Example of Linear Programming Problem Using Matlab to Perform Matrix Calculations

Problem to be Solved

Maximize $Z=4 x_{1}+9 x_{2}$
Subject to:
$x_{2} \leq 19$
$1.45 x_{1}+x_{2} \leq 45$
$x_{2}-1.25 x_{1} \leq 10$
and
$x_{1} \geq 0, x_{2} \geq 0$

Excel Solver Solution

Maximize $Z=4 x_{1}+9 x_{2}$
Subject to:

Solver Panel

$x_{2} \leq 19$
$1.45 x_{1}+x_{2} \leq 45$
$x_{2}-1.25 x_{1} \leq 10$
and
$x_{1} \geq 0, x_{2} \geq 0$

Optimization Problem - Problem 3 in Q1-2015	
Decision Variables	ExCel Setup

x1
x2
17.93
19.00

Objective Function
$4 \times 1+9 \times 2$
242.72

Constraint Equations
Formula
x2 <= 19
$1.45 \times 1+\times 2<=45$
<=
$\times 2-1.25 \times 1<=10$

Converting Inequality Constraints in LP Problems to Standard Form

Type of Constraint

$$
3 x_{1}+2 x_{2} \leq 180
$$

$$
3 x_{1}+2 x_{2}=180
$$

$$
3 x_{1}+2 x_{2} \geq 180
$$

How to handle
Add a slack variable
Add an artificial variable
Add a penalty to OF (BigM)

Add a negative slack and a positive artificial variable

Excel Solver Solution

Original Problem

Maximize $Z=4 x_{1}+9 x_{2}$
Subject to:

$$
\begin{aligned}
& x_{2} \leq 19 \\
& 1.45 x_{1}+x_{2} \leq 45 \\
& x_{2}-1.25 x_{1} \leq 10 \\
& \text { and } \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

Conversion to Standard Form

Maximize $Z=4 x_{1}+9 x_{2}$
Subject to:

$$
\begin{aligned}
& x_{2}+x_{3}=19 \\
& 1.45 x_{1}+x_{2}+x_{4}=45 \\
& x_{2}-1.25 x_{1}+x_{5}=10 \\
& \text { and }
\end{aligned}
$$

$$
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0, x_{5} \geq 0
$$

For each inequality constraint of type \leq we have added a slack variable

Initial Table (to get an Initial Basic Feasible Solution)

$Z-4 x_{1}-9 x_{2}+0 x_{3}+0 x_{4}+0 x_{5}=0$							
$\begin{aligned} & x_{2}+x_{3}=19 \\ & 1.45 x_{1}+x_{2}+x_{4}=45 \\ & x_{2}-1.25 x_{1}+x_{5}=10 \end{aligned}$				In Z-row bring the right hand side (RHS) terms to the left hand side of the equation			
Basic Variable	Z	X_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}	X_{4}	X5	RHS
Z	1	-4	-9	0	0	0	0
x_{3}	0	0	1	1	0	0	19
X_{4}	0	1.45	1	0	1	0	45
X_{5}	0	-1.25	1	0	0	1	10

Initial Basic Feasible Solution (IBFS) is: $x_{1}=0, x_{2}=0, x_{3}=19, x_{4}=45$ and $x_{5}=10$.
Value of the objective function $Z=0$.

Iterations (Marching to 2nd Table)

I. Select Pivot column containing Non-Basic variable x_{2}. The coefficient of X_{2} in the \mathbf{Z}-row is the most negative and hence improves the solution of Z the most.
2. Take the ratio test. RHS/coefficients in Pivot column.

Pivot row selected with the minimum ratio of RHS/coefficients in Pivot column

Iterations (Next Steps)

3.Select the lowest ratio (variable x_{5} leaves the Basic Variable set and becomes zero in the next table.
4.Variable x_{2} enters the solution in the next table.
5.Perform row operations to eliminate all coefficients in Pivot Column (except the intersection of Pivot column and Pivot row)

- Multiply row with variable x_{5} (3rd constraint equation) by 9 and add to Z-row
- Multiply row with variable x_{5} (3rd constraint equation) by (-1) and add to second row (first constraint equation)
6.Eliminate all coefficients in the Pivot column except for the unit value in the Pivot row (see table on next page).

