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Topics to be Covered

 Excel Macros
 Understanding and making use of VBA
 Basics of VBA

 Using code modules
 Understanding procedures
 Interacting with the user

 Creating useful forms
 Adjusting form layout
 Using form and control events
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Macros
Definition

 A macro is:
 a series of commands recorded within the user interface

and wrapped into a single action

 A procedure is:
 is a series of actions but, unlike macros, a procedure is

written from scratch with the Visual Basic for
Applications (VBA) programming language

 In summary:
 a series of commands is called a macro when it is

recorded, however, a macro is a procedure within the
VBA world
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Macros
Why use Macros?

 Why use macros?:
 to simplify a series of commands by

automating the task
 simplify complex tasks
 to learn how the VBA language lends itself to

the Excel environment



Fall 2007CEE 38045

Macros
Recording Macros

 Recording macros:
 Tools/Macros/Record New Macro
 Macro recorder is impartial:

– should map out exactly what you are trying to do
 overall goal of macro
 cells that will be selected
 data required by macro
 menu command to accomplish task
 workbooks that will use the macro

 Give macro a descriptive name and shortcut
 Indicate relative versus absolute references
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Macros : Recording

Excel 2007
Look for the
Developer Tab

Excel 2003
Look under
Tools/Macro/Record
New Macro
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Macros: A Simple Example
 A macro that creates a template for your

homework assignment is shown below

Note:
absolute
references
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Macros: Relative References
 Useful when you need to start the macro at any

location in the worksheet

Note:
relative offset
notation
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Macros
Example

 Create a macro called “Title_Logo”:
 Goes down one row and types the following title:

– Virginia Tech Civil and Environmental Engineering Department
 Makes the text bold
 Inserts the date in the cell below the title using the 04-Mar-00

format

 In Excel 2003 open the Visual Basic editor to
view the code:

 Tools/Macros/Visual Basic Editor or Alt+F11
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Macros
Example

Sub Title_Logo()
'
' Title_Logo Macro
' Macro recorded 2/7/00
'
' Keyboard Shortcut: Ctrl+t
'
    ActiveCell.Offset(1, 0).Range("A1").Select
    ActiveCell.FormulaR1C1 = "Virginia Tech Department of

        Civil and Environmental Engineering"
    Selection.Font.Bold = True
    ActiveCell.Offset(1, 0).Range("A1").Select
    ActiveCell.FormulaR1C1 = "=TODAY()"
    Selection.NumberFormat = "dd-mmm-yy"
End Sub
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Macros
Storing Macros

 Macros can be stored:
 This workbook

– macros specific to the workbook
 New workbook

– Excel generates a new workbook to store the macro
 advantage: multiple workbook applications can share the

same macros
 Personal macro workbook

– you are the only person that can use the macros
– this workbook is a hidden workbook stored in the XLStart

folder with the name (personal.xls)
– macros are available to any open workbooks
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Macros
Creating A Custom Command Button

 To create a command button for a macro (Excel
2003):

 View/Toolbars/Customize
– In the “Commands” tab click on “Macros”

 Select “Custom Button” and move the button to the
toolbar you want to place it on

 In “Modify Selection” you can assign a Macro and
change the button image

 In the Name box type the name to be displayed in the
button tool tip
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Macros
Creating A Custom Command Button

 To create a command button for a macro (Excel
2007):

 Developer Tab
– Insert control

 Select “Button” and move the button to the area in
the worksheet you want to place it on

 Assign the Macro to the button and change the
button text information
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Macros
Creating A Custom Menu

 To create a Menu Item:
 View/Toolbars/Customize

– In the “Commands” tab click on “New Menu”
 In the new menu select “Macros” and then select “Custom

Menu Item”
 Assign a macro to the menu item and give it a name
 “&” indicates that an “Alt-key” combination can be used
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Editing Macros with the VB Editor
Editor Layout

