
Excel Macros and VBA

CEE3804 Computer
Applications for Civil
and Environmental
Engineers

Fall 2007CEE 38042

Topics to be Covered

 Excel Macros
 Understanding and making use of VBA
 Basics of VBA

 Using code modules
 Understanding procedures
 Interacting with the user

 Creating useful forms
 Adjusting form layout
 Using form and control events

Fall 2007CEE 38043

Macros
Definition

 A macro is:
 a series of commands recorded within the user interface

and wrapped into a single action

 A procedure is:
 is a series of actions but, unlike macros, a procedure is

written from scratch with the Visual Basic for
Applications (VBA) programming language

 In summary:
 a series of commands is called a macro when it is

recorded, however, a macro is a procedure within the
VBA world

Fall 2007CEE 38044

Macros
Why use Macros?

 Why use macros?:
 to simplify a series of commands by

automating the task
 simplify complex tasks
 to learn how the VBA language lends itself to

the Excel environment

Fall 2007CEE 38045

Macros
Recording Macros

 Recording macros:
 Tools/Macros/Record New Macro
 Macro recorder is impartial:

– should map out exactly what you are trying to do
 overall goal of macro
 cells that will be selected
 data required by macro
 menu command to accomplish task
 workbooks that will use the macro

 Give macro a descriptive name and shortcut
 Indicate relative versus absolute references

Fall 2007CEE 38046

Macros : Recording

Excel 2007
Look for the
Developer Tab

Excel 2003
Look under
Tools/Macro/Record
New Macro

Fall 2007CEE 38047

Macros: A Simple Example
 A macro that creates a template for your

homework assignment is shown below

Note:
absolute
references

Fall 2007CEE 38048

Macros: Relative References
 Useful when you need to start the macro at any

location in the worksheet

Note:
relative offset
notation

Fall 2007CEE 38049

Macros
Example

 Create a macro called “Title_Logo”:
 Goes down one row and types the following title:

– Virginia Tech Civil and Environmental Engineering Department
 Makes the text bold
 Inserts the date in the cell below the title using the 04-Mar-00

format

 In Excel 2003 open the Visual Basic editor to
view the code:

 Tools/Macros/Visual Basic Editor or Alt+F11

Fall 2007CEE 380410

Macros
Example

Sub Title_Logo()
'
' Title_Logo Macro
' Macro recorded 2/7/00
'
' Keyboard Shortcut: Ctrl+t
'
 ActiveCell.Offset(1, 0).Range("A1").Select
 ActiveCell.FormulaR1C1 = "Virginia Tech Department of

 Civil and Environmental Engineering"
 Selection.Font.Bold = True
 ActiveCell.Offset(1, 0).Range("A1").Select
 ActiveCell.FormulaR1C1 = "=TODAY()"
 Selection.NumberFormat = "dd-mmm-yy"
End Sub

Fall 2007CEE 380411

Macros
Storing Macros

 Macros can be stored:
 This workbook

– macros specific to the workbook
 New workbook

– Excel generates a new workbook to store the macro
 advantage: multiple workbook applications can share the

same macros
 Personal macro workbook

– you are the only person that can use the macros
– this workbook is a hidden workbook stored in the XLStart

folder with the name (personal.xls)
– macros are available to any open workbooks

Fall 2007CEE 380412

Macros
Creating A Custom Command Button

 To create a command button for a macro (Excel
2003):

 View/Toolbars/Customize
– In the “Commands” tab click on “Macros”

 Select “Custom Button” and move the button to the
toolbar you want to place it on

 In “Modify Selection” you can assign a Macro and
change the button image

 In the Name box type the name to be displayed in the
button tool tip

Fall 2007CEE 380413

Macros
Creating A Custom Command Button

 To create a command button for a macro (Excel
2007):

 Developer Tab
– Insert control

 Select “Button” and move the button to the area in
the worksheet you want to place it on

 Assign the Macro to the button and change the
button text information

Fall 2007CEE 380414

Macros
Creating A Custom Menu

 To create a Menu Item:
 View/Toolbars/Customize

– In the “Commands” tab click on “New Menu”
 In the new menu select “Macros” and then select “Custom

Menu Item”
 Assign a macro to the menu item and give it a name
 “&” indicates that an “Alt-key” combination can be used