Matlab Matrix Operations

Use Matlab to perform the calculations
Define a matrix a that contains all the coefficients in the previous table

$$
a=\left[\begin{array}{ccccccc}
1 & -4 & -9 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 19 \\
0 & 1.45 & 1 & 0 & 1 & 0 & 45 \\
0 & -1.25 & 1 & 0 & 0 & 1 & 10
\end{array}\right] ;
$$

Define rows r1, r2, .. r4 as the rows of matrix a r1 = a(1,:)
$\mathrm{r} 2=\mathrm{a}(2,:) \quad \mathrm{a}(1,:)$ means select all elements of
r3 $=\mathrm{a}(3,:)$
r4 = a(4,:)

Matlab Matrix Operations (2)

Perform row operations in matrix a or now in matrices
r1, r2, r3 and r4
$b=r 4 * 9+r 1$
Equivalent to:

Basic Variable	Z	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}	\mathbf{x}_{5}	RHS
\mathbf{Z}	$\mathbf{1}$	-4	-9	0	0	0	0
\mathbf{x}_{3}	$\mathbf{0}$	0	1	1	0	0	19
\mathbf{x}_{4}		$\mathbf{0}$	1.45	1	0	1	0
\mathbf{x}_{5}	$\mathbf{0}$	-1.25	1	0	0	1	10

b = Pivot row * (9) + Z-row
Yields:
$\mathbf{b}=\left[\begin{array}{lllllll}1-15.25 & 0 & 0 & 0 & 9 & 90\end{array}\right]$
Replace the Z-row (matrix $\mathbf{r} 1$) for matrix \mathbf{b}
$b=r 1$

Matlab Matrix Operations (2)

Perform row operations in matrix a using matrix r2
$c=r 4^{*}(-1)+r 2$
Equivalent to:

Basic Variable	Z		${ }_{1}$	X_{2}		X_{3}		X_{4}		X_{5}		
Z		1	-15.25		0		0		0		9	90
X_{3}		0	0		1		1		0		0	19
X_{4}		0	1.45		1		0		1		0	45
X_{5}		0	-1.25		1		0		0		1	10

c = Pivot row * (-1) + row(2)
Yields:
$\mathbf{c}=\left[\begin{array}{lllllll}0 & 2.7 & 0 & 0 & 1 & -1 & 35\end{array}\right]$
Replace matrix cor focond row in matrix a (or r2)
$c=r 2$

Matlab Matrix Operations (2)

Perform row operations in matrix a using matrix r3
$d=r 4^{*}(-1)+r 3$
Equivalent to:

Basic Variable	Z	x_{1}	X_{2}	\mathbf{x}_{3}	X_{4}	X_{5}	RHS
Z	1	-15.25	0	0	0	9	90
X_{3}	0.0	1.25	0.0	1.0	0.0	-1.0	9.0
X_{4}	0	1.45	1	0	1	0	45
X_{5}	0	-1.25	1	0	0	1	10

d = Pivot row * (-1) + row(3)
Yields:
$\mathbf{d}=\left[\begin{array}{lllllll}0 & 1.25 & 0 & 1 & 0 & -1 & 9\end{array}\right]$
Replace matrix d for third row in matrix a (or r3)
$\mathrm{d}=\mathrm{r} 3$

Second Table

The new matrices \mathbf{b}, \mathbf{c}, and \mathbf{d} are now substituted back to form a new matrix a that is the second table in our problem
$\mathrm{a}(1,:)=\mathrm{b}$;
$\mathrm{a}(2,:)=\mathrm{c}$;
$a(3,:)=d ;$
The last row in matrix a does not to be redefined since it was the Pivot row and was not modified

