CEE 3804 Homework 5 Solution

Problem 1

A	B	C	D	E	F	G	Н	1	J	K	L	M	N	0)
City	Bus Type	Miles	Route length												
Atlanta	Orion V	229,983	17.10	Zhou											
Atlanta	Van Hol AG500	155,416	18.06	2	/19/2023 16:14										
Atlanta	GMC RTS II	186,303	22.89												
Seattle	GMC RTS II	125,296	19.70												
Orlando	Van Hol AG500	191,490	15.27	Count of B	us Type	Column Labels 🔻									
Atlanta	Van Hol AG500	262,736	24.25	Row Label	· ·	GMC RTS II	New Flyer 40/60LFA	Orion V	Van Hol AG500	Grand Total					
Seattle	Van Hol AG500	352,426	24.64	Atlanta		96	60	57	80	293					
San Diego	Van Hol AG500	125,780	20.56	Orlando		69	49	59	86	263					
Seattle	New Flyer 40/60LFA	166,099	28.11	San Diego		52	. 44	31	44	171					
Seattle	GMC RTS II	303,757	7.69	Seattle		82	56	48	87	273	0				
Seattle	GMC RTS II	333,627	27.78	Grand Tota	d .	299	209	195	297	1000	Burnge of Scale ior	gen.	0		
Orlando	Orion V	358,828	16.22								20				
Seattle	Van Hol AG500	265,589	21.52								29			— .	
San Diego	Van Hol AG500	187,726	13.38	Average o	Miles	Column Labels 🔻					2				GMC RTS II
Seattle	GMC RTS II	192,195	17.71	Row Label	s 🔻	GMC RTS II	New Flyer 40/60LFA	Orion V	Van Hol AG500	Grand Total	O'				New Ryer 40,/60.F
Atlanta	Van Hol AG500	154,280	24.20	Atlanta		251040.514	233773.0625	237252.4302	221497.3644	236755.8047	26				Orion V Van Hol AGSD0
Atlanta	Van Hol AG500	143,370	11.75	Orlando		242504.7937	252696.0149	252339.7919	243590.2271	246964.8013	25				
Atlanta	Orion V	190,451	9.94	San Diego		245489.6673	260925.9176	256058.9376	227970.1886	246869.6985	24	Orbendo	San Diego	Seattle	
Seattle	GMC RTS II	161,631	22.84	Seattle		241776.1986	244755.7803	243593.1091	255719.7618	247150.4048	Dy W		and single		
Orlando	GMC RTS II	112,035	15.05	Grand Tota	d .	245564.6525	246868.6725	246367.8592	238878.3039	244007.9724	0		0		
Seattle	Van Hol AG500	286,340	25.18												
Seattle	Van Hol AG500	111,328	21.35												
Seattle	New Flyer 40/60LFA	111,284	10.49												
San Diego	GMC RTS II	344,367	17.66	Average o	Route length	Column Labels 💌									
Seattle	Van Hol AG500	155,322	16.58	Row Label	s 🔍	GMC RTS II	New Flyer 40/60LFA	Orion V	Van Hol AG500	Grand Total					
Orlando	Orion V	313,719	22.42	Atlanta		16.35215792	18.41479496	17.41886344	18.72509873	17.62995895					
San Diego	Orion V	228,202	8.39	Orlando		16.37198394	18.16460117	18.87098995	17.93300151	17.77702999					
Orlando	Van Hol AG500	313,040	14.41	San Diego		18.90014694	16.43720324	16.26793123	18.94954054	17.8019312					
Seattle	Van Hol AG500	287,669	26.75	Seattle		17.08075777	19.46966832	18.04549411	17.67817952	17.93080182					
San Diego	GMC RTS II	271.263	8.52	Grand Tota	a	16.99967836	18.22244748	17.82950364	18.22231458	17,78017599				Acti	vate V

Figure 1 shows a sample pivot table presentation of the data.

Figure 1. Pivot Table for Bus Asset Problem.

Count of Bus Type	Column Label 🔻	Ĵ			
Row Labels	GMC RTS II	New Flyer 40/60LFA	Orion V	Van Hol AG500	Grand Total
Atlanta	96	60	57	80	293
Orlando	69	49	59	86	263
San Diego	52	44	31	44	171
Seattle	82	56	48	87	273
Grand Total	299	209	195	297	1000

Average of M	iles 📃 Column Label 💌				
Row Labels		New Flyer 40/60LFA	Orion V	Van Hol AG500	Grand Total
Atlanta	Vertical (Value) Axis	233,773	237,252	221,497	236,756
Orlando	242,505	252,696	252,340	243,590	246,965
San Diego	245,490	260,926	256,059	227,970	246,870
Seattle	241,776	244,756	243,593	255,720	247,150
Grand Total	245,565	246,869	246,368	238,878	244,008

Average of Route le	ength Column Label 🔻				
Row Labels	GMC RTS II	New Flyer 40/60LFA	Orion V	Van Hol AG500	Grand Total
Atlanta	16.4	18.4	17.4	18.7	17.6
Orlando	16.4	18.2	18.9	17.9	17.8
San Diego	18.9	16.4	16.3	18.9	17.8
Seattle	17.1	19.5	18.0	17.7	17.9
Grand Total	17.0	18.2	17.8	18.2	17.8
1	I	1		1	

Figure 2. Summary Pivot Tables of Bus Asset Problem.