 The editor consists of three windows:
 The Project Explorer window

– whenever a workbook is created a companion VBA project is
also created

– available for each workbook to write code or insert user forms

 The Properties Window
– defines the properties of components within a project
– changes properties at design time

 The Code Window
– the Visual Basic Code is stored within a code module
– the code module is displayed in a code window for editing
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VB Basics
Objects, Collections, and Object Models

 Objects:
 elements that represent some part of an application
 workbook, chart, or form control

 Collections:
 a group of objects usually of the same type
 group of workbooks

– Workbooks(1): the first workbook in a sequence of workbooks

 Object Model:
 a hierarchical representation of how the objects and

collections are related to each other
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VB Basics
Properties, Methods, and Arguments

 Every object has distinct properties & methods
 A property is an attribute of an object

– Example: color, font, size, value, etc.
– ActiveSheet.Name = “Data”

 A method is an action an object can take
– Example: printing or copying

Application.Quit
or
ActiveWorkbook.SaveAs “D:\test.xls”

 Occasionally methods require information:
 An argument is the information provided to the method

– Example: ActiveWorkbook.SaveAs “D:\test.xls”
– or ActiveWorkbook.SaveAs Filename:= “D\test.xls”
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VB Basics
Arguments

 Arguments can be provided in the exact order, or
in any order where the argument is preceded by
“:=“

 Example:
ActiveWorkbook.SaveAs FileName:=“test.xls”

 You can continue a line using the line-
continuation character (_)

 Example:
ActiveWorkbook.SaveAs FileName:=“test.xls”, _

FileFormat:=xlExcel7
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VB Basics
Object Libraries

 The Object Library:
 displays object libraries available to the current VBA project
 press F2 to access the Object Library
 three main areas:

– Search area
– Classes list
– Members list
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VB Basics
VBA Projects and Components

– VBA creates a project for every open workbook
– contains all of the VBA code written and forms
– forms are custom dialog boxes that allow the user to

input information
– code can be written in the code modules

behind items
 items include forms, textboxes, etc.

– code can be written in a standard module
– ideal for functions that will be shared
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VB Basics
Organizing Code

 Within any code module, code is grouped into
distinct blocks known as procedures

 A procedure:
 contains one or more lines of code that

accomplish a particular task
 each line is a statement
 blank lines are ignored
 indent lines to make it easier to read the code
 comments are preceded by colons
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VB Basics
Using Code Modules

 To insert a new standard module:
 In the Visual Basic window

– Insert/Module
 To change the name:

 change the properties “Name”
 Group code in a module based on functionality
 To open the code module associated with an

application
 double click on the application
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VB Basics
Using Code Windows

 At the top of the window are two drop-down
lists:

 Left box is the Object list
– lists all objects associated with a window
– (General) refers to code that does not apply to

a specific object
 Right box is the Procedure list

– contains a list of all existing procedures within
the code module

 Code window is divided into two areas:
 Declaration and Procedures
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VB Basics
Understanding Procedures and Functions

 Types of procedures:
 Sub procedures:

– perform some task
– begin with a “Sub” statement followed by a unique name
– and ends with an “End Sub”
– Can return more than one value via arguments

 Function procedures:
– perform some task
– return a single value
– begin with a “Function” statement followed by a unique

name
– end with an “End Function”
– set the function name to the value to be returned
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VB Basics
Examples of Procedures and Functions

Sub ChangeExcelCaption()
   Application.Caption = "My Great Application"
End Sub

Function CalcTakeHome()
    CalcTakeHome = Range("a1") * 0.06
End Function
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VB Basics
Using Arguments

 The parentheses at the end of the opening
statement of a procedure are used to indicate
extra information such as arguments:

 Example:



 To access a custom function:
– Insert/Function/User Defined

Function CalcTakeHome(Salary)
    CalcTakeHome = Salary * 0.06
End Function
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VB Basics
Calling Procedures