Second Table

$$
\left.a=\begin{array}{lllllll}
1 & -15.25 & 0 & 0 & 0 & 9 \\
0 & 2.70 & 0 & 0 & 1 & -1 & 35 \\
0 & 1.25 & 0 & 1 & 0 & -1 & 9 \\
0 & -1.25 & 1 & 0 & 0 & 1 & 10
\end{array}\right] ;
$$

New solution is not optimal
Coefficient of X_{1} is negative

Basic Variable		\mathbf{x}_{1}	X_{2}	\mathbf{x}_{3}	X4	X_{5}	RHS
Z	1.00	-15.25	0.00	0.00	0.00	9.00	90.00
x_{3}	0.00	1.25	0.00	1.00	0.00	-1.00	9.00
X_{4}	0.00	2.70	0.00	0.00	1.00	-1.00	35.00
X_{2}	0.00	-1.25	1.00	0.00	0.00	1.00	10.00

New solution is: $x_{1}=0, x_{2}=10, x_{3}=35, x_{4}=9$ and $x_{5}=0$.
Value of the objective function $Z=90$.

Marching to 3rd Table

I.Select column x_{1} as the Pivot column
2. Take ratio test and select second row as the Pivot row
3.Perform row operations to eliminate all coefficients of Pivot column (except the coefficient at the intersection of Pivot row and Pivot column)

| Basic
 Variable | \mathbf{Z} | \mathbf{x}_{1} | $\mathbf{x}_{\mathbf{2}}$ | \mathbf{x}_{3} | \mathbf{x}_{4} | \mathbf{x}_{5} | RHS | Ratio
 test |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{Z} | $\mathbf{1 . 0 0}$ | -15.25 | 0.00 | 0.00 | 0.00 | 9.00 | 90.00 | |
| $\mathbf{x}_{\mathbf{3}}$ | $\mathbf{0 . 0 0}$ | 1.25 | 0.00 | 1.00 | 0.00 | -1.00 | 9.00 | 7.20 |
| \mathbf{x}_{4} | $\mathbf{0 . 0 0}$ | 2.70 | 0.00 | 0.00 | 1.00 | -1.00 | 35.00 | 12.96 |
| \mathbf{X}_{2} | $\mathbf{0 . 0 0}$ | -1.25 | 1.00 | 0.00 | 0.00 | 1.00 | 10.00 | -8.00 |

Marching to 3rd Table

I.To facilitate matters start doing row operations on the second row to make coefficient at the intersection of the Pivot row and Pivot column equal to one
2.Divide row (2) by I. 25

Basic Variable	Z	X_{1}	X_{2}	X_{3}	X_{4}	X 5	RHS
Z	1.00	-15.25	0.00	0.00	0.00	9.00	90.00
X_{3}	0.00	1.25	0.00	1.00	0.00	-1.00	9.00
X_{4}	0.00	2.70	0.00	0.00	1.00	-1.00	35.00
X_{2}	0.00	-1.25	1.00	0.00	0.00	1.00	10.00

Basic Variable	\mathbf{Z}	\mathbf{x}_{1}	$\mathbf{x}_{\mathbf{2}}$	\mathbf{x}_{3}	\mathbf{x}_{4}	\mathbf{x}_{5}	RHS
\mathbf{Z}	$\mathbf{1 . 0 0}$	-15.25	0.00	0.00	0.00	9.00	90.00
$\mathbf{x}_{\mathbf{3}}$	$\mathbf{0 . 0 0}$	1.00	0.00	0.80	0.00	-0.80	7.20
\mathbf{X}_{4}	$\mathbf{0 . 0 0}$	2.70	0.00	0.00	1.00	-1.00	35.00
$\mathbf{X}_{\mathbf{2}}$	$\mathbf{0 . 0 0}$	-1.25	1.00	0.00	0.00	1.00	10.00

Matlab Matrix Operations

Define a matrix a that contains all the coefficients in the previous table

$$
a=\left[\begin{array}{ccccccc}
1 & -15.25 & 0 & 0 & 0 & 9 & 90 \\
0 & 1 & 0 & 0.80 & 0 & -0.80 & 7.20 \\
0 & 2.70 & 0 & 0 & 1 & -1 & 35 \\
0 & -1.25 & 1 & 0 & 0 & 1 & 10
\end{array}\right] ;
$$

