Example of Linear Programming Problem Using Matlab to Perform Matrix Calculations

Problem to be Solved

Maximize $Z = 4 x_1 + 9 x_2$ Subject to: $X_2 \leq 19$ $1.45 X_1 + X_2 \le 45$ $x_{2} - 1.25 x_{1} \le 10$ and $X_1 \ge 0, X_2 \ge 0$

Excel Solver Solution

Maximize Z = Subject to:	$4 x_1 + 9 x_2$			Solve	er Panel
C				Solver Parameters	
$X_2 \le 19$			Set Objective:	\$8\$10	
$1.45 X_1 + X_2 \le 4$	45		To: OMax	Min Value Of:	0
$x_2 - 1.25 x_1 \le 1$	0		By Changing Variable	Cells:	
$\lambda_2 = 1.23 \lambda_1 \le 1$	0		\$B\$5:\$B\$6		_
and			Subject to the Constru	aints:	
			\$B\$14 <= \$D\$14 \$B\$15 <= \$D\$15		Add
$X_1 \ge 0, X_2 \ge 0$			\$B\$16 <= \$D\$16		Change
Optimization Problem - F	Problem 3 in Q1 - 20	15	_		Delete
Decision Variables	Exce	l Setup			Reset All
	17.93				Load/Save
x1 x2	19.00		🗹 Make Unconstrain	ned Variables Non-Negati	ve
-			Select a Solving Metho	od: Simplex LP	 Options
Objective Function			Solving Method		
4 x1 + 9 x2	242.72		Select the GRG Nonline nonlinear. Select the L	ear engine for Solver Proble P Simplex engine for linear onary engine for Solver prob	Solver Problems,
Constraint Equations			anooti.		
2	Formula			Close	Solve
x2 <= 19 1.45 x1 + x2 <= 45	19.00 <= 45.00 <=			close	30176
$x^{2}-1.25x^{1} = 10$	-3.41 <=		10		

WirginiaTech

Converting Inequality Constraints in LP Problems to Standard Form

Type of Constraint	How to handle
$3x_1 + 2x_2 \le 180$	Add a slack variable
$3x_1 + 2x_2 = 180$	Add an artificial variable
	Add a penalty to OF (BigM)
$3x_1 + 2x_2 \ge 180$	Add a negative slack and a positive artificial variable

Excel Solver Solution

Original Problem

Maximize
$$Z = 4 x_1 + 9 x_2$$

Subject to:
 $x_2 \le 19$
 $1.45 x_1 + x_2 \le 45$
 $x_2 - 1.25 x_1 \le 10$
and
 $x_1 \ge 0, x_2 \ge 0$

Conversion to Standard Form

Maximize $Z = 4x_1 + 9x_2$ Subject to: $x_2 + x_3 = 19$ ${}^{s}1.45x_1 + x_2 + x_4 = 45$ $x_2 - 1.25x_1 + x_5 = 10$ and $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$

For each inequality constraint of type \leq we have added a slack variable

Initial Table (to get an Initial Basic Feasible Solution) $Z - 4x_1 - 9x_2 + 0x_3 + 0x_4 + 0x_5 = 0$ $x_2 + x_3 = 19$ In Z-row bring the right hand side (RHS) terms to the left hand side of the equation

Basic Variable	Z	X 1	X 2	X 3	X 4	X 5	RHS
Z	1	-4	-9	0	0	0	0
X 3	0	0	1	1	0	0	19
X 4	0	1.45	1	0	1	0	45
X 5	0	-1.25	1	0	0	1	10

Initial Basic Feasible Solution (IBFS) is: $x_1 = 0$, $x_2 = 0$, $x_3 = 19$, $x_4 = 45$ and $x_5 = 10$. Value of the objective function Z = 0.

UirginiaTech

Iterations (Marching to 2nd Table)

I. Select Pivot column containing Non-Basic variable x_2 . The coefficient of x_2 in the Z-row is the most negative and hence improves the solution of Z the most.