 To call a sub procedure:
 type name of sub procedure followed by a space

and the name of the argument
– Example:

 CalcTakeHome RealSalary

 To call a function:
 need to provide a variable to store the value

– Example:

 RealSalary = CalcTakeHome(50000)
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VBA Example : Counter of Data Macro
 See example in Section 3.3 on page 27

(Chapra’s textbook)
 Example creates a macro to calculate the

number of rows in a data set
 Uses a macro to get VBA code to move from an

initial position in the worksheet to an ending
position (sub countingRows)

 Use the “bridges_of_the_world.xls” file
 A second sub called countCells computes the

number of cells and displays the result in a
message box
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VBA Macro Example (countingRows)
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VBA Macro Example (Countcells)
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VBA Macro Example : Running
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VBA Example : Kicker
 Section 5.1 in Chapra’s textbook (see pages 40-

47)
 Projectile motion example
 Illustrates how a sub calls another sub
 Illustrates how a sub generates multiple results

and passes them to another one
 Sub kickCalculation (main routine)
 Sub calculationForKicker (called from

kickCalculation)
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VBA Example : Kicker Worksheet
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Sub : kickCalculation
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Observations about kickCalculation
 The subroutine reads two values vi and ai in cells B9

and B10
 ' input data
 Sheets("Interface").Select
 Range("B9").Select
 vi = ActiveCell.Value

…..
  Then a call to subroutine calculationForKicker is made
 This sub call provides two input values (vi and ai)
 In return the sub provides two output values (tr and xr)
 The values of tr (hang time) and xr (distance) are then

inserted back to the worksheet in cells B13 and B14
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Sub : calculationForKicker
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Things to Observe
 The definition of the sub is:

Sub calculationForKicker(initialSpeed, initialAngle, hangTime,
Distance)

• Yet the sub is called using the following statement
 Call calculationForKicker(vi, ai, tr, xr)

• In this example, the main sub kickCalculation contains
the variable names that will be inserted in the
worksheet

• The number of arguments in the sub
calculationForKicker and kickCalculation are the same

• The variable names initialSpeed, initialAngle, hangTime
and Distance are placeholders that get to be replaced
by variable names contained in the sub that calls
calculationForKicker
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Order of Execution

Block 1

Branches to
calculationForKicker

Block 2

Block 3
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VB Basics
Event Procedures

 Definition:
 event procedures are procedures that are used with events

 Event procedures are stored in the code
module associated with the object:

 to add code to the Open event of the active workbook, you
will use the code module behind ThisWorkbook

 Event procedure name is a combination of:
 object name, “_”, and event name

– Example:
 Private Sub Workbook_BeforePrint()

– In the example Workbook is the object name and
BeforePrint() is the event name. This event procedure is
called before the Workbook is printed
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VB Basics
Running and Testing Procedures

 Can run a procedure within the VB window:
 Run/Sub or F5

 Two methods for testing procedures:
 Run your procedure
 Use the immediate window (View/Immediate

Window)
– Example:

? CalcTakeHome(50000)
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VBA Testing: Immediate Window (Excel
2007)

 In VBE editor
 Control + G to active the immediate window in

Excel 2007
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VBA Basics: debugger in VBA
 VBA has a fully functional debugger to help out

streamline your programs
 Can “step-in” the code line by line to see your

intermediate calculations
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VB Basics
Variables and Constants

 Definition:
 Variables are named locations in memory

 Need to declare variables explicitly:
 defines type of data, procedures that use data, and

avoids errors
 a variable declared within a procedure is a local

variable

Dim [variable name] As [data type]

use “public” or “private” to share variables
only public variables can be used for other

code modules
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VB Basics
Data Types