Define rows r1, r2,.. r4 as the rows of matrix a r1 = a(1,:)
r2 = a(2,:)
r3 $=a(3,:)$
r4 $=a(4,:)$

Matlab Matrix Operations (2)

Perform row operations in matrix a (or r1, r3 and r4)

Basic Variable	\mathbf{Z}	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	$\mathbf{x}_{\mathbf{5}}$
$\mathbf{R H S}$						
\mathbf{Z}	$\mathbf{1 . 0 0}$	-15.25	0.00	0.00	0.00	9.00
$\mathbf{x}_{\mathbf{3}}$	$\mathbf{0 . 0 0}$	1.00	0.00	0.80	0.00	-0.80
\mathbf{x}_{4}	$\mathbf{0 . 0 0}$	2.70	0.00	0.00	1.00	-1.00
$\mathbf{x}_{\mathbf{2}}$	$\mathbf{0 . 0 0}$	-1.25	1.00	0.00	0.00	1.00

$b=r 2 *(15.25)+r 1$
Equivalent to:
b = Pivot row * (15.25) + Z-row
Yields:
$b=\left[\begin{array}{lllllll}10 & 0 & 12.2 & 0 & -3.2 & 199.8\end{array}\right]$
Matrix \mathbf{b} will replace row (1) in the new matrix \mathbf{a}

Matlab Matrix Operations (2)

Perform row operations to eliminate coefficient of cell in Pivot column on the third row
$c=r 2^{*}(-2.7)+r 3$

Basic Variable	Z	\mathbf{x}_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}	X_{4}	X_{5}	RHS
Z	1.00	0.00	0.00	12.20	0.00	-3.20	199.80
X_{3}	0.00	1.00	0.00	0.80	0.00	-0.80	7.20
X_{4}	0.00	2.70	0.00	0.00	1.00	-1.00	35.00
X_{2}	0.00	-1.25	1.00	0.00	0.00	1.00	10.00

Equivalent to:
c = Pivot row * (-2.7) + Z-row
Yields:
$\mathrm{c}=\left[\begin{array}{llllll}0 & 0 & 0 & -2.16 & 1 & 1.16 \\ 15.56\end{array}\right]$
Matrix c will replace row (3) in the new matrix a

Matlab Matrix Operations (2)

Perform row operations to eliminate coefficient of cell in Pivot column in the fourth row
$d=r 2^{*}(1.25)+r 4$

Basic Variable	\mathbf{Z}	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	$\mathbf{x}_{\mathbf{5}}$
$\mathbf{R H S}$						
\mathbf{Z}	$\mathbf{1 . 0 0}$	0.00	0.00	12.20	0.00	-3.20
\mathbf{x}_{3}	$\mathbf{0 . 0 0}$	1.00	0.00	0.80	0.00	-0.80
\mathbf{x}_{4}	$\mathbf{0 . 0 0}$	0.00	0.00	-2.16	1.00	1.16
$\mathbf{X}_{\mathbf{2}}$	$\mathbf{0 . 0 0}$	-1.25	1.00	0.00	0.00	1.00

Equivalent to:
d = Pivot row * (-1.25) + Z-row
Yields:
$d=\left[\begin{array}{llllll}0 & 1 & 1 & 0 & 0 & 19\end{array}\right]$
Matrix d will replace row (4) in the new matrix a

Third Table

The new matrices \mathbf{b}, \mathbf{c}, and \mathbf{d} are now substituted back to form a new matrix a that is the second table in our problem
$\mathrm{a}(1,:)=\mathrm{b} ;$
$\mathrm{a}(3,:)=\mathrm{c}$;
a(4,:) = d;
The last row in matrix a does not to be redefined since it was the Pivot row and was not modified