2. Take the ratio test. RHS/coefficients in Pivot column.

Basic Variable	Z	X 1	X 2	X3	X 4	X 5	RHS	Ratio test
Z	1	-4	-9	0	0	0	0	
X 3	0	0	1	1	0	0	19	19
X 4	0	1.45	1	0	1	0	45	45
X 5	0	-1.25	1	0	0	1	10	★ 10

Pivot row selected with the minimum ratio of RHS/coefficients in Pivot column

Iterations (Next Steps)

- 3.Select the lowest ratio (variable x_5 leaves the Basic Variable set and becomes zero in the next table.
- 4. Variable x_2 enters the solution in the next table.
- 5.Perform row operations to eliminate all coefficients in Pivot Column (except the intersection of Pivot column and Pivot row)
 - Multiply row with variable x₅ (3rd constraint equation) by 9 and add to Z-row
 - Multiply row with variable x₅ (3rd constraint equation) by (-1) and add to second row (first constraint equation)
- 6.Eliminate all coefficients in the Pivot column except for the unit value in the Pivot row (see table on next page).

Use Matlab to perform the calculations

Define a matrix **a** that contains all the coefficients in the previous table

$$a = \begin{bmatrix} 1 - 4 - 9 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 19 \\ 0 & 1.45 & 1 & 0 & 1 & 0 & 45 \\ 0 & -1.25 & 1 & 0 & 0 & 1 & 10 \end{bmatrix};$$

Define rows r1, r2, ... r4 as the rows of matrix \mathbf{a} r1 = a(1,:)

```
r2 = a(2,:)
r3 = a(3,:)
r4 = a(4,:)
```

a(1,:) means select all elements of row 1

Perform row operations in matrix **a** or now in matrices r1, r2, r3 and r4 Basic Z X1 X2 X3 X4 X5 BHS

b = r4*9 + r1

Equivalent to: x_5 **b** = Pivot row * (9) + Z-row

Yields: **b** = [1 -15.25 0 0 0 9 90]

Replace the **Z-row** (matrix **r1**) for matrix **b**

b = r1

Perform row operations in matrix a using matrix r2

Equivalent to: $\mathbf{c} = \text{Pivot row }^{*}(-1) + \text{row}(2)$

Basic Variable	Z	X 1	X 2	X 3	X 4	X 5	RHS
Z	1	-15.25	0	0	0	9	90
X 3	0	0	1	1	0	0	19
X 4	0	1.45	1	0	1	0	45
X 5	0	-1.25	1	0	0	1	10

Yields: **c** = [0 2.7 0 0 1 -1 35]

Replace matrix c for second row in matrix a (or r2)

$$c = r2$$

Perform row operations in matrix **a** using matrix **r3**

Equivalent to: x_5 d = Pivot row * (-1) + row(3)

Yields: **d** = [0 1.25 0 1 0 -1 9]

Replace matrix **d** for third row in matrix **a** (or r3)

d = r3

Second Table

The new matrices **b**, **c**, and **d** are now substituted back to form a new matrix **a** that is the second table in our problem

The last row in matrix **a** does not to be redefined since it was the Pivot row and was not modified

	Second Table										
a = [1 0 0 0	-15.25 2.70 0 1.25 0 -1.251	New solution is not optimal Coefficient of x1 is negative									
Basic Variable	Z e	X 1	X 2	X 3	X 4	X 5	RHS				
z	1.00	-15.25	0.00	0.00	0.00	9.00	90.00				
X 3	0.00	1.25	0.00	1.00	0.00	-1.00	9.00				
X 4	0.00	2.70	0.00	0.00	1.00	-1.00	35.00				
X 2	0.00	-1.25	1.00	0.00	0.00	1.00	10.00				

New solution is: $x_1 = 0$, $x_2 = 10$, $x_3 = 35$, $x_4 = 9$ and $x_5 = 0$.

Value of the objective function Z = 90.

