06
End Function



Fall 2007CEE 380427

VB Basics
Calling Procedures

 To call a sub procedure:
 type name of sub procedure followed by a space

and the name of the argument
– Example:

 CalcTakeHome RealSalary

 To call a function:
 need to provide a variable to store the value

– Example:

 RealSalary = CalcTakeHome(50000)



Fall 2007CEE 380428

VBA Example : Counter of Data Macro
 See example in Section 3.3 on page 27

(Chapra’s textbook)
 Example creates a macro to calculate the

number of rows in a data set
 Uses a macro to get VBA code to move from an

initial position in the worksheet to an ending
position (sub countingRows)

 Use the “bridges_of_the_world.xls” file
 A second sub called countCells computes the

number of cells and displays the result in a
message box



Fall 2007CEE 380429

VBA Macro Example (countingRows)



Fall 2007CEE 380430

VBA Macro Example (Countcells)



Fall 2007CEE 380431

VBA Macro Example : Running



Fall 2007CEE 380432

VBA Example : Kicker
 Section 5.1 in Chapra’s textbook (see pages 40-

47)
 Projectile motion example
 Illustrates how a sub calls another sub
 Illustrates how a sub generates multiple results

and passes them to another one
 Sub kickCalculation (main routine)
 Sub calculationForKicker (called from

kickCalculation)



Fall 2007CEE 380433

VBA Example : Kicker Worksheet



Fall 2007CEE 380434

Sub : kickCalculation



Fall 2007CEE 380435

Observations about kickCalculation
 The subroutine reads two values vi and ai in cells B9

and B10
 ' input data
 Sheets("Interface").Select
 Range("B9").Select
 vi = ActiveCell.Value

…..
  Then a call to subroutine calculationForKicker is made
 This sub call provides two input values (vi and ai)
 In return the sub provides two output values (tr and xr)
 The values of tr (hang time) and xr (distance) are then

inserted back to the worksheet in cells B13 and B14



Fall 2007CEE 380436

Sub : calculationForKicker



Fall 2007CEE 380437

Things to Observe
 The definition of the sub is:

Sub calculationForKicker(initialSpeed, initialAngle, hangTime,
Distance)

• Yet the sub is called using the following statement
 Call calculationForKicker(vi, ai, tr, xr)

• In this example, the main sub kickCalculation contains
the variable names that will be inserted in the
worksheet

• The number of arguments in the sub
calculationForKicker and kickCalculation are the same

• The variable names initialSpeed, initialAngle, hangTime
and Distance are placeholders that get to be replaced
by variable names contained in the sub that calls
calculationForKicker



Fall 2007CEE 380438

Order of Execution

Block 1

Branches to
calculationForKicker

Block 2

Block 3



Fall 2007CEE 380439

VB Basics
Event Procedures

 Definition:
 event procedures are procedures that are used with events

 Event procedures are stored in the code
module associated with the object:

 to add code to the Open event of the active workbook, you
will use the code module behind ThisWorkbook

 Event procedure name is a combination of:
 object name, “_”, and event name

– Example:
 Private Sub Workbook_BeforePrint()

– In the example Workbook is the object name and
BeforePrint() is the event name. This event procedure is
called before the Workbook is printed



Fall 2007CEE 380440

VB Basics
Running and Testing Procedures

 Can run a procedure within the VB window:
 Run/Sub or F5

 Two methods for testing procedures:
 Run your procedure
 Use the immediate window (View/Immediate

Window)
– Example:

? CalcTakeHome(50000)



Fall 2007CEE 380441

VBA Testing: Immediate Window (Excel
2007)

 In VBE editor
 Control + G to active the immediate window in

Excel 2007



Fall 2007CEE 380442

VBA Basics: debugger in VBA
 VBA has a fully functional debugger to help out

streamline your programs
 Can “step-in” the code line by line to see your

intermediate calculations



Fall 2007CEE 380443

VB Basics
Variables and Constants

 Definition:
 Variables are named locations in memory

 Need to declare variables explicitly:
 defines type of data, procedures that use data, and

avoids errors
 a variable declared within a procedure is a local

variable

Dim [variable name] As [data type]

use “public” or “private” to share variables
only public variables can be used for other

code modules



Fall 2007CEE 380444

VB Basics
Data Types

 Type of Data:
 Byte: 0 to 255
 Integer: -32,768 to 32,767
 Long: -2,000m to 2000m
 Single: -3.4E38 to 3.4E38
 Double: -1.8E308 to 1.8E308
 Boolean: -1 or 0
 String: 0 to 2 billion characters
 Variant: Anything (including special values and Null)