 Type of Data:
 Byte: 0 to 255
 Integer: -32,768 to 32,767
 Long: -2,000m to 2000m
 Single: -3.4E38 to 3.4E38
 Double: -1.8E308 to 1.8E308
 Boolean: -1 or 0
 String: 0 to 2 billion characters
 Variant: Anything (including special values and Null)
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VB Basics
Variable Declaring Variables and Objects

 To force variable declaration:
 Option Explicit at top of module
 In the Options box enable “Require Variable

Declaration”
 Object variables:

 Special types of variables directed at objects
rather than data

– nickname for object
Dim app as Application

– initializing variable
Set app = Application
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VB Basics
Constants

 Definition:
 similar to variables but can only be filled with

data once
 Built-in constants:

 vbRed: refers to the color red
 Constant declaration:

 Const [name of constant] = [value] As [data type]
 Create constants in capital letters to distinguish

from other variables
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VB Basic User Interaction
Displaying a Message

 The Msgbox function can be used to display
information:

MsgBox “Download Complete.”

 MsgBox function arguments:
 MsgBox(Prompt, Buttons, Title, HelpFile, Context)

– Prompt: Message displayed to user
– Buttons: a combination of numerical constants

 buttons, icon, default button, modality, and other
– Title: indicates the string value that appears in the title

bar
– HelpFile and Context: provide help information



Fall 2007CEE 380448

VB Basic User Interaction
Displaying a Message: Button Argument

 The Buttons option includes:
 Buttons:

 vbOkOnly, vbOkCancel,
vbAbortRetryIgnore, vbYesNoCancel,
vbYesNo, vbRetryCancel

 Icon:
 vbCritical, vbQuestion, vbExclamation,
vbInformation

 Default Button:
 vbDefaultButton1, vbDefaultButton2,
vbDefaultButton3, vbDefaultButton4

 Modality:
 vbApplicationModal: user may respond before using

any application
 Other:

 vbMsgBoxHelpButton,
vbMsgBoxSetForeground, vbMsgBoxRight
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VB Basic User Interaction
Returning Button Constants

 To know which button was clicked:
 MsgBox returns a constant value that indicates which

button was clicked
– vbOK: OK button clicked
– vbCancel: Cancel button clicked
– vbAbort: Abort button clicked
– vbRetry: Retry button clicked
– vbIgnore: Ignore button clicked
– vbYes: Yes button clicked or MsgBox = 6
– vbNo: No button clicked or MsgBox = 7
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VB Basic User Interaction
Message Box Example

 Example:
    Sub ChangeExcelCaption()
       Dim intResponse As Integer
    '-------------------------------------------------------
      intResponse = MsgBox("Would you like to change the worksheet title?", _
                   vbQuestion + vbYesNo + vbApplicationModal + vbMsgBoxHelpButton,
_
                   "Change Excel Caption")

      If (intResponse = vbYes) Then
        Application.Caption = "My Great Application"
      End If
    End Sub
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VB Basic User Interaction
Getting Data from Users

 The InputBox function retrieves information
from user:

 InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile,
context])

– prompt: is the message that is displayed in the dialog box
– title: the string value in the title bar of the message box
– default: displays default text
– xpos: position of left edge of box from left edge of screen in

twips (default is centered horizontally)
– ypos: similar to xpos except for vertical position
– helpfile and context: provide help information
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VB Basic User Interaction
InputBox Function Example

 Example:
Sub ChangeExcelCaption()
   Dim Response As Integer
   Dim Title As String
   '----------------------------------------------------------------
  Response = MsgBox("Would you like to change the worksheet title?", _
             vbQuestion + vbYesNo + vbApplicationModal + _
             vbMsgBoxHelpButton, "Change Excel Caption")
  If (Response = vbYes) Then
        Title = InputBox("Enter Caption?", "Change Excel Caption", _
                 "Excel Workbook")
        Application.Caption = Title
    End If
End Sub
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VB Debugging
Breakpoints and Watch Windows

 Insert a breakpoint to stop program at specific
location:

 view variable values by placing mouse on variable
 use immediate window to print out values of variables
 create watch windows:

– automatically insert a break
when value changes
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VB Basic Coding
Branching in Code: Overview

 Different branching are available:
 If, End If

– Single or multiple conditions
 If [statement is true] Then

ElseIf [alternative statement is true] Then
Else

 End If
 Select Case, End Select:

– Single condition with multiple results
 Select Case [some expression]

Case [result 1]
Case Else

 End Select
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VB Basic Coding
Branching Example

Sub CalcWeekDay()
    Dim strDate As String

    strDate = InputBox("Enter a date using mm/dd/yy format:", _
                   "Date Input", Date)
    Select Case WeekDay(strDate)
    Case vbMonday To vbThursday
        MsgBox (strDate & " falls on Monday thru Thursday ...")
    Case vbFriday
        MsgBox (strDate & " is a Friday!")
    Case Else
        MsgBox (strDate & " is a weekend day.")
    End Select
End Sub



Fall 2007CEE 380456

VB Basic Coding
Repetition: Do … Loop

 Different ways of implementing repetition:
 Do… Loop

– While [condition is TRUE]: loop continues as long as condition
is true

– Until [condition is TRUE]: loop continues as long as the
expression evaluates to false

– Two ways of coding:

Do While [condition] or Until [condition]
code to be repeated

Loop

Do
code to be repeated

Loop While [condition] or Until [condition]
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VB Basic Coding
Repetition: For… Next

 Another way of repeating code:
 Standard:

For [counter variable] = [start value] To [end value]
code to be repeated

Next [counter variable]
 Optional:

For [counter variable] = [start value] To [end value] Step [increment]
code to be repeated

Next [counter variable]
 For Each… Next:

– allows you to loop through the collection of objects without
knowing the precise number of objects
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 First Program with a Loop
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 The VBA Code Behind

Loop code
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 A Loop with Concatenation Control
 The program in worksheet: loopConcatenate.xls
 offers a sample of a loop computation and the

use of concatenation control to estimate
pavement thicknesses

 The pavement thickness function created in
previous classes in “called” by the VBA code
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 Worksheet Interface

Cell B8 controls the
number of times the
loop is executed
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 The Code Behind the Worksheet
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 Code (cont.)

Calls Function Thickness

Concatenation
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 Try Other Refinements
 Currently the loop counter just overwrites the

values of pavement thickness without erasing
previous computation

 Try adding a line or two of code to erase the
previous table of computations while executing
the code
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VB Basic Coding
With… End With

 The With… End With structure is used to
optimize code by speeding up code execution:

 apply multiple properties and methods to the same object

With ActiveCell
.Clear
.Value = “Greetings”
.Font.Bold = True
.RowHeight = 11
MsgBox.Address

End With
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VB Advanced Coding
Manipulating Ranges

 Return single cell:
Set c = ActiveCell

 points object variable to active cell

ActiveSheet.Range(“C10”).Activate
 activates cell C10

 Multiple cell ranges:
Worksheets(1).Range(“Years”)
Worksheets(1).Range(“C2:F13”).Font.Bold = True
Range(Cells(2,3),Cells(13,6)).Font.Color = vbRed
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VB Advanced Coding
Row, Column, and Cell Manipulation

 Examples:
Worksheets(1).Columns(3).AutoFit

– changes the width of the third column

Worksheets(2).Columns(“A:K”).AutoFit
– changes the width of columns A to K to achieve best fit

Worksheets(2).Range(Rows(10),Rows(15)).Delete
– deletes rows 10 through 15

Worksheets(2).Cells(2,1) = 13
– sets the value of A2 to 13
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 A Simple Program with a Loop
 Loops are natural ways to execute

computations that require multiple iterations
 Loops can be conditioned  or controlled by a

counter

 Conditional loops - when some condition is
used to exit the loop

 Counter controlled loops - when the number of
passes in the loop is known