Marching to 3rd Table

- I.Select column x₁ as the Pivot column
 2.Take ratio test and select second row as the Pivot row
- 3.Perform row operations to eliminate all coefficients of Pivot column (except the coefficient at the intersection of Pivot row and Pivot column)

Basic Variable	Z	X 1	X 2	X 3	X 4	X 5	RHS	Ratio test
Z	1.00	-15.25	0.00	0.00	0.00	9.00	90.00	
X 3	0.00	1.25	0.00	1.00	0.00	-1.00	9.00	7.20
X 4	0.00	2.70	0.00	0.00	1.00	-1.00	35.00	12.96
X 2	0.00	-1.25	1.00	0.00	0.00	1.00	10.00	-8.00

Marching to 3rd Table

I.To facilitate matters start doing row operations on the second row to make coefficient at the intersection of the Pivot row and Pivot column equal to one
2.Divide row (2) by 1.25

Basic Variable	Z	X 1	X 2	X 3	X 4	X 5	RHS		
Z	1.00	-15.25	0.00	0.00	0.00	9.00	90.00		
X 3	0.00	1.25	0.00	1.00	0.00	-1.00	9.00		
X 4	0.00	2.70	0.00	0.00	1.00	-1.00	35.00		
X ₂	0.00	-1.25	1.00	0.00	0.00	1.00	10.00		
		Basic Variable	Z	X 1	X 2	X 3	X 4	X 5	RHS
		Z	1.00	-15.25	0.00	0.00	0.00	9.00	90.00
		X 3	0.00	1.00	0.00	0.80	0.00	-0.80	7.20
	X 4		0.00	2.70	0.00	0.00	1.00	-1.00	35.00
		X 2	0.00	-1.25	1.00	0.00	0.00	1.00	10.00

Define a matrix **a** that contains all the coefficients in the previous table

Define rows r1, r2, ... r4 as the rows of matrix **a** r1 = a(1,:)r2 = a(2,:)r3 = a(3,:)r4 = a(4,:)

Perform row operations in matrix **a** (or r1, r3 and r4)

Basic Variable	Z	X 1	X 2	X 3	X 4	X 5	RHS
Z	1.00	-15.25	0.00	0.00	0.00	9.00	90.00
X 3	0.00	1.00	0.00	0.80	0.00	-0.80	7.20
X 4	0.00	2.70	0.00	0.00	1.00	-1.00	35.00
X 2	0.00	-1.25	1.00	0.00	0.00	1.00	10.00

$$b = r2^{*}(15.25) + r1$$

Equivalent to:

```
b = Pivot row * (15.25) + Z-row
```

Yields:

b = [10 0 12.2 0 -3.2 199.8]

Matrix **b** will replace row (1) in the new matrix **a**

Perform row operations to eliminate coefficient of cell in Pivot column on the third row

Basic Variable	Z	X 1	X 2	X 3	X 4	X 5	RHS
Z	1.00	0.00	0.00	12.20	0.00	-3.20	199.80
X 3	0.00	1.00	0.00	0.80	0.00	-0.80	7.20
X 4	0.00	2.70	0.00	0.00	1.00	-1.00	35.00
X 2	0.00	-1.25	1.00	0.00	0.00	1.00	10.00

 $c = r2^{*}(-2.7) + r3$

Equivalent to:

```
c = Pivot row * (-2.7) + Z-row
```

Yields:

```
c = [0 \ 0 \ -2.16 \ 1 \ 1.16 \ 15.56]
```

Matrix c will replace row (3) in the new matrix a

Perform row operations to eliminate coefficient of cell in Pivot column in the fourth row

Basic Variable	Z	X 1	X 2	X 3	X 4	X 5	RHS
Z	1.00	0.00	0.00	12.20	0.00	-3.20	199.80
X 3	0.00	1.00	0.00	0.80	0.00	-0.80	7.20
X 4	0.00	0.00	0.00	-2.16	1.00	1.16	15.56
X 2	0.00	-1.25	1.00	0.00	0.00	1.00	10.00