Fall 2007CEE 380415

Editing Macros with the VB Editor
Editor Layout

 The editor consists of three windows:
 The Project Explorer window

– whenever a workbook is created a companion VBA project is
also created

– available for each workbook to write code or insert user forms

 The Properties Window
– defines the properties of components within a project
– changes properties at design time

 The Code Window
– the Visual Basic Code is stored within a code module
– the code module is displayed in a code window for editing

Fall 2007CEE 380416

VB Basics
Objects, Collections, and Object Models

 Objects:
 elements that represent some part of an application
 workbook, chart, or form control

 Collections:
 a group of objects usually of the same type
 group of workbooks

– Workbooks(1): the first workbook in a sequence of workbooks

 Object Model:
 a hierarchical representation of how the objects and

collections are related to each other

Fall 2007CEE 380417

VB Basics
Properties, Methods, and Arguments

 Every object has distinct properties & methods
 A property is an attribute of an object

– Example: color, font, size, value, etc.
– ActiveSheet.Name = “Data”

 A method is an action an object can take
– Example: printing or copying

Application.Quit
or
ActiveWorkbook.SaveAs “D:\test.xls”

 Occasionally methods require information:
 An argument is the information provided to the method

– Example: ActiveWorkbook.SaveAs “D:\test.xls”
– or ActiveWorkbook.SaveAs Filename:= “D\test.xls”

Fall 2007CEE 380418

VB Basics
Arguments

 Arguments can be provided in the exact order, or
in any order where the argument is preceded by
“:=“

 Example:
ActiveWorkbook.SaveAs FileName:=“test.xls”

 You can continue a line using the line-
continuation character (_)

 Example:
ActiveWorkbook.SaveAs FileName:=“test.xls”, _

FileFormat:=xlExcel7

Fall 2007CEE 380419

VB Basics
Object Libraries

 The Object Library:
 displays object libraries available to the current VBA project
 press F2 to access the Object Library
 three main areas:

– Search area
– Classes list
– Members list

Fall 2007CEE 380420

VB Basics
VBA Projects and Components

– VBA creates a project for every open workbook
– contains all of the VBA code written and forms
– forms are custom dialog boxes that allow the user to

input information
– code can be written in the code modules

behind items
 items include forms, textboxes, etc.

– code can be written in a standard module
– ideal for functions that will be shared

Fall 2007CEE 380421

VB Basics
Organizing Code

 Within any code module, code is grouped into
distinct blocks known as procedures

 A procedure:
 contains one or more lines of code that

accomplish a particular task
 each line is a statement
 blank lines are ignored
 indent lines to make it easier to read the code
 comments are preceded by colons

Fall 2007CEE 380422

VB Basics
Using Code Modules

 To insert a new standard module:
 In the Visual Basic window

– Insert/Module
 To change the name:

 change the properties “Name”
 Group code in a module based on functionality
 To open the code module associated with an

application
 double click on the application

Fall 2007CEE 380423

VB Basics
Using Code Windows

 At the top of the window are two drop-down
lists:

 Left box is the Object list
– lists all objects associated with a window
– (General) refers to code that does not apply to

a specific object
 Right box is the Procedure list

– contains a list of all existing procedures within
the code module

 Code window is divided into two areas:
 Declaration and Procedures

Fall 2007CEE 380424

VB Basics
Understanding Procedures and Functions

 Types of procedures:
 Sub procedures:

– perform some task
– begin with a “Sub” statement followed by a unique name
– and ends with an “End Sub”
– Can return more than one value via arguments

 Function procedures:
– perform some task
– return a single value
– begin with a “Function” statement followed by a unique

name
– end with an “End Function”
– set the function name to the value to be returned

Fall 2007CEE 380425

VB Basics
Examples of Procedures and Functions

Sub ChangeExcelCaption()
 Application.Caption = "My Great Application"
End Sub

Function CalcTakeHome()
 CalcTakeHome = Range("a1") * 0.06
End Function

Fall 2007CEE 380426

VB Basics
Using Arguments

 The parentheses at the end of the opening
statement of a procedure are used to indicate
extra information such as arguments:

 Example:



 To access a custom function:
– Insert/Function/User Defined

Function CalcTakeHome(Salary)
 CalcTakeHome = Salary * 0.06
End Function

Fall 2007CEE 380427

VB Basics
Calling Procedures

 To call a sub procedure:
 type name of sub procedure followed by a space

and the name of the argument
– Example:

 CalcTakeHome RealSalary

 To call a function:
 need to provide a variable to store the value

– Example:

 RealSalary = CalcTakeHome(50000)

Fall 2007CEE 380428

VBA Example : Counter of Data Macro
 See example in Section 3.3 on page 27

(Chapra’s textbook)
 Example creates a macro to calculate the

number of rows in a data set
 Uses a macro to get VBA code to move from an

initial position in the worksheet to an ending
position (sub countingRows)

 Use the “bridges_of_the_world.xls” file
 A second sub called countCells computes the

number of cells and displays the result in a
message box

Fall 2007CEE 380429

VBA Macro Example (countingRows)

Fall 2007CEE 380430

VBA Macro Example (Countcells)

Fall 2007CEE 380431

VBA Macro Example : Running

Fall 2007CEE 380432

VBA Example : Kicker
 Section 5.1 in Chapra’s textbook (see pages 40-

47)
 Projectile motion example
 Illustrates how a sub calls another sub
 Illustrates how a sub generates multiple results

and passes them to another one
 Sub kickCalculation (main routine)
 Sub calculationForKicker (called from

kickCalculation)

Fall 2007CEE 380433

VBA Example : Kicker Worksheet

Fall 2007CEE 380434

Sub : kickCalculation

Fall 2007CEE 380435

Observations about kickCalculation
 The subroutine reads two values vi and ai in cells B9

and B10
 ' input data
 Sheets("Interface").Select
 Range("B9").Select
 vi = ActiveCell.Value

…..
 Then a call to subroutine calculationForKicker is made
 This sub call provides two input values (vi and ai)
 In return the sub provides two output values (tr and xr)
 The values of tr (hang time) and xr (distance) are then

inserted back to the worksheet in cells B13 and B14

Fall 2007CEE 380436

Sub : calculationForKicker

Fall 2007CEE 380437

Things to Observe
 The definition of the sub is:

Sub calculationForKicker(initialSpeed, initialAngle, hangTime,
Distance)

• Yet the sub is called using the following statement
 Call calculationForKicker(vi, ai, tr, xr)

• In this example, the main sub kickCalculation contains
the variable names that will be inserted in the
worksheet

• The number of arguments in the sub
calculationForKicker and kickCalculation are the same

• The variable names initialSpeed, initialAngle, hangTime
and Distance are placeholders that get to be replaced
by variable names contained in the sub that calls
calculationForKicker

Fall 2007CEE 380438

Order of Execution

Block 1

Branches to
calculationForKicker

Block 2

Block 3

Fall 2007CEE 380439

VB Basics
Event Procedures

 Definition:
 event procedures are procedures that are used with events

 Event procedures are stored in the code
module associated with the object:

 to add code to the Open event of the active workbook, you
will use the code module behind ThisWorkbook

 Event procedure name is a combination of:
 object name, “_”, and event name

– Example:
 Private Sub Workbook_BeforePrint()

– In the example Workbook is the object name and
BeforePrint() is the event name. This event procedure is
called before the Workbook is printed

Fall 2007CEE 380440

VB Basics
Running and Testing Procedures

 Can run a procedure within the VB window:
 Run/Sub or F5

 Two methods for testing procedures:
 Run your procedure
 Use the immediate window (View/Immediate

Window)
– Example:

? CalcTakeHome(50000)

Fall 2007CEE 380441

VBA Testing: Immediate Window (Excel
2007)

 In VBE editor
 Control + G to active the immediate window in

Excel 2007

Fall 2007CEE 380442

VBA Basics: debugger in VBA
 VBA has a fully functional debugger to help out

streamline your programs
 Can “step-in” the code line by line to see your

intermediate calculations

Fall 2007CEE 380443

VB Basics
Variables and Constants

 Definition:
 Variables are named locations in memory

 Need to declare variables explicitly:
 defines type of data, procedures that use data, and

avoids errors
 a variable declared within a procedure is a local

variable

Dim [variable name] As [data type]

use “public” or “private” to share variables
only public variables can be used for other

code modules

Fall 2007CEE 380444

VB Basics
Data Types

 Type of Data:
 Byte: 0 to 255
 Integer: -32,768 to 32,767
 Long: -2,000m to 2000m
 Single: -3.4E38 to 3.4E38
 Double: -1.8E308 to 1.8E308
 Boolean: -1 or 0
 String: 0 to 2 billion characters
 Variant: Anything (including special values and Null)