Fall 2007CEE 380445

VB Basics
Variable Declaring Variables and Objects

 To force variable declaration:
 Option Explicit at top of module
 In the Options box enable “Require Variable

Declaration”
 Object variables:

 Special types of variables directed at objects
rather than data

– nickname for object
Dim app as Application

– initializing variable
Set app = Application



Fall 2007CEE 380446

VB Basics
Constants

 Definition:
 similar to variables but can only be filled with

data once
 Built-in constants:

 vbRed: refers to the color red
 Constant declaration:

 Const [name of constant] = [value] As [data type]
 Create constants in capital letters to distinguish

from other variables



Fall 2007CEE 380447

VB Basic User Interaction
Displaying a Message

 The Msgbox function can be used to display
information:

MsgBox “Download Complete.”

 MsgBox function arguments:
 MsgBox(Prompt, Buttons, Title, HelpFile, Context)

– Prompt: Message displayed to user
– Buttons: a combination of numerical constants

 buttons, icon, default button, modality, and other
– Title: indicates the string value that appears in the title

bar
– HelpFile and Context: provide help information



Fall 2007CEE 380448

VB Basic User Interaction
Displaying a Message: Button Argument

 The Buttons option includes:
 Buttons:

 vbOkOnly, vbOkCancel,
vbAbortRetryIgnore, vbYesNoCancel,
vbYesNo, vbRetryCancel

 Icon:
 vbCritical, vbQuestion, vbExclamation,
vbInformation

 Default Button:
 vbDefaultButton1, vbDefaultButton2,
vbDefaultButton3, vbDefaultButton4

 Modality:
 vbApplicationModal: user may respond before using

any application
 Other:

 vbMsgBoxHelpButton,
vbMsgBoxSetForeground, vbMsgBoxRight



Fall 2007CEE 380449

VB Basic User Interaction
Returning Button Constants

 To know which button was clicked:
 MsgBox returns a constant value that indicates which

button was clicked
– vbOK: OK button clicked
– vbCancel: Cancel button clicked
– vbAbort: Abort button clicked
– vbRetry: Retry button clicked
– vbIgnore: Ignore button clicked
– vbYes: Yes button clicked or MsgBox = 6
– vbNo: No button clicked or MsgBox = 7



Fall 2007CEE 380450

VB Basic User Interaction
Message Box Example

 Example:
    Sub ChangeExcelCaption()
       Dim intResponse As Integer
    '-------------------------------------------------------
      intResponse = MsgBox("Would you like to change the worksheet title?", _
                   vbQuestion + vbYesNo + vbApplicationModal + vbMsgBoxHelpButton,
_
                   "Change Excel Caption")

      If (intResponse = vbYes) Then
        Application.Caption = "My Great Application"
      End If
    End Sub



Fall 2007CEE 380451

VB Basic User Interaction
Getting Data from Users

 The InputBox function retrieves information
from user:

 InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile,
context])

– prompt: is the message that is displayed in the dialog box
– title: the string value in the title bar of the message box
– default: displays default text
– xpos: position of left edge of box from left edge of screen in

twips (default is centered horizontally)
– ypos: similar to xpos except for vertical position
– helpfile and context: provide help information



Fall 2007CEE 380452

VB Basic User Interaction
InputBox Function Example

 Example:
Sub ChangeExcelCaption()
   Dim Response As Integer
   Dim Title As String
   '----------------------------------------------------------------
  Response = MsgBox("Would you like to change the worksheet title?", _
             vbQuestion + vbYesNo + vbApplicationModal + _
             vbMsgBoxHelpButton, "Change Excel Caption")
  If (Response = vbYes) Then
        Title = InputBox("Enter Caption?", "Change Excel Caption", _
                 "Excel Workbook")
        Application.Caption = Title
    End If
End Sub



Fall 2007CEE 380453

VB Debugging
Breakpoints and Watch Windows

 Insert a breakpoint to stop program at specific
location:

 view variable values by placing mouse on variable
 use immediate window to print out values of variables
 create watch windows:

– automatically insert a break
when value changes



Fall 2007CEE 380454

VB Basic Coding
Branching in Code: Overview

 Different branching are available:
 If, End If

– Single or multiple conditions
 If [statement is true] Then

ElseIf [alternative statement is true] Then
Else

 End If
 Select Case, End Select:

– Single condition with multiple results
 Select Case [some expression]

Case [result 1]
Case Else

 End Select



Fall 2007CEE 380455

VB Basic Coding
Branching Example

Sub CalcWeekDay()
    Dim strDate As String

    strDate = InputBox("Enter a date using mm/dd/yy format:", _
                   "Date Input", Date)
    Select Case WeekDay(strDate)
    Case vbMonday To vbThursday
        MsgBox (strDate & " falls on Monday thru Thursday ...")
    Case vbFriday
        MsgBox (strDate & " is a Friday!")
    Case Else
        MsgBox (strDate & " is a weekend day.")
    End Select
End Sub



Fall 2007CEE 380456

VB Basic Coding
Repetition: Do … Loop

 Different ways of implementing repetition:
 Do… Loop

– While [condition is TRUE]: loop continues as long as condition
is true

– Until [condition is TRUE]: loop continues as long as the
expression evaluates to false

– Two ways of coding:

Do While [condition] or Until [condition]
code to be repeated

Loop

Do
code to be repeated

Loop While [condition] or Until [condition]



Fall 2007CEE 380457

VB Basic Coding
Repetition: For… Next

 Another way of repeating code:
 Standard:

For [counter variable] = [start value] To [end value]
code to be repeated

Next [counter variable]
 Optional:

For [counter variable] = [start value] To [end value] Step [increment]
code to be repeated

Next [counter variable]
 For Each… Next:

– allows you to loop through the collection of objects without
knowing the precise number of objects



Fall 2007CEE 380458

 First Program with a Loop



Fall 2007CEE 380459

 The VBA Code Behind

Loop code



Fall 2007CEE 380460

 A Loop with Concatenation Control
 The program in worksheet: loopConcatenate.xls
 offers a sample of a loop computation and the

use of concatenation control to estimate
pavement thicknesses

 The pavement thickness function created in
previous classes in “called” by the VBA code



Fall 2007CEE 380461

 Worksheet Interface

Cell B8 controls the
number of times the
loop is executed



Fall 2007CEE 380462

 The Code Behind the Worksheet



Fall 2007CEE 380463

 Code (cont.)

Calls Function Thickness

Concatenation



Fall 2007CEE 380464

 Try Other Refinements
 Currently the loop counter just overwrites the

values of pavement thickness without erasing
previous computation

 Try adding a line or two of code to erase the
previous table of computations while executing
the code



Fall 2007CEE 380465

VB Basic Coding
With… End With

 The With… End With structure is used to
optimize code by speeding up code execution:

 apply multiple properties and methods to the same object

With ActiveCell
.Clear
.Value = “Greetings”
.Font.Bold = True
.RowHeight = 11
MsgBox.Address

End With



Fall 2007CEE 380466

VB Advanced Coding
Manipulating Ranges

 Return single cell:
Set c = ActiveCell

 points object variable to active cell

ActiveSheet.Range(“C10”).Activate
 activates cell C10

 Multiple cell ranges:
Worksheets(1).Range(“Years”)
Worksheets(1).Range(“C2:F13”).Font.Bold = True
Range(Cells(2,3),Cells(13,6)).Font.Color = vbRed



Fall 2007CEE 380467

VB Advanced Coding
Row, Column, and Cell Manipulation

 Examples:
Worksheets(1).Columns(3).AutoFit

– changes the width of the third column

Worksheets(2).Columns(“A:K”).AutoFit
– changes the width of columns A to K to achieve best fit

Worksheets(2).Range(Rows(10),Rows(15)).Delete
– deletes rows 10 through 15

Worksheets(2).Cells(2,1) = 13
– sets the value of A2 to 13



Fall 2007CEE 380468

 A Simple Program with a Loop
 Loops are natural ways to execute

computations that require multiple iterations
 Loops can be conditioned  or controlled by a

counter

 Conditional loops - when some condition is
used to exit the loop

 Counter controlled loops - when the number of
passes in the loop is known


