CEE 3804 Assignment \#8 Solution

Problem 1

Function looks like this:

```
function f = negative_exp(x)
global beta
f = (1/ beta) * exp(-x/beta);
end
```

With beta $=11.3$, the following figure was generated:

For more than 10 years:

```
trapz(10:1:50,negative_exp(10:1:50))
ans =
    0.4010
```

The answer depends on the second year. If you choose the first year to be 0 , and the second year to be 10 , then the answer will be 1 minus the resulted probability as we are seeking the result for more than 10 years.

```
>> trapz(8:1:14,negative_exp(8:1:14))
```

ans $=$

$$
0.2031
$$

Problem 2

Area Under Curve:

```
>> trapz(waterway.HorizontalCoordinate_meters_,waterway.VerticalProfile_meters_)
ans =
```

-711.1500

By using the other method your number should be very close. For the last part you have to subtract it from the entire area to find the dredging amount.

Problem 3

Polynomial_2 = polyfit(X,Y,2)
Polynomial_3= polyfit $(X, Y, 3)$

Y2	$=$ polyval(Polynomial_2,X)
Y3	$=$ polyval(Polynomial_3,X)

SSE2 $=\operatorname{sum}\left((\mathrm{Y} 2-\mathrm{Y}) .^{\wedge} 2\right)$
SSE3 $=\operatorname{sum}\left((\mathrm{Y} 3-\mathrm{Y}) .^{\wedge} 2\right)$

Problem 4

```
function R = resistant(v)
A = 7.91000; % units are kN
B = 0.10356; % units are kN s/m
C = 0.01099; % units are kN s-s/m-m
R = A + B* v + C * v.^2;
end
```