Fall 2007CEE 380445

VB Basics
Variable Declaring Variables and Objects

 To force variable declaration:
 Option Explicit at top of module
 In the Options box enable “Require Variable

Declaration”
 Object variables:

 Special types of variables directed at objects
rather than data

– nickname for object
Dim app as Application

– initializing variable
Set app = Application

Fall 2007CEE 380446

VB Basics
Constants

 Definition:
 similar to variables but can only be filled with

data once
 Built-in constants:

 vbRed: refers to the color red
 Constant declaration:

 Const [name of constant] = [value] As [data type]
 Create constants in capital letters to distinguish

from other variables

Fall 2007CEE 380447

VB Basic User Interaction
Displaying a Message

 The Msgbox function can be used to display
information:

MsgBox “Download Complete.”

 MsgBox function arguments:
 MsgBox(Prompt, Buttons, Title, HelpFile, Context)

– Prompt: Message displayed to user
– Buttons: a combination of numerical constants

 buttons, icon, default button, modality, and other
– Title: indicates the string value that appears in the title

bar
– HelpFile and Context: provide help information

Fall 2007CEE 380448

VB Basic User Interaction
Displaying a Message: Button Argument

 The Buttons option includes:
 Buttons:

 vbOkOnly, vbOkCancel,
vbAbortRetryIgnore, vbYesNoCancel,
vbYesNo, vbRetryCancel

 Icon:
 vbCritical, vbQuestion, vbExclamation,
vbInformation

 Default Button:
 vbDefaultButton1, vbDefaultButton2,
vbDefaultButton3, vbDefaultButton4

 Modality:
 vbApplicationModal: user may respond before using

any application
 Other:

 vbMsgBoxHelpButton,
vbMsgBoxSetForeground, vbMsgBoxRight

Fall 2007CEE 380449

VB Basic User Interaction
Returning Button Constants

 To know which button was clicked:
 MsgBox returns a constant value that indicates which

button was clicked
– vbOK: OK button clicked
– vbCancel: Cancel button clicked
– vbAbort: Abort button clicked
– vbRetry: Retry button clicked
– vbIgnore: Ignore button clicked
– vbYes: Yes button clicked or MsgBox = 6
– vbNo: No button clicked or MsgBox = 7

Fall 2007CEE 380450

VB Basic User Interaction
Message Box Example

 Example:
 Sub ChangeExcelCaption()
 Dim intResponse As Integer
 '---
 intResponse = MsgBox("Would you like to change the worksheet title?", _
 vbQuestion + vbYesNo + vbApplicationModal + vbMsgBoxHelpButton,
_
 "Change Excel Caption")

 If (intResponse = vbYes) Then
 Application.Caption = "My Great Application"
 End If
 End Sub

Fall 2007CEE 380451

VB Basic User Interaction
Getting Data from Users

 The InputBox function retrieves information
from user:

 InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile,
context])

– prompt: is the message that is displayed in the dialog box
– title: the string value in the title bar of the message box
– default: displays default text
– xpos: position of left edge of box from left edge of screen in

twips (default is centered horizontally)
– ypos: similar to xpos except for vertical position
– helpfile and context: provide help information

Fall 2007CEE 380452

VB Basic User Interaction
InputBox Function Example

 Example:
Sub ChangeExcelCaption()
 Dim Response As Integer
 Dim Title As String
 '--
 Response = MsgBox("Would you like to change the worksheet title?", _
 vbQuestion + vbYesNo + vbApplicationModal + _
 vbMsgBoxHelpButton, "Change Excel Caption")
 If (Response = vbYes) Then
 Title = InputBox("Enter Caption?", "Change Excel Caption", _
 "Excel Workbook")
 Application.Caption = Title
 End If
End Sub

Fall 2007CEE 380453

VB Debugging
Breakpoints and Watch Windows

 Insert a breakpoint to stop program at specific
location:

 view variable values by placing mouse on variable
 use immediate window to print out values of variables
 create watch windows:

– automatically insert a break
when value changes

Fall 2007CEE 380454

VB Basic Coding
Branching in Code: Overview

 Different branching are available:
 If, End If

– Single or multiple conditions
 If [statement is true] Then

ElseIf [alternative statement is true] Then
Else

 End If
 Select Case, End Select:

– Single condition with multiple results
 Select Case [some expression]

Case [result 1]
Case Else

 End Select

Fall 2007CEE 380455

VB Basic Coding
Branching Example

Sub CalcWeekDay()
 Dim strDate As String

 strDate = InputBox("Enter a date using mm/dd/yy format:", _
 "Date Input", Date)
 Select Case WeekDay(strDate)
 Case vbMonday To vbThursday
 MsgBox (strDate & " falls on Monday thru Thursday ...")
 Case vbFriday
 MsgBox (strDate & " is a Friday!")
 Case Else
 MsgBox (strDate & " is a weekend day.")
 End Select
End Sub

Fall 2007CEE 380456

VB Basic Coding
Repetition: Do … Loop

 Different ways of implementing repetition:
 Do… Loop

– While [condition is TRUE]: loop continues as long as condition
is true

– Until [condition is TRUE]: loop continues as long as the
expression evaluates to false

– Two ways of coding:

Do While [condition] or Until [condition]
code to be repeated

Loop

Do
code to be repeated

Loop While [condition] or Until [condition]

Fall 2007CEE 380457

VB Basic Coding
Repetition: For… Next

 Another way of repeating code:
 Standard:

For [counter variable] = [start value] To [end value]
code to be repeated

Next [counter variable]
 Optional:

For [counter variable] = [start value] To [end value] Step [increment]
code to be repeated

Next [counter variable]
 For Each… Next:

– allows you to loop through the collection of objects without
knowing the precise number of objects

Fall 2007CEE 380458

 First Program with a Loop

Fall 2007CEE 380459

 The VBA Code Behind

Loop code

Fall 2007CEE 380460

 A Loop with Concatenation Control
 The program in worksheet: loopConcatenate.xls
 offers a sample of a loop computation and the

use of concatenation control to estimate
pavement thicknesses

 The pavement thickness function created in
previous classes in “called” by the VBA code

Fall 2007CEE 380461

 Worksheet Interface

Cell B8 controls the
number of times the
loop is executed

Fall 2007CEE 380462

 The Code Behind the Worksheet

Fall 2007CEE 380463

 Code (cont.)

Calls Function Thickness

Concatenation

Fall 2007CEE 380464

 Try Other Refinements
 Currently the loop counter just overwrites the

values of pavement thickness without erasing
previous computation

 Try adding a line or two of code to erase the
previous table of computations while executing
the code

Fall 2007CEE 380465

VB Basic Coding
With… End With

 The With… End With structure is used to
optimize code by speeding up code execution:

 apply multiple properties and methods to the same object

With ActiveCell
.Clear
.Value = “Greetings”
.Font.Bold = True
.RowHeight = 11
MsgBox.Address

End With

Fall 2007CEE 380466

VB Advanced Coding
Manipulating Ranges

 Return single cell:
Set c = ActiveCell

 points object variable to active cell

ActiveSheet.Range(“C10”).Activate
 activates cell C10

 Multiple cell ranges:
Worksheets(1).Range(“Years”)
Worksheets(1).Range(“C2:F13”).Font.Bold = True
Range(Cells(2,3),Cells(13,6)).Font.Color = vbRed

Fall 2007CEE 380467

VB Advanced Coding
Row, Column, and Cell Manipulation

 Examples:
Worksheets(1).Columns(3).AutoFit

– changes the width of the third column

Worksheets(2).Columns(“A:K”).AutoFit
– changes the width of columns A to K to achieve best fit

Worksheets(2).Range(Rows(10),Rows(15)).Delete
– deletes rows 10 through 15

Worksheets(2).Cells(2,1) = 13
– sets the value of A2 to 13

Fall 2007CEE 380468

 A Simple Program with a Loop
 Loops are natural ways to execute

computations that require multiple iterations
 Loops can be conditioned or controlled by a

counter

 Conditional loops - when some condition is
used to exit the loop

 Counter controlled loops - when the number of
passes in the loop is known