Equivalent to:

```
d = Pivot row * (-1.25) + Z-row
```

Yields:

```
d = [0 0 1 1 0 0 19]
```

Matrix d will replace row (4) in the new matrix a

Third Table

The new matrices **b**, **c**, and **d** are now substituted back to form a new matrix **a** that is the second table in our problem

The last row in matrix **a** does not to be redefined since it was the Pivot row and was not modified

Third Table

a = [1.000.00 0.00 12.200.00 -3.20 199.80 0.00 1.00 0.00 0.80 0.00 -0.80 7.20 0.00 0.00 0.00 -2.16 1.00 1.16 15.56 0.00 -0.25 1.00 0.80 0.00 0.20 17.20];

New solution is not optimal Coefficient of x5 is negative

WirginiaTech

Basic Variable	Z	X 1	X 2	X 3	X 4	X 5	RHS
Z	1.00	0.00	0.00	12.20	0.00	-3.20	199.80
X 1	0.00	1.00	0.00	0.80	0.00	-0.80	7.20
X 4	0.00	0.00	0.00	-2.16	1.00	1.16	15.56
X 2	0.00	0.00	1.00	1.00	0.00	0.00	19.00

New solution is: $x_1 = 7.2$, $x_2 = 19.0$, $x_3 = 0$, $x_4 = 15.56$ and $x_5 = 0$.

Value of the objective function Z = 199.8.

Marching to 4th Table

I.Select column x₅ as the Pivot column
2.Take ratio test and select third row as the Pivot row
3.Perform row operations to eliminate all coefficients of Pivot column (except the coefficient at the intersection of Pivot row and Pivot column)

Basic Variable	Z	X 1	X 2	X 3	X 4	X 5	RHS	Ratio test
Z	1.00	0.00	0.00	12.20	0.00	-3.20	199.80	
X 1	0.00	1.00	0.00	0.80	0.00	-0.80	7.20	-9.00
X 4	0.00	0.00	0.00	-2.16	1.00	1.16	15.56	13.41
X 2	0.00	0.00	1.00	1.00	0.00	0.00	19.00	inf

Wirginia Tech

Marching to 4th Table

I.To facilitate matters start doing row operations on the third row to make coefficient at the intersection of the Pivot row and Pivot column equal to one
2.Divide row (3) by 1.16
3.Now proceed with row operations for the remaining rows

Basic Variable	Z	X 1	X 2	X 3	X 4	X 5	RHS
Z	1.00	0.00	0.00	12.20	0.00	-3.20	199.80
X 1	0.00	1.00	0.00	0.80	0.00	-0.80	7.20
X 4	0.00	0.00	0.00	-1.86	0.86	1.00	13.41
X 2	0.00	0.00	1.00	1.00	0.00	0.00	19.00

Fourth Table (Optimal Solution)

= [1.00 0.00 0.00 0.00	0.00 1.00 0.00 0.00	0.00 0.00 0.00 1.00	6.24 -0.69 -1.86 1.00	2.76 0.69 0.86 0.00	0.00 0.00 1.00 0.00	242.72 17.93 13.41 19.00];	optimal coefficients	olution is since all in Z-row are e or zero
Basic Variat	Z ole		X 1	X 2	X 3	X 4	X 5	RHS
Z	1	.00	0.00	0.00	6.24	2.76	0.00	242.72
X 1	0	.00	1.00	0.00	-0.69	0.69	0.00	17.93
X 5	0	00.	0.00	0.00	-1.86	0.86	1.00	13.41
X 2	0	.00	0.00	1.00	1.00	0.00	0.00	19.00

New solution is: $x_1 = 17.93$, $x_2 = 19$, $x_3 = 0$, $x_4 = 13.41$ and $x_5 = 0$.

Value of the objective function Z = 242.72.

UrginiaTech

Graphical Solution

Simplex method moves from corner point to corner point

Only corner points need to be investigated for optimality

UirginiaTech