Third Table

$\mathrm{a}=\left[\begin{array}{lllll}1.00 & 0.00 & 0.00 & 12.20 & 0.00\end{array}-3.20199 .80\right.$ $\begin{array}{lllllll}0.00 & 1.00 & 0.00 & 0.80 & 0.00 & -0.80 & 7.20\end{array}$ $\begin{array}{lllllll}0.00 & 0.00 & 0.00 & -2.16 & 1.00 & 1.16 & 15.56\end{array}$ $\begin{array}{llllllll}0.00 & -0.25 & 1.00 & 0.80 & 0.00 & 0.20 & 17.20] ;\end{array}$

New solution is not optimal
Coefficient of x_{5} is negative

Basic Variable	Z	x_{1}	\mathbf{X}_{2}	X_{3}	X_{4}	X_{5}	RHS
Z	1.00	0.00	0.00	12.20	0.00	-3.20	199.80
x_{1}	0.00	1.00	0.00	0.80	0.00	-0.80	7.20
X_{4}	0.00	0.00	0.00	-2.16	1.00	1.16	15.56
X_{2}	0.00	0.00	1.00	1.00	0.00	0.00	19.00

New solution is: $x_{1}=7.2, x_{2}=19.0, x_{3}=0, x_{4}=I 5.56$ and $x_{5}=0$.
Value of the objective function $\mathbf{Z}=199.8$.

Marching to 4th Table

I. Select column X_{5} as the Pivot column
2. Take ratio test and select third row as the Pivot row
3. Perform row operations to eliminate all coefficients of

Pivot column (except the coefficient at the intersection of Pivot row and Pivot column)

Basic Variable	Z	X_{1}	X_{2}	\mathbf{x}_{3}	X_{4}	X_{5}	RHS	Ratio test
Z	1.00	0.00	0.00	12.20	0.00	-3.20	199.80	
x_{1}	0.00	1.00	0.00	0.80	0.00	-0.80	7.20	-9.00
X_{4}	0.00	0.00	0.00	-2.16	1.00	1.16	15.56	13.41
X_{2}	0.00	0.00	1.00	1.00	0.00	0.00	19.00	inf

I.To facilitate matters start doing row operations on the third row to make coefficient at the intersection of the Pivot row and Pivot column equal to one
2.Divide row (3) by I.I6
3.Now proceed with row operations for the remaining rows

Basic Variable	Z	x_{1}	X_{2}	X_{3}	X4	X 5	RHS
Z	1.00	0.00	0.00	12.20	0.00	-3.20	199.80
x_{1}	0.00	1.00	0.00	0.80	0.00	-0.80	7.20
X_{4}	0.00	0.00	0.00	-1.86	0.86	1.00	13.41
X_{2}	0.00	0.00	1.00	1.00	0.00	0.00	19.00

Fourth Table (Optimal Solution)

$\mathrm{a}=\left[\begin{array}{ccccccl}1.00 & 0.00 & 0.00 & 6.24 & 2.76 & 0.00 & 242.72 \\ 0.00 & 1.00 & 0.00 & -0.69 & 0.69 & 0.00 & 17.93 \\ 0.00 & 0.00 & 0.00 & -1.86 & 0.86 & 1.00 & 13.41 \\ 0.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.00 & 19.00] ;\end{array}\right.$

\mathbf{Z}	$\mathbf{1 . 0 0}$	0.00	0.00	6.24	2.76	0.00	242.72
\mathbf{X}_{1}	$\mathbf{0 . 0 0}$	1.00	0.00	-0.69	0.69	0.00	17.93
\mathbf{X}_{5}	$\mathbf{0 . 0 0}$	0.00	0.00	-1.86	0.86	1.00	13.41
$\mathbf{X}_{\mathbf{2}}$	$\mathbf{0 . 0 0}$	0.00	1.00	1.00	0.00	0.00	19.00

New solution is: $x_{1}=17.93, x_{2}=19, x_{3}=0, x_{4}=13.4 \mid$ and $x_{5}=0$.
Value of the objective function $Z=242.72$.

Graphical Solution

Simplex method moves from corner point to corner point
 Only corner points need to be investigated for optimality