Figure 3. Average Route Length for Various Cities.

Figure 4. Macro Generated by Excel to Create Summaries of Bus Assets.

Problem 2

Application of the Excel Macro developed in Problem 1 yields the following results.

- b) The average route length for buses New Flyer 40/60LFA operated in Los Angeles is 23.74
- c) There are 57 buses of type Van Hol AG500 are operated in San Francisco
- d) The average number of miles of Orion V operated in Boston 223,444.
- e) The average route length of GMC RTS II buses operated in Denver is 18.4.
- f) The city with the highest route length (average route length) is New York

Problem 3

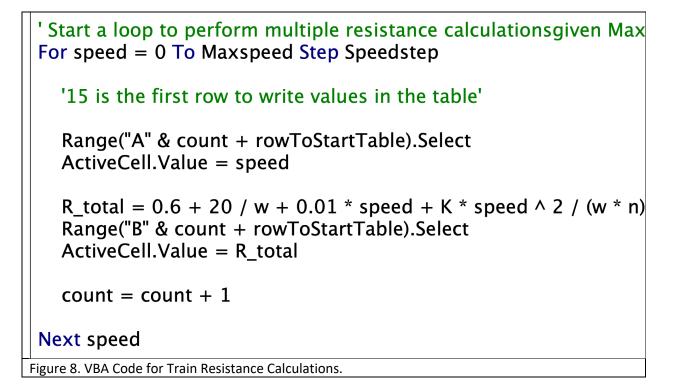
Code for parts 1 through 5.

Answer of second question is 6.19 lbs/ton

Type of Train	Aerodynamic Coefficient (dim)		Step List	S	Speed List	
Regular trains	0.07		1		10	
Container trains	0.0935		5		20	
Truck trailers	0.16		10		30	
		Index of step list	1		40	
					50	
Type of Train	Container trains	Select Step	Select Speed		60	
Step	1	1 🔻			70	
Speed	70		70 🗸		7	Index of speed list
n	4					
w	18					
				Calavilata		
Speed (mph)	Train Resistance (lbs/ton)			Calculate		
0	1.711111069					
1	1.722409725					
2	1.736305594					
3	1.752798557					
4	1.771888852					

Figure 5. Train Resistance Calculation Spreadsheet.

B8=INDEX(D2:D4,D5)


B9=INDEX(F2:F8,F9)

```
Option Explicit
Dim R total As Single
Dim w As Single
Dim n As Single
Dim V As Single
Dim Typeoftrain As String
Dim Maxspeed As Single
Dim Speedstep As Single
Dim speed As Single
Dim K As Single
Dim count As Integer
Dim rowToStartTable As Integer
Sub Resistance()
'Subroutine to estimate train resistance (R total)
'R total = train resistance (lbs/ton)
'Typeoftrain = type of train (flat cars, etc.)
'Maxspeed = speed in miles per hour
' speedstep = invcrement of speed to estimate a t
w = weight of car per axle (tons)
'R total = 0.6+20/w+0.01V+KV^{2}/(wn)
' Select the type of train
' This has an influence in theaerodynamic coeffici
Range("B7").Select
Typeoftrain = ActiveCell.Value
' Select the step size for speed
Range("B8").Select
Speedstep = ActiveCell.Value
```

Figure 6. VBA Code for Train Resistance Calculations.

```
'Select the step size for speed
Range("B8").Select
Speedstep = ActiveCell.Value
' Select the maximumtrain speed
Range("B9").Select
Maxspeed = ActiveCell.Value
' Select the number of axles per car
Range("B10").Select
n = ActiveCell.Value
'Select the weight per axle (ton)
Range("B11").Select
w = ActiveCell.Value
'Estimate the aerodynamic coefficient given the
'Estimate the aerodynamic coefficient given the ty
If Typeoftrain = "Regular trains" Then
  K = 0.07
Elself Typeoftrain = "Container trains" Then
  K = 0.0935
Elself Typeoftrain = "Truck trailers" Then
  K = 0.16
End If
' Clear the range to generate a table
Range("A15:B100").Clear
count = 0
rowToStartTable = 15
```

Figure 7. VBA Code for Train Resistance Calculations.

Problem 4

	А	В	С
1	M_pendulum	6	kilograms
2	m_bullet	0.0088	kilograms
3	h	0.071	meters
4	g	9.8	m/s^2
5	v_bullet	805.494	m/s
6	К	2854.81	

```
Sub Vbullet()
Sheets("Sheet1").Select
Range("B1").Select
M pendulum = ActiveCell.Value
Range("B2").Select
m bullet = ActiveCell.Value
Range("B3").Select
h = ActiveCell.Value
Range("B4").Select
g = ActiveCell.Value
v bullet = (M pendulum + m bullet) / m bullet * Sqr(2 * g * h)
Call Kinetic(m bullet, v bullet, K)
Range("B5").Select
ActiveCell.Value = v bullet
Range("B6").Select
ActiveCell.Value = K
End Sub
```

```
Sub Kinetic(m_bullet, v_bullet, K)
K = 0.5 * m_bullet * v_bullet ^ 2
End Sub
